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The practical use of the contamination technique in stress testing for risk measures Value at
Risk (VaR) and Conditional Value at Risk (CVaR) and for optimization problems with these

10 risk criteria is discussed. Whereas for CVaR its application is straightforward, the presence of
the simple chance constraint in the definition of VaR requires that various distributional and
structural properties are fulfilled, namely for the unperturbed problem. These requirements
rule out direct applications of the contamination technique in the case of discrete distribu-
tions, which includes the empirical VaR. On the other hand, in the case of a normal distribu-

15 tion and parametric VaR, one may exploit stability results valid for quadratic programs.

Keywords: Stochastic programming; Risk management; Portfolio optimization; Linear
programming; Fixed-income markets; Asset liability modelling; Dynamic models

1. Stress testing and contamination

Stress testing is a term used in financial practice without
20 any generally accepted definition. It appears in the

context of quantification of losses or risks that may
appear under special, mostly extremal circumstances
(Kupiec 2002). Such circumstances are described by cer-
tain scenarios which may come from historical experience

25 (a crisis observed in the past)—historical stress test, or
may be judged to be possible in the future given
changes of macroeconomic, socioeconomic or political
factors—prospective stress test, etc. The performance of
the obtained optimal decision is then evaluated along

30 these, possibly dynamic, scenarios or the model is solved
with an alternative input. Stress testing approaches differ
among institutions and also due to the nature of the tested
problem and the way in which the stress scenarios have
been selected. In this paper, we focus on the stress testing

35 of two risk measures, VaR and CVaR, giving the ‘test’ a
more precise meaning. This is made possible by the
exploitation of parametric sensitivity results and the
contamination technique.

The contamination approach was initiated in mathema-
40 tical statistics as one of the tools for the analysis of the

robustness of estimators with respect to deviations from

the assumed probability distribution and/or its param-
eters. It goes back to von Mises and the concepts are
briefly described, for example, in Serfling (1980).

45In stochastic programming, it was developed in a series
of papers; see, for example, Dupačová (1986, 1996) for
results applicable to two-stage stochastic linear programs.
For application of contamination bounds, it is important
that the stochastic program is reformulated as

min
x2X

Fðx,PÞ :¼

Z
�

fðx,!ÞPðd!Þ, ð1Þ

50with X independent of P.
Via contamination, robustness analysis with respect to

changes in the probability distribution P is reduced to a
much simpler analysis with respect to scalar parameter �.

55Assume that (1) is solved for probability distribution P.
Denote ’(P) the optimal value andX�ðPÞ the set of optimal
solutions. The possible changes in the probability distribu-
tion P are modeled using contaminated distributions P�,

P� :¼ ð1� �ÞPþ �Q, � 2 ½0, 1�, ð2Þ

60with Q another fixed probability distribution. Limiting

the analysis to a selected direction Q� P only, the results
are directly applicable, but they are less general than
quantitative stability results with respect to arbitrary
(but small) changes in P, summarized, for example, in

65Römisch (2003).Corresponding author: Email:dupacova@karlin.mff.cuni.cz
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The objective function in (1) is linear in P, hence

Fðx, �Þ :¼

Z
�

fðx,!ÞP�ðd!Þ ¼ ð1� �ÞFðx,PÞ þ �Fðx,QÞ

is linear in �. Suppose that stochastic program (1) has an
optimal solution for all considered distributions P�,

70 0 � � � 1, of the form (2). Then the optimal value
function

’ð�Þ :¼ min
x2X

Fðx, �Þ

is concave on [0, 1], which implies its continuity and the
existence of directional derivatives on (0, 1). Continuity at

75 the point � ¼ 0 is a property related to the stability results
for the stochastic program in question. In general, one
needs a non-empty, bounded set of optimal solutions
X
�
ðPÞ of the initial stochastic program (1). This assump-

tion, together with the stationarity of derivatives
80 dFðx, �Þ=d� ¼ Fðx,QÞ � Fðx,PÞ, is used to derive the

form of the directional derivative,

’0ð0þÞ ¼ min
x2X�ðPÞ

Fðx,QÞ � ’ð0Þ, ð3Þ

which enters the upper bound for the optimal value func-
tion ’ð�Þ:

’ð0Þ þ �’0ð0þÞ � ’ð�Þ � ð1� �Þ’ð0Þ þ �’ð1Þ,

� 2 ½0, 1�; ð4Þ

85 for details, see Dupačová (1986, 1996) and references
therein.

If x�ðPÞ is the unique optimal solution of (1),
’0ð0þÞ ¼ Fðx�ðPÞ,QÞ � ’ð0Þ, i.e. the local change in the

90 optimal value function caused by a small change in P in
direction Q � P is the same as that of the objective function
at x�ðPÞ. If there are multiple optimal solutions, each of
them leads to an upper bound ’0ð0þÞ � FðxðPÞ,QÞ � ’ð0Þ,
xðPÞ 2 X�ðPÞ. Contamination bounds can then be

95 written as

ð1� �Þ ’ ðPÞ þ �FðxðPÞ,QÞ � ’ ðP�Þ

� ð1� �Þ ’ ðPÞ þ �’ðQÞ, ð5Þ

valid for an arbitrary optimal solution xðPÞ 2 X�ðPÞ and
for all � 2 ½0, 1�.

Contamination bounds (4) and (5) help to quantify the
100 change in the optimal value due to the considered pertur-

bations of (1). They exploit the optimal value ’(Q) of the
problem solved under the alternative probability distribu-
tion Q and the expected performance FðxðPÞ,QÞ of the
optimal solution x(P) obtained for the original probabil-

105 ity distribution P in situations where Q applies. Note that
both of these values appear under the heading of stress
testing methods.

The contaminated probability distribution P� may also
be understood as a result of contaminating Q by P.

