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ABSTRACT. Contamination technique is presented as a numerically tractable tool to
postoptimization and analysis of robustness of the optimal value of scenario based
stochastic programs and of the expected value problems. Detailed applications of
the method concern the two-stage stochastic linear programs with random recourse
and the corresponding robust optimization problems.
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1. INTRODUCTION

The numerical techniques designed for solving stochastic programming problems
are mostly based on scenarios, i.e., they assume a given discrete distribution P
concentrated in a finite number of points, say, w1, ...,ws with probabilities p, >
0 Vs, 23521 ps = 1 that enter the coefficients and the function values in a known
way.

The origin of scenarios can be very diverse; they may be from a truly discrete
known distribution, be obtained in the course of a discretization/approximation
scheme or by a limited sample information, or come from attempts to model un-
certainty by means of scenarios obtained by a preliminary analysis of the problem
and with probabilities of their occurance that may reflect an ad hoc belief or a
subjective opinion of an expert.

Naturally, one is interested in both the robustness of the obtained optimal so-
lution and the optimal value of the objective function. The procedure should be
robust in the sense that small perturbances of the input, i.e., of the chosen sce-
narios and of their probabilities, should alter the outcome only slightly so that the
obtained results remain close to the unperturbed ones, and that somewhat larger
perturbations do not cause a catastrophe. The importance of robust procedures
increases with the complexity of the model and with its dimensionality.

Two types of numerical procedures can be distinguished: those based on a large
and in principle fized set of scenarios and those where proper sampling and genera-
tion of new scenarios becomes a part of the procedure, e.g., stochastic quasigradient
methods [9] or stochastic decomposition [14]. We shall concentrate on the first of
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the mentioned groups where the concept of robustness is resistance to changes with
respect to sample. That is, the output values are insensitive to small changes in the
underlying sample, e. g., insensitive with respect to small changes in all values or
large changes in a few values, insensitive with respect to changes of probabilities,
etc.

The basic techniques used for study of resistance are

(i) miscellaneous approaches to stability, sensitivity and postoptimality for op-
timization, based, e.g., on results for linear programming [12], on duality
for nonlinear programs [22], on stability concepts for general parametric
programs [20] including input optimization [8];

(ii) the worst case analysis, e.g., [2], [8], [21];

(iii) contamination technique, cf. [7];
(iv) various simulation studies, e.g.,[4], [17], [23], the prevailing approach in real
life applications.

We shall elaborate here the contamination technique which is, inter alia, suitable
for analysis of influence of additional scenarios and for constructing error bounds.
We refer to [5] for the first theoretical results and to [7] for the first application in
the field of multistage stochastic linear programming with fixed complete recourse.
In this paper, we shall extend the results to stochastic linear programs with random
recourse and to problems in which the objective function is nonlinear in distribution
P for to cover, e.g., the case of mean-variance criterion used in robust optimization
models [18], [19].

We shall consider stochastic programs that can be put into the following form:
(1) Minimize f(x,P) on theset X C R"

with

f convex in x and concave in P;

P the probability distribution of the random parameters w € {2 that enter the
problem; in the case of scenario based stochastic programs we consider here, P
is a discrete probability distribution and for a given set of possible scenarios, this
distribution is fully determined by the vector p of their probabilities.

X a closed, nonempty set that does not depend on P;

x the main decision variable, typically, the first stage decision.

Problems with f(x,e) linear in P correspond, e.g., to minimization of the ex-
pected value of minus utility of the random outcome of decisions x € X.

Example 1. Scenario based two-stage stochastic linear programs (SLP) with ran-
dom relatively complete recourse appear in financial models that take into account
random prices in connection with portfolio rebalancing or with conservation of
cashflows, cf. [11]. They can be written in the familiar form:

Minimize

S
(2) c'x+ ) palys
s=1
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subject to

(3) Ax =b
T1x+Wiy; =hy
Tox+ Wsys = hy
Tox+ . + Wgys = hg

x>0,ys>0,s=1,...,5

where ws = [qs, Ts, Wy, hg], s = 1,..., 5 are scenarios or atoms at which the proba-
bility distribution P is concentrated and ps > 0,s = 1,..., S are their probabilities,

YosDs =1

It is easy to reformulate (2), (3) into the form (1). We can put

X ={xeR"Ax =b,x >0}

and
f(x,P)=c X—I—Z psqxwS
where
(4) q(x, ws) := min {qg—ys|wsys = hs - Tsxa Ys 2 0}
Vs

Provided that X is nonempty and that the second stage problems (4) have optimal
solutions for all considered scenarios and for all x € X, the basic assumptions on
the the objective function f(x, P) and on the set of feasible first stage solutions X
for problem (1) are evidently fulfilled.