110 Provided that the set of optimal solutions x(Q) of the
problem minx2X Fðx,QÞ is non-empty and bounded, an
alternative upper bound may be constructed in a similar

way. Together with the original upper bound from (5),
one may use a tighter upper bound

min
n
ð1� �Þ’ðPÞ þ �FðxðPÞ,QÞ, �’ðQÞ

þ ð1� �ÞFðxðQÞ,PÞ
o
, ð6Þ

115for ’ð�Þ.
The contamination bounds are global, valid for all

� 2 ½0, 1�. They are suitable for post-optimality analysis,
out-of-sample analysis and stress testing in various

120disparate situations. For example, the choice of a degen-
erated distribution Q ¼ �f!�g may correspond to an addi-
tional stress or out-of-sample scenario !� or to increasing
probability of an already considered scenario !�.
Contamination bounds (4), (5) and (6) then provide

125information concerning the influence of including an
additional scenario on the optimal results, etc. For
stability studies with respect to small changes in the
underlying probability distribution P, small values of
the contamination parameter � are typical. The choice

130of � may reflect the degree of confidence in the expert’s
opinion, represented as the contaminating probability
distribution Q, or the wish to obtain equiprobable
scenarios, atoms of the contaminated distribution P�,
and so on.

135Contamination bounds were applied, inter alia, in
Dupačová et al. (1998) for post-optimality analysis for
multi-period two-stage bond portfolio management pro-
blems with respect to additional scenarios. In the present
paper they will be exploited for the stress testing of var-

140ious optimization problems related to risk measures
CVaR and VaR. There are results on the stability of
optimal solutions of contaminated stochastic programs
and also results for the case where the set X depends on
P. They are not ready for direct application, but possibi-

145lities will be explained in the context of VaR.
Section 2 includes definitions of CVaR and VaR and

the basic formulae from Rockafellar and Uryasev (2001),
which open up the possibility of applying the contamina-
tion technique to the stress testing of these risk measures

150with respect to changes in the probability distribution.
Section 3 is devoted to the stress testing of CVaR and
of its optimal value. The results are illustrated numeri-
cally. Finally, the problems encountered in the exploita-
tion of the contamination technique to CVaR-mean

155return efficient solutions are explained.
Stress testing for VaR is substantially more

complicated. This can be attributed to the fact that VaR
is one of the optimal solutions of an auxiliary
optimization problem and that its definition involves a

160probability constraint. Applicable contamination results
can then be obtained only under additional assumptions
concerning the probability distribution P. In section 4 we
present stress testing for parametric VaR with respect to
changes in the covariance matrix and with respect to

165an additional scenario. The section is concluded by an
illustrative result dealing with contamination of the
non-parametric VaR.
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2. Basic formulae

Let X � Rn be a non-empty, closed set of feasible
170 decisions x, and ! 2 � � Rm be a random vector with

probability measure P on � which does not depend on
x. Denote further

. gðx,!Þ the random loss defined on X ��,

. Gðx,P; vÞ :¼Pf! : gðx,!Þ � vg the distribution func-
175 tion of the loss associated with a fixed decision

x 2 X , and
. � 2 ð0, 1Þ the selected confidence level.

Value at Risk (VaR) was introduced and recommended
as a generally applicable risk measure to quantify, moni-

180 tor and limit financial risks, to identify losses that occur
with an acceptably small probability. There exist several
slightly different formal definitions of VaR that coincide
for continuous probability distributions. Here, we shall
also deal with VaR for discrete distributions and

185 we shall use the definition from Rockafellar and
Uryasev (2001).

The Value at Risk at confidence level � is defined as

VaR�ðx,PÞ ¼ minfv 2 R:Gðx,P; vÞ � �g, ð7Þ

and the ‘upper’ Value at Risk is

VaRþ� ðx,PÞ ¼ inffv 2 R:Gðx,P; vÞ > �g:

190 Hence, a random loss greater than VaR� occurs with
probability equal to (or less than) 1 � � . This interpreta-
tion is well understood in financial practice.

However, VaR� does not quantify the loss, it is a
195 qualitative risk measure, and, in general, it lacks the

subadditivity property. (An exception is the elliptic dis-
tributions G (Embrechts et al. 2002), of which the
normal distribution is a special case.) Various specific
features and weak points of the recommended

200 VaR methodology are summarized and discussed, for
example, in Dempster (2002) and in chapter 10 of
Rachev Mittnik (2000). To solve these problems, new
risk measures have been introduced; see, for example,
Acerbi and Tasche (2002). We shall exploit the results

205 of Rockafellar and Uryasev (2001) to discuss one of
them, the Conditional Value at Risk, which may
be linked to integrated chance
constraints (Klein Haneweld 1986), to constraints
involving conditional expectations (Prékopa 1973) and

210 to the absolute Lorenz curve at point � (Ogryczak
and Ruszczuński 2002).

According to Rockafellar and Uryasev (2001), CVaR�,
the Conditional Value at Risk at confidence level �, is
defined as the mean of the �-tail distribution of gðx,!Þ,

215 which, in turn, is defined as

G�ðx,P; vÞ ¼ 0, for v < VaR�ðx,PÞ,

G�ðx,P; vÞ ¼
Gðx,P; vÞ � �

1� �
, for v � VaR�ðx,PÞ: ð8Þ

We shall assume below that gðx,!Þ is a continuous func-
tion of x for all ! 2 � and EPjgðx,!Þj <1, 8x 2 X . For
v 2 R, define

��ðx, v,PÞ :¼ vþ
1

1� �
EPðgðx,!Þ � vÞþ: ð9Þ

220The fundamental minimization formula of Rockafellar
and Uryasev (2001) helps to evaluate CVaR for general
loss distributions and to analyse its stability, including
stress testing.

225Theorem 2.1 (Rockafellar and Uryaev 2001): As a
function of v, ��ðx, v,PÞ is finite and convex (hence
continuous) with

minv��ðx, v,PÞ ¼ CVaR�ðx,PÞ, ð10Þ

and

arg minv�ðx, v, PÞ ¼ ½VaR�ðx, PÞ, VaR
þ
� ðx, PÞ�, ð11Þ

230a non-empty compact interval (possibly one point only).

The auxiliary function ��ðx, v,PÞ is evidently linear in
P and convex in v. Moreover, if gðx,!Þ is a convex func-
tion of x, ��ðx, v,PÞ is convex jointly in ðv, xÞ. In addition,

235CVaR�ðx,PÞ is continuous with respect to � (Rockafellar
and Uryasev 2001).

If P is a discrete probability distribution concentrated on
!1, . . . ,!S, with probabilities ps > 0, s ¼ 1, . . . ,S, and x a
fixed element of X , then the optimization problem (10)

240has the form

min
v

vþ
1

1� �

X
s

psðgðx,!
s
Þ � vÞþ

( )
, ð12Þ

and can be further rewritten as

min
v, y1,..., yS

vþ
1

1� �

X
s

psys : ys � 0, ys þ v � gðx,!s
Þ, 8s

( )
:

There are various papers that discuss the properties of
245VaR and CVaR and the relations between them; see,

for example, Dempster (2002) and Pflug (2001). We
shall focus on contamination-based stress testing for
these two risk measures.

3. Stress testing for CVaR

250For a fixed vector x we now consider a stress test of
CVaR�ðx,PÞ, i.e. of the optimal value of (10). Let Q be
the stress probability distribution. We apply the contam-
ination technique and proceed as explained in
section 1. According to theorem 2.1, ��ðx, v,PÞ is the

255corresponding objective function whose minimum equals
CVaR�ðx,PÞ. Evidently, the contaminated objective func-
tion

��ðx, v, �Þ :¼��ðx, v,P�Þ

is linear in � and convex in v. Its optimal value
260CVaR�ðx, �Þ :¼ CVaR�ðx,P�Þ is concave in � on [0, 1]
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and the set of optimal solutions (11) of the initial
problem (10) is bounded. Hence, the derivative of
CVaR�ðx, �Þ, i.e. of the optimal value of the contaminated
problem (10), at � ¼ 0þ is

d

d�
CVaR�ðx, 0

þ
Þ ¼ min

v
��ðx, v,QÞ � CVaR�ðx,PÞ, ð13Þ

265 with minimization carried over the set (11) of optimal
solutions of (10) formulated and solved for the probability
distribution P. An upper bound for the derivative is
obtained when minimization over (11) is replaced by the

270 evaluation of ��ðx, v,QÞ at an arbitrary optimal solution
v�ðx,PÞ of (10), for example at v�ðx,PÞ ¼ VaR�ðx,PÞ.

The contamination bounds for CVaR�ðx, �Þ for a fixed
x follow from the concavity of CVaR�ðx, �Þ with respect
to �:

ð1� �ÞCVaR�ðx, 0Þ þ �CVaR�ðx, 1Þ

� CVaR�ðx, �Þ � CVaR�ðx, 0Þ þ �
d

d�
CVaR�ðx, 0

þ
Þ

¼ ð1� �ÞCVaR�ðx, 0Þ þ �min
v

��ðx, v,QÞ, ð14Þ

275 for all 0 � � � 1. The combined upper bound (6) can be
constructed in a similar way.

3.1. Stress testing of the scenario-based form (12)
of CVaR

280 Consider first an application of the contamination
bounds to the stress testing of the scenario-based
form (12) of CVaR. Let P be a discrete probability
distribution concentrated on !1, . . . ,!S with probabilities
ps, s ¼ 1, . . . ,S, x a fixed element of X and Q a discrete

285 probability distribution carried by S0 stress or out-of-
sample scenarios !s, s ¼ Sþ 1, . . . ,Sþ S0, with probabil-
ities ps, s ¼ Sþ 1, . . . ,Sþ S0. Both CVaR�ðx,PÞ and
CVaR�ðx,QÞ can be obtained by solving the
corresponding linear programs (12). Denote by v�ðx,PÞ

290 an optimal solution of (12) for fixed x 2 X and for
distribution P.

Bounds for CVaR� for the contaminated probability
distribution P� carried by the initial scenarios !s,
s ¼ 1, . . . ,S, with probabilities ð1� �Þps, s ¼ 1, . . . ,S,

295 and by the stress scenarios !s, s ¼ Sþ 1, . . . ,Sþ S0,
with probabilities �ps, s ¼ Sþ 1, . . . ,Sþ S0, have the
form

ð1� �ÞCVaR�ðx,PÞ þ �CVaR�ðx,QÞ � CVaR�ðx,P�Þ

� ð1� �ÞCVaR�ðx,PÞ þ ���ðx, v
�
ðx,PÞ,QÞ

¼ ��ðx, v
�
ðx,PÞ,P�Þ, ð15Þ

and are valid for all � 2 ½0, 1�; compare with (13) and (14).
300 In the special case of a degenerate probability distribu-

tion Q carried only by one scenario !�,
CVaR�ðx,QÞ ¼ gðx,!�Þ and

��ðx, v
�
ðx,PÞ,QÞ ¼ v�ðx,PÞ þ

1

1� �
ðgðx,!�Þ � v�ðx,PÞÞþ:

The difference between the upper and lower bounds
305in (14) is

�½��ðx, v
�
ðx,PÞ,QÞ � CVaR�ðx,QÞ�

¼ � v�ðx,PÞ þ
1

1� �
ðgðx,!�Þ � v�ðx,PÞÞþ � gðx,!�Þ

� �
:

In typical applications, the ‘stress test’ is reduced to
evaluating the performance of the already obtained
optimal solution along the new scenarios, i.e. the evalua-

310tion of ��ðx, v
�
ðx,PÞ,QÞ, or obtaining the optimal value

such as CVaR�ðx,QÞ for Q carried by the stress scenarios.
Contamination bounds (15) exploit these criteria simulta-
neously to quantify the influence of the stress scenarios,
also taking into account the probability of their occur-

315rence. As a result, they provide a genuine stress test.

3.2. Sensitivity properties of optimal solutions

To derive the sensitivity properties of the optimal solu-
tions of (10) for fixed x, assume that the optimal solution
of (10) is unique, v�ðx,PÞ; hence, it equals VaR�ðx,PÞ.

320This also simplifies the form of the derivative
of CVaR�ðx, �Þ in (13) to ��ðx, VaR�ðx,PÞ,QÞ�
CVaR�ðx,PÞ.

The general results concerning the properties of
optimal solutions for contaminated distributions (see,

325for example, Dupačová (1986, 1987) and Shapiro
(1990)) require additional properties concerning the
smoothness of the objective function (9) in (10). To this
end we assume that the probability distribution function
Gðx,P; vÞ is continuous, with a positive, continuous

330density pðx,P; vÞ on a neighbourhood of the unique
optimal solution v�ðx,PÞ ¼ VaR�ðx,PÞ of (10).