Example 2. Robust optimization model for stochastic linear program (2), (3) as
formulated in [18], [19] reads:

Minimize
S S S 2
(5) Zs:l psgs + A 28:1 DPs gs - Zj:l pjgj
subject to
(6) Ax =b
TSX+W8ys =h,

c'x+ qys — &=
x>0,ys>0,s=1,...,5

The newly introduced variables & equal the cost of the decision x plus the
corresponding cost of its compensation or of the recourse activity y if scenario wy
occurs. The additional term in the objective function equals the variance of the
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random costs ¢ and its weight in the objective function is expressed via a scalar
parameter A > 0.

Transformation of (5), (6) into the form (1) is not straighforward. The details
will be given in Section 4.

Further examples that can be used to illustrate the general form of the consid-
ered problem (1) and to provide a motivation for our studies are scenario based
multistage stochastic programs, see [7], expected utility models, tracking models
[3], stochastic programs with piece-wise linear-quadratic recourse [16] or general
nonlinear two-stage stochastic programs with recourse.

In all mentioned examples, we are interested in resistance of the obtained optimal
decisions and of the optimal value with respect to the sample: For the already given
universe of scenarios 2 = {wy,...,ws} we want to study the influence of changes of
input scenarios w, and of their probabilities, the influence of an additional scenario,
etc., on the obtained outcome. We shall put aside problems of probability sampling
or of generation of scenarios and we shall concentrate on numerically tractable
stability and postoptimality results based on the contamination technique [5].

2. CONTAMINATION TECHNIQUE

We shall begin with a brief summary of the contamination technique (cf. [6],
[7]) for the general form of stochastic programs (1) under assumptions that X is
a given nonempty convex closed set of feasible solutions that does not depend on
the probability distribution P and that the objective function f is convex in x and
concave in P. We shall embed the problem (1) into a family of optimization prob-
lems parametrized by a scalar parameter ¢t. This family results from contamination
of the original probability distribution P by another fixed probability distribution
Q, i. e., from using distributions P; of the form

(7) P=(1-t)P+tQ with te(0,1)

in the objective function of (1) at the place of P. For fixed distributions P, @, we
denote

fo(x, ) = fo(x,t)

the corresponding objective function; it is evidently a convex - concave function on

R™ x [0,1]. We denote further
(8) po(t) = inf fo(x,t) and Aq(t) =argmin fo(x,)

the optimal value function and the set of optimal solutions of the perturbed sto-
chastic program

(9) minimize f(x, P;) := fo(x,t) on the set X

There are various statements about persistence, stability and sensitivity for para-
metric programs of the above type; see e. g. [10, §7]:
e Under the additional assumption that the set X'(0) := X(0) of optimal solu-
tions of the original problem (1) is nonempty and bounded and that Xg(1) # 0,
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the function ¢ is a finite concave function on [0, 1], continuous at t = 0 (cf. [10],
Theorem 15) and its value at ¢t = 0 equals the optimal value of (1):

©@(0) = min f(x, P) := ¢(0)
xeX

e If, moreover, the objective function fg is jointly continuous with respect
to x and ¢, its derivative exists with respect to t at t = 0T for all x from a
neighborhood, say, X* of X(0) and if the convergence of the difference quotients
1/tlfo(x,t) — fo(x,0)] for ¢t — 07 is uniform in x on X*, we can use a slight
modification of Theorem 17 of [10] to get the marginal value of the perturbed
program (9) at t = 0O:

d d
(10) P07) = Tw(07) = min L fo(x,07)

xeXx(0) dt

In case of f(x, P) linear in P,

fo(x,t) = 1 =) f(x, P) +1f(x,Q)

is a linear function in ¢ and for an arbitrary fixed x, the sequence of difference
quotients is a stationary one. Accordingly, (10) reduces to

(11) po(07) = min [f(x,Q) — f(x,P)] = min f(x,Q)—(0)

x€X(0) x€X(0)

It means that in this special but frequent case the marginal value equals the differ-
ence between the minimal expected cost of an optimal decision based on the initial
distribution P if QQ # P applies and the minimal expected costs under P.