For fixed x 2 X we denote � :¼ gðx,!Þ, v :¼ v�ðx,PÞ and
use definition (9) of ��ðx, v,PÞ. Except for v ¼ �, the
derivative ðd=dvÞð�� vÞþ exists and

d

d�
ð�� vÞþ ¼ �

1

2
1þ

�� v

j�� vj

� �
:

335Thanks to the assumed properties of the distribution
function Gðx,P; vÞ, the expected value

EP

d

d�
ð�� vÞþ ¼ �Pð� > vÞ ¼ �1þ Gðx,P; vÞ,

and

d

d�
��ðx, v,PÞ ¼ 1þ

Gðx,P; vÞ � 1

1� �
:

340The optimality condition ðd=d�Þ��ðx, v,PÞ ¼ 0 provides,
as expected,

VaR�ðx,PÞ ¼ v�ðx,PÞ ¼ Gðx,PÞ�1ð�Þ:

The second-order derivative ðd2=d�2Þ��ðx, v,PÞ ¼
345½pðx,P; vÞ=ð1� �Þ� is positive on a neighbourhood
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of v�ðx,PÞ. Direct application of the implicit function
theorem to the system

d

d�
��ðx, v,P�Þ ¼ 0

implies the existence and uniqueness of optimal
350 solution v�ðx, �Þ :¼ v�ðx,P�Þ of the contaminated

problem (10) for � > 0 sufficiently small, and the form
of its derivative

d

d�
v�ðx,P�Þ ¼

d

d�
VaR�ðx,P�Þ ¼

�� Gðx,Q; v�ðx,PÞÞ

pðx,P; v�ðx,PÞÞ
,

ð16Þ

for � ¼ 0þ. Here, Gðx,Q; vÞ denotes the distribution loss
355 function under probability distribution Q. Note that,

except for the existence of the expected values,
no further assumptions are required concerning Q.
Related results for absolutely continuous probability
distributions P and Q can be found, for example, in

360 Rau-Bredow (2004).

3.3. Optimization problems with the CVaRaðx,PÞ
objective function

For the next step, let us briefly discuss optimization pro-
blems with the CVaR�ðx,PÞ objective function, which

365 provide the optimal (with respect to the CVaR�ðx,PÞ
criterion) solutions

minimize CVaR�ðx,PÞ on a closed set ; 6¼ X � Rn:

Using (10), the problem is

min
x, v

��ðx, v,PÞ, x 2 X : ð17Þ

370 For X convex, independent of P, and for loss functions
gð�,!Þ convex for all !, ��ðx, v,PÞ is convex in ðx, vÞ
and standard stability results apply. Moreover, if
P is the discrete probability distribution considered in
section 3.1, gð�,!Þ a linear function of x, say

375gð�,!Þ ¼ x>!, and X convex polyhedral, we obtain the
linear program

min
v, y1,..., yS, x

�
vþ

1

1� �

X
s

psys :ys � 0,

x>!s
� v� ys � 0, 8s, , x 2 X

�
:

ð18Þ

Let ðv�CðPÞ, x
�
CðPÞÞ be an optimal solution of (17) and

denote by ’C(P) the optimal value. To obtain contamina-
380tion bounds for the optimal value of (17) with P contami-

nated by stress probability distribution Q, it is
sufficient to assume a compact set X , e.g. X ¼
fx 2 Rn :

P
i xi ¼ 1, xi � 0, 8ig. The bounds follow the

usual pattern (compare with (15)):

ð1� �Þ’CðPÞ þ �’CðQÞ � ’CðP�Þ � ð1� �Þ’CðPÞ

þ ���ðx
�
CðPÞ, v

�
CðPÞ,QÞ:

ð19Þ

385To apply them, one has to evaluate ��ðx
�
CðPÞ, v

�
CðPÞ,QÞ

and solve (17) with P replaced by the stress
distribution Q.

3.4. An illustrative example

390The instruments used in the portfolio management pro-
blem (18) are the total return stock and the bond indices
given in table 1.

The portfolio limits were set in all cases to xi � 0:3,
hence,

X ¼ x 2 Rn :
X
i

xi ¼ 1, 0 � xi � 0:3, 8i

( )
:

395Assume that the probability distribution P is the distribu-
tion of losses under ‘normal’ conditions, whereas prob-
ability distribution Q refers to the situation when adverse
conditions prevail on the world market. Both P and Q are

400distributions of monthly percentage losses to assets
i ¼ 1, . . . , 12, which were converted into the home

Table 1. Portfolio assets (MSCI and JP Morgan indexes).

Asset Acronym Description

MSCI Gross Return index US, USD 1 Stock index
MSCI Gross Return index UK, USD 2 Stock index
MSCI Gross Return index Germany, USD 3 Stock index
MSCI Gross Return index Japan, USD 4 Stock index
US Government Bond index (1–3 y mat), USD 5
US Government Bond index (7–10 y mat), USD 6
UK Government Bond index (1–3 y mat), GPB 7
UK Government Bond index (7–10 y mat), GPB 8
Germany Government Bond index (1–5 y mat), EUR 9
Germany Government Bond index (7þ y mat), EUR 10
Japan Government Bond index (1–3 y mat), JPY 11
Japan Government Bond index (7–10 y mat), JPY 12
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currency (EUR) using the exchange rate mid. We do not
consider transaction costs.

The following approach, resembling an historical simu-
405 lation, was taken to construct discrete distributions P and

Q. For asset i¼ 1 (US asset market returns) the percen-
tage returns (not losses) in the home currency were
computed. We took the empirical 25% quantile to be
the cut-off value for all returns of asset 1. The returns

410 below the cut-off value (and all corresponding returns
of other assets on the same date) are attributed to a
period of adverse conditions prevailing on the market
and hence this data set serves as the input for the approx-
imation of the distribution Q. The rest of the data sample

415 was used for fitting the distribution P.
The two discrete probability distributions P,Q approx-

imating the true continuous distribution of assets’ percen-
tage losses in the home currency were constructed using
the method of Høyland et al. (2003). We prescribed that

420 both discrete approximations P,Q were carried by 5184
equiprobable scenarios. The empirical means, variances,
covariances, skewnesses and kurtoses computed sepa-
rately from the two data samples enter the scenario fitting
procedure for P and Q.

425 After solving the two CVaR minimization problems
with � ¼ 0:99, contamination bounds (19) sharpened
according to (6),

ð1� �Þ’CðPÞ þ �’CðQÞ � ’CðP�Þ

� minfð1� �Þ’CðPÞ þ ���ðx
�
CðPÞ, v

�
CðPÞ,QÞ, �’CðQÞ

þ ð1� �Þ��ðx
�
CðQÞ, v

�
CðQÞ,PÞg, ð20Þ

were constructed. The results of contamination are
430 presented in figure 1 and table 2. The VaR values

v�CðPÞ, v
�
CðQÞ for distributions P,Q calculated for

the optimal portfolios x�CðPÞ, x
�
CðQÞ are obtained as a

by-product.

Some observations are given below.

435. The two minimal CVaR values ’CðPÞ, ’CðQÞ (indi-
cated in the figure by a square and a triangle, respec-
tively) are not very different. This is the result of
optimally restructuring the portfolio in the adverse
market situation; see the changed composition of the

440optimal portfolios. The CVaR value for probability
distribution Q and for the original optimal portfolio
x�CðPÞ, i.e. without restructuring the portfolio (indi-
cated by the isolated point in the right upper corner
of the figure), is much higher.

445. The value ��ðx
�
CðPÞ, v

�
CðPÞ,QÞ is relatively large and

this determines the steep slope of the left upper
bound.

. The contamination bounds in this example are not
very tight (see figure 1). The maximal difference

450between the upper and lower bounds occurs approxi-
mately at � ¼ 0:1. For � ¼ 0:5, i.e. for the distribu-
tion carried by the pooled sample of 10 368
equiprobable scenarios, the minimal CVaR value
lies in [0.0175, 0.0195]. If this precision is sufficient,

455one does not need to solve the problem with twice
the number of scenarios—atoms of the contaminated
probability distribution.

3.5. Stress testing for CVaR-mean return problems

460Finally, consider stress testing for CVaR-mean return
problems, i.e. for bi-criteria problems in which one aims
simultaneously for a minimization of CVaR�ðx,PÞ and a
maximization of the expected return criterion EPrðx,!Þ
on X ; see, for example, Rockafellar and Uryasev (2000),

465Andersson et al. (2001), Pflug (2001), Topaloglou et al.
(2002), and Kaut et al. (2003)
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Figure 1. Contamination bounds for the CVaR optimization
problem without constraint on returns.

Table 2. Quantities used in contamination
bounds (20) and non-zero components of

optimal solutions x�CðPÞ and x�CðQÞ,� ¼ 0:99.

Quantity Value

’CðPÞ 0.01731
’CðQÞ 0.01765
��ðx

�
CðPÞ, v

�
ðPÞ,QÞ 0.06309

��ðx
�
CðQÞ, v

�
ðQÞ,PÞ 0.02135

x�1ðPÞ 0.12880
x�7ðPÞ 0.20030
x�9ðPÞ 0.30000
x�10ðPÞ 0.26470
x�11ðPÞ 0.10620
v�CðPÞ 0.01365
x�5ðQÞ 0.10000
x�7ðQÞ 0.30000
x�9ðQÞ 0.30000
x�10ðQÞ 0.30000
v�CðQÞ 0.01588
CVaRðx�CðPÞ,QÞ 0.02607
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To obtain an efficient solution, one minimizes on X the
parametrized objective function

CVaR�ðx,PÞ � �EPrðx,!Þ, ð21Þ

470 with parameter � > 0, or assigns a parametric bound on
one of the criteria and solves, for example,

minCVaR�ðx,PÞ on the set X \ fx : EPrðx,!Þ � rg:

ð22Þ

The optimal solution and the corresponding values of
the two criteria, CVaR�; and the expected return, depend

475 on the chosen parameter values. To obtain the efficient
frontier, (21) and (22) may be solved by parametric pro-
gramming techniques with scalar parameters � or r,
respectively. For gðx,!Þ ¼ x>! ¼ �rðx,!Þ, for polyhe-
dral set X and a discrete probability distribution P,

480 both (21) and (22) are then parametric linear programs
with one scalar parameter; see, for example, Ruszcyński
and Vanderbei (2003). By solving (22), the efficient fron-
tier is obtained directly. To obtain the efficient frontier in
the case of (21), values of EPrðx,!Þ and CVaR�ðx,PÞ have

485 to be computed at the optimal solution of (21) obtained
for a specific value of �. Hence, (22) is favoured for the
straightforward possibility of interpreting the trade-off
between the two criteria, whereas (21) is suitable for
developing sensitivity and stability results, including

490 stress testing.
Contamination of the probability distribution P intro-

duces an additional parameter � into (21) and (22) and
the two problems, in general, lose the readily solvable
form of parametric linear programs: nonlinearity with

495 respect to � and � appears in the objective function
of (21) and both the objective function and the set of
feasible solutions of (22) depend on the parameters. It is
still possible to obtain directional derivatives of the opti-
mal value function for the corresponding contaminated

500 problem. However, the optimal value function is no
longer concave, hence the crucial property for the con-
struction of contamination bounds is lost. The same
applies also to problem formulations with several CVaR
constraints, each with a different confidence level �, called

505 ‘risk-shaping’ (Rockafellar and Uryasev 2001).
Nevertheless, contamination bounds may be obtained

for the special form of the return function rðx,!Þ ¼ �x>!
and for a certain class of probability distributions.
Rewrite problem (22) as

minimize CVaR�ðx,PÞ

510 on the set

XðP, rÞ ¼ fx 2 X : �x>EP! � rg: ð23Þ

Let ’r(P) denote the optimal value and X�r ðPÞ the set of
optimal solutions and assume that X�r ðPÞ is non-empty

515 and bounded.
Assume, in addition, that the expected values are equal,

EP! ¼ EQ! ¼ �!. (Such an assumption is not typical for
stress testing, but it is in agreement with scenario genera-
tion methods based on moment fitting (e.g. Høyland et al.

520(2003) and Høyland and Wallace (2001)), and has also
been used in the stability studies of Kaut et al. (2003).)
Then the expected return constraint is �x> �! � r, both for
the initial probability distribution P and the contaminat-
ing distribution Q, as well as for all P�, � 2 ½0, 1�, and

525it does not depend on �. The optimal value function
’rðP�Þ ¼ ’rð�Þ is concave and the contamination bounds
have a form similar to (19) and (20). They are obtained
for (17) with the set of feasible decisions X replaced
by XðP, rÞ ¼ fx 2 X : �x> �! � rg. Moreover, there are

530parametric programming techniques (e.g. Guddat et al.
(1985)) applicable to the contaminated problem (23), i.e.
the minimization of CVaR�ðx,P�Þ on the set
XðP, rÞ ¼ fx 2 X : �x> �! � rg. They are discussed in
Dupačová (2006) and a qualitative conclusion can be

535summarized as follows.
Under modest non-degeneracy assumptions, a small con-

tamination of P does not influence the composition of
CVaR-mean return efficient portfolios.

Note that, for EP! ¼ EQ! ¼ �!, problem (21) is also
540simplified, and the objective function is linear in the two

parameters � and �.
When the expected loss differs under P and Q, the

optimal value ’CðP�Þ is a natural lower bound for
’rðP�Þ, hence by (19),

’rðP�Þ � ð1� �Þ’CðPÞ þ �’CðQÞ: ð24Þ

545To construct an upper bound for ’rðP�Þ we add the addi-
tional constraint �x>EQ! � r to XðP, rÞ. The set of
feasible solutions XðP, rÞ \ XðQ, rÞ � XðP�, rÞ is polyhe-
dral and does not depend on �. If XðP, rÞ \ XðQ, rÞ 6¼ ;

550we obtain a concave upper bound

Urð�Þ :¼ min
x2XðP,rÞ\XðQ,rÞ

CVaR�ðx,P�Þ � ’rðP�Þ,

which may be bounded from above by the corresponding
upper contamination bound. The derivative at the point
� ¼ 0þ is of a familiar form—min��ðx, v,QÞ �Urð0Þ with

555minimization carried over the set of optimal solutions
of (17) for X replaced by XðP, rÞ \ XðQ, rÞ; denote one
of them by x̂rðPÞ, v̂rðPÞ:

ð1� �ÞUrð0Þ þ��ðx̂rðPÞ, v̂rðPÞ,QÞ � Urð�Þ � ’rðP�Þ:

ð25Þ

We have not tested bounds (24) and (25) numerically, but
560we expect that they may be quite loose.

4. Stress testing for VaR

Up to the non-uniqueness of the definitions, VaR�ðx,PÞ is
the same as the �-quantile of the loss distribution Gðx,P; vÞ.
One can also treat VaR�ðx,PÞ as the optimal value of the

565stochastic program (7) with one probabilistic constraint.
Such an approach enables us to exploit the existing
stability results for stochastic programs of that form
(Römisch 2003), which are valid under special distribu-
tional and regularity assumptions.

*** 2006 style (V 7.51g) [16.11.2006–3:52pm] First Proof [1–11] [Page No. 7] {TANDF FPP}RQUF/RQUF A 197233.3d (RQUF) RQUF A 197233

Stress testing for VaR and CVaR 7



570 A normal distribution of losses is one of the manageable
cases and, initially, parametric VaR was developed to
quantify the risks associated with normally distributed
losses gðx,!Þ, the distribution of which at a fixed point x
is fully determined by its expectation �(x) and

575 variance �2ðxÞ:

absoluteVaR�ðxÞ ¼ �ðxÞ þ �ðxÞ 	 u�,

and relative VaR�ðxÞ ¼ �ðxÞ 	 u�,

where u� is the �-quantile of the standard normal Nð0, 1Þ
distribution.

For an arbitrary � > 0:5, minimization of the relative
580 VaR� reduces to minimization of the standard deviation

(volatility) of the portfolio losses, and minimization of the
absolute VaR� is minimization of the weighted sum of the
standard deviation and the expectation.

4.1. Optimization problem with the relative VaRaðx,PÞ
585 objective function

Choose � > 0:5 and assume that losses are of the form

gðx,!Þ ¼ x>!,

X is a non-empty, convex polyhedral set, 0 =2 X , ! is
normally distributed with mean vector � and a positive

590 definite variance matrix �.
The problem is to select portfolio composition x 2 X

such that VaR� is minimal, i.e. to minimize the convex
quadratic function x>�x on the set X . In this case, for
all values of � > 0:5 there is the same, unique optimal solu-

595 tion x�ð�Þ, the composition of the portfolio, which
depends on the input variance matrix � that was obtained
by an estimation procedure and is subject to an estimation
error. The same optimal solution is arrived at byminimiza-
tion of CVaR�ðx,PÞ (Rockafellar and Uryasev 2000).

600 Asymptotic statistics and a detailed analysis of optimal
solutions of parametric quadratic programs may help to
derive asymptotic results concerning the ‘estimated’ opti-
mal portfolio composition obtained for an asymptotically
normal estimate ~� of �.

605 Here we follow a suggestion of Kupiec (2002) and
rewrite the variance matrix as � ¼ DCD with the diago-
nal matrix D of ‘volatilities’ (standard deviations of the
marginal distributions) and the correlation matrix C.
Changes in the covariances may then be modeled by

610 ‘stressing’ the correlation matrix C by a positive semi-
definite stress correlation matrix Ĉ

Cð	Þ ¼ ð1� 	ÞCþ 	Ĉ, ð26Þ

with 	 2 ½0, 1� a parameter. This type of perturbation of
the initial quadratic program allows us to apply the

615 related stability results of Bank et al. (1982) to the per-
turbed problem,

min
x2X

x>DCð	ÞDx, 	 2 ½0, 1� : ð27Þ

. the optimal value ’V(	) of (27) is concave and
continuous in 	 2 ½0, 1�;

620. the optimal solution x�ð	Þ is a continuous vector in
the range of 	 where C(	) is positive definite;

. the directional derivative of ’V(	)

’0Vð0
þ
Þ ¼ x�>ð0ÞDĈDx�ð0Þ � ’Vð0Þ:

625Contamination bounds constructed as suggested in
section 1,

ð1�	Þx�>ð0ÞDCDx�ð0Þþ	x�>ð1ÞDĈDx�ð1Þ �min
x2X

x>DCDx

� ð1�	Þx�>ð0ÞDCDx�ð0Þþ	x�>ð0ÞDĈDx�ð0Þ,

quantify the effect of the considered change in the input
data.

6304.2. Stress testing of the relative VaR with respect to an
additional scenario x�

In this case, the contaminating distribution Q is degener-
ate, Q ¼ �f!�g. Rewriting (16) for the case of a normally
distributed loss, we obtain

d

d�
VaR�ðx,P�Þj�¼0þ ¼

�� Ifgðx,!�Þ � VaR�ðx,PÞg


ðVaR�ðx,PÞÞ
:

ð28Þ

635In the above formula, x is fixed, 
 denotes the density of
the normal distribution Nð�ðxÞ,�ðxÞÞ of gðx,!Þ and I is
the indicator function.

Assume, in addition, that gðx,!Þ ¼ x>!. Using the
640results of sections 4.1 and 3.2 for the normal distribution

P 
 Nð�,�Þ and degenerate distribution Q ¼ �f!�g, we
have the unique optimal portfolio x�ð�Þ for P and both
VaR�ðx,P�Þ and its derivative with respect to � are con-
tinuous for � � 0 sufficiently small. This can be used to

645derive sensitivity properties of the minimal relative VaR
value,

’ð�Þ :¼ min
x2X

VaR�ðx,P�Þ,

in the case of X 6¼ ;, compact and for small � > 0, i.e.
when testing the influence of a rare stress scenario. Here,

650VaR�ðx,P�Þ is not linear in �. Still, using (28) and the
general formula for the derivative of the optimal value
of nonlinear objective functions from Danskin (1967),
we obtain

’0ð0þÞ ¼
d

d�
VaR�ðx

�
ð�Þ,P�Þj�¼0þ

¼
�� Ifgðx�ð�Þ,!�Þ � VaR�ðx

�
ð�Þ,PÞg


ðVaR�ðx
�ð�Þ,PÞ

:

655Then, the minimal VaR� value for the stressed distribu-
tion P� is approximated by

min
x2X

VaR�ðx,P�Þ ffi VaR�ðx
�
ð�Þ,PÞ þ �’0ð0þÞ

for �>0 sufficiently small.
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This approach may easily be extended to sensitivity
660 analysis and stress testing of VaR with respect to an addi-

tional scenario for a broad class of probability measures
P for which the probability distribution of loss Gðx,P; vÞ
fulfils the assumptions of section 3.2.

4.3. Non-parametric VaR

665 For general probability distributions the evaluation of
VaR� for a fixed portfolio x is mostly based on a non-
parametric approach that is distribution free and also
applicable for complicated financial instruments. One
exploits a finite number, S, of scenarios so that, for

670 each fixed x 2 X , the underlying probability distribution
P is replaced by a discrete distribution PS carried by these
scenarios and the probability distribution of the loss
gðx,!Þ is discrete with jumps at gðx,!s

Þ 8s.
For a fixed x, let us order gðx,!s

Þ as

g½1� < 	 	 	 < g½S�, ð29Þ

675 with the probability of g½s� equal to p½s� > 0, 8s. Let s�,PS
be

the unique index such that

Xs�,PS
s¼1

p½s� � � >
Xs�,PS�1
s¼1

p½s�: ð30Þ

Then VaR�ðx,PSÞ ¼ g½s�,PS �.
680 The consistency of sample quantiles is valid under mild

assumptions regarding the smoothness of the distribution
function G, and one may even prove their asymptotic
normality (Serflin 1980). For example, if there is a posi-
tive continuous density pðx,P; vÞ of Gðx,P; vÞ on a neigh-

685 bourhood of VaR�ðx,PÞ and PS denotes an associated
empirical distribution, then VaR�ðx,PSÞ is asymptotically
normal,

VaR�ðx,PSÞ 
 N VaR�ðx,PÞ,
�ð1� �Þ

Sp2ðx,P;VaR�ðx,PÞÞ

� �
:

Estimating VaR�ðx,PÞ by the non-parametric VaR�ðx,PSÞ

690 calls for a large number of scenarios, especially for � close
to 1; see Rachev and Mittnik (2000) for extensive numer-
ical results. Moreover, it is evident from (30) that, even
for fixed x, the inclusion of an additional scenario may
cause an abrupt change in VaR�.

695 Sensitivity results for VaR� similar to (38) are obtained
if the (unique) optimal solution of the CVaR� pro-
blem (10) is differentiable (recall section 3.2). Another
possibility is to derive them by a direct sensitivity analysis
of the simple chance-constrained stochastic program (7).

700 In both cases, additional assumptions concerning the
probability distribution P are required, such as its con-
tinuity properties listed in section 3.2. There is more free-
dom as to the choice of the contaminating distribution Q.
We refer to Dobiáš (2003) and Römisch for details.

7054.4. Stress testing of non-parametric VaR

The stress testing of non-parametric VaR computed for a
discrete probability distribution P carried by a finite num-
ber of scenarios !s, s ¼ 1, . . . ,S, is more involved. To
obtain an upper bound for VaR�ðx,P�Þ for a fixed port-

710folio x, one may use the contamination-based upper
bound for CVaR�ðx,P�Þ in (15). Formula (30) in the
definition of the empirical VaR� implies that, for
� <

Ps�,P
s¼1 p

½s�, the value of VaR� is robust with respect
to small changes in probabilities p½s�. This indicates the

715possibility of covering the interval [0, 1] by a finite number
of non-overlapping intervals ½0, �1�, ð�1, �2�, . . . , ð���, 1� and
constructing bounds for VaR�ðx,P�Þ separately for each
of them.

We shall illustrate the approach for the case of one
720additional ‘stress’ scenario !� with

g½1� < 	 	 	 < g½s!��1� < gðx,!�Þ < g½s!� � < 	 	 	 < g½S�, ð31Þ

and with probabilities

ð1� �Þp½1�, . . . , ð1� �Þp½s!��1�, �, ð1� �Þp½s!� �, . . . , ð1� �Þp½S�,

i.e. for degenerate probability distribution Q ¼ �f!�g.
725Suppose that the stress scenario satisfies g½s�,P� < g½s!��1�.

It is easy to see that, in the case of
Ps�,P

s¼1 p
½s� > �, we

obtain VaR�ðx,P�Þ ¼ g½s�,P� ¼ VaR�ðx,PÞ for sufficiently
small � � 0. On the other hand, if

Ps�,P
s¼1 p

½s�
¼ �, then

VaR�ðx,P�Þ ¼ g½s�,Pþ1� for sufficiently small � > 0.
730The �-quantile g½s�,P� � of the contaminated distribution

fulfils

Xs�,P�
s¼1

ð1� �Þp½s� � � and
Xs�,P��1
s¼1

ð1� �Þp½s� < �: ð32Þ

For � ¼ 0, these inequalities are identical to (30). They
remain valid with s�,P� replaced by the original s�,P for

� � 1�
�Ps�,P

s¼1 p
½s�

and 1�
�Ps�,P�1

s¼1 p½s�
< �:

735The first inequality provides an upper bound �1 and the
second is fulfilled for all � � 0.

For � > �1, VaR�ðx,P�Þ ¼ g½s�,Pþ1�, and by solving (32)
for s�,P� ¼ s�,P þ 1 with respect to �, we obtain an upper

740bound �2 of the interval on which VaR�ðx,P�Þ ¼ g½s�,Pþ1�

holds true. Note that �1 ¼ 0 if
Ps�,PS

s¼1 p½s� ¼ � and, in this
case, �2 > 0.

Similarly for � > �i with i < s!� � s�,P, we obtain an
upper bound �iþ1 of the interval for which

745VaR�ðx,P�Þ ¼ g½s�,Pþi�. This procedure stops when
i ¼ �� :¼ s!� � s�,P. In this case, (32) is modified to

Xs�,Pþ���1

s¼1

ð1� �Þp½s� þ � 	 1 � �,

valid for all � � 0; hence, VaR�ðx,P�Þ ¼ gðx,!�Þ for
��� < � � 1.
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750 To summarize: for contamination by one scenario as
in (31), setting

�0 ¼ 0,

�i ¼ 1�
�Ps�,Pþi�1

s¼1 p½s�
, for i ¼ 1, . . . , s!� � s�,P,

�i ¼ 1, for i > s!� � s�,P,

we obtain the following theorem.

Theorem 4.1 For g½s�,P� < g½s!��1�, � 2 ð�i, �iþ1�,
755 i ¼ 0, 1, . . . , s!� � s�,P � 1,

(a) VaR�ðx,P�Þ ¼ g½s�,Pþi� � VaR�ðx,QÞ;
(b) if

Ps�,P
s¼1 p

½s� > � or if i� 2 and
Ps�,P

s¼1 p
½s�
¼ �, then

VaR�ðx,P�i Þ ¼ VaRalphaðx,P�Þ < VaR�ðx,P�iþ1 Þ; ifPs�,P
s¼1 p

½s�
¼ �, then VaR�ðx,P�1 Þ ¼ g½s�,P� and

760 VaR�ðx,P�Þ ¼ g½s�,Pþ1� for � 2 ð�1, �2�;
(c) VaR�ðx,P�Þ ¼ gðx,!�Þ ¼ VaR�ðx,QÞ, for � > ���,

�� ¼ s!� � s�,P.
This procedure can be extended to stress testing with

respect to another discrete probability distribution Q, car-
765 ried by scenarios !�1, . . . ,!�

S
0 with probabilities

q½1�, . . . , q½S
0

� and associated losses gðx,!�1Þ < 	 	 	 <
gðx,!�

S
0 Þ. Now, we have to determine how the support

of P is related to the support of Q, i.e. that the following
ordering holds:

g½1� < 	 	 	 < g½s�,P� < 	 	 	 < g
½s!�

1
�1�

< gðx,!�1Þ

< g
½s!�

1
�
< 	 	 	 < g

½s!�
2
�1�

< gðx,!�2Þ < g
½s!�

2
�
< 	 	 	 < g

½s!�
S
0
�1�

< gðx,!�
S
0 Þ < g

½s!�
S
0
�

< 	 	 	 < g½S�:

770 The covering of the interval [0, 1] depends on probabilities
q½s�, namely on the difference in their partial cumulative
sums and �. For the obtained �i values, statements par-
allel to (a) and (b) of theorem 4.1 can be derived

775 (Polı́vka 2005).

4.5. Minimization of VaRaðx,PÞ with respect to x

Except for the case of the normal distribution considered
in sections 4.1 and 4.2, the minimization of VaR�ðx,PÞ
with respect to x is, in general, a non-convex, even dis-

780 continuous problem, which may have several local
minima. It can be written as

minfv : Pf! : gðx,!Þ � vg � �, x 2 X , v 2 Rg: ð33Þ

Stability of the minimal VaR�ðPÞ value v�VðPÞ and of the
optimal solutions x�VðPÞ with respect to P holds true only

785 under additional, restrictive assumptions (Römisch 2003).
For gðx,!Þ jointly continuous in x,! and Hðx, vÞ :¼
f! : gðx,!Þ � vg, a verifiable sufficient condition is
PðHðx�VðPÞ, v

�
VðPÞÞÞ > �, which is fulfilled, for instance,

for (non-degenerate) normal distributions, or
790 � <

Ps�,P
s¼1 p

½s� in (30) for the ordered sample of
gðx�VðPÞ,!

s
Þ with discrete distribution PS (Dobiáš 2003).

To approximate VaR minimization problems, one may
apply the corresponding problems with CVaR criteria, as
suggested and tested numerically in Rockfellar and

795Uryasev (2000): the v�CðPÞ part of the optimal solution
of (18) is then the value of VaR�ðx

�
ðPÞ,PÞ for the optimal

(or efficient) CVaR�ðx,PÞ portfolio. Further suggestions
are to approximate VaR minimization problems by a
sequence of CVaR minimizations (Pflug 2001), to use a

800smoothed VaR objective (Gaivoronski and Pflug 2004),
or to apply the worst-case VaR criterion for the family of
probability distributions with given first- and second-
order moments (El Ghaoui et al. 2003).

5. Conclusions

805The application of the contamination technique to CVaR
evaluation and optimization is straightforward, and the
obtained results provide a genuine stress quantification.
Stress testing via contamination for CVaR-mean return
problems turns out to be more delicate.

810The presence of the simple chance constraint in the
definition of VaR requires that, for VaR stress testing
via contamination, various distributional and structural
properties are fulfilled for the unperturbed problem.
These requirements rule out direct applications of the

815contamination technique in the case of discrete distribu-
tions, which includes the empirical VaR. Nevertheless,
even in this case, it is possible to construct bounds for
VaR of the contaminated distribution. In the case of a
normal distribution and parametric VaR, one may exploit

820stability results valid for quadratic programs to stress
testing of VaR minimization problems.

Using the contamination technique, we have derived
computable bounds which can be extended to stress test-
ing of other risk criteria and risk optimization problems.

825The presented approaches provide a deeper insight into
the stress behaviour of VaR and CVaR than the common
numerical evaluations based solely on backtesting and
out-of-sample analysis.
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