Using the marginal value and concavity of ¢ on [0,1] we can bound the
considered perturbed optimal value function ¢¢(t) as follows:

(12) (1= 1)p(0) +tpq(1) < po(t) < ¢(0) +twn(0T) Vi € [0,1]

and get bounds on the relative change of the perturbed optimal value due to con-
tamination:

(13) pQ(1) = ¢(0) < —[pq(t) — 9(0)] < ¢p(07) Vvt e(0,1]

&+ | =

It is important to realize that the bounds (12) and (13) are based on the assumed
properties of the objective function f(x, P) as a function of the probability distri-
bution P without any converity assumptions concerning random coefficients that
enter the initial formulation of the analyzed stochastic program, such as (2), (3) or
(5), (6).

The choice of a degenerated distribution @ = 6(w,) := @ concentrated at w, ¢
) corresponds to an additional scenario and (10) or (11) provide an information
about the influence of including the additional scenario w, on the optimal outcome.
Similarly, a degenerated distribution Q. = (w,) with w, € Q models the case of
increasing probability of scenario w, and so on. The marginal values computed
for degenerated contaminating distributions are related to the influence curve and
they can be used to construct further characteristics of robustness acknowledged
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in robust statistics (cf. [13]) such as the gross error sensitivity. We shall reveal its
role in the worst case analysis with respect to a whole set of scenarios.

Contamination by a distribution () on 2 that gives the same expectation Egw =
FEpw is helpful in studying resistance with respect to changes of the sample in
situations where the corresponding input information - the known fixed expectation
of the random parameters w - is to be preserved. Moreover, for the two stage SLP
with P - the degenerated distribution concentrated at the expectation Fpw that
gives a unique optimal solution x(F) of the corresponding expected value problem,
formula (11) provides a new interpretation of the difference between the expected
total cost of the decision x(F) when a distribution @ applies and the optimal
outcome of the expected value problem.

In the subsequent Sections, we shall apply the contamination technique to the
two examples formulated in the Introduction.

3. TWO-STAGE STOCHASTIC LINEAR PROGRAMS WITH RANDOM RECOURSE

In this section we shall deal with the problem (2), (3) formulated in Example
1. As we know already, it is easy to link it with the general formulation (1): We
consider the set of the feasible first stage solutions

(14) X = {x|Ax =b,x > 0}

and the objective function of the form

(15) f(x,P)=c'x+q(x,P)
with
(16)
S
q(x, P) = min {Z P, ys|Woys =h, —Tyx, y,>0,s=1,..., S}
y s=1

S
=D pomin{a/y Wy, =h, - Tox, y, >0} = Z | Psa(x,w;)

that is linear in P. We assume that X # () and that ¢(x,w;) is finite on X for
s=1,...,5.

For the sake of simplicity we shall mostly assume that there is a unique optimal
first stage solution x(0) of the problem (2), (3) for the initial discrete distribution
P. In this case, (11) simplifies to

d

S#(0%) = £(x(0),Q) = (0)

(17) Po(07) =

and the additional numerical effort for computing the marginal value reduces to
evaluation of the objective function for distribution ) at the already obtained first
stage solution x(0).



Application 1 - Sensitivity analysis with respect to probabilities. Assume
first that the contaminating distribution () is carried by scenarios w belonging to
the given universe of scenarios Q = {wj,...,wg} with probabilities 73 > 0,s =
1,...,8,> ,ms = 1. In this case, (17) assumes the following form:

(18) 90/62(0+) = min ZS qu;rys — min Zs psquYS

with minimizations carried over all ys, s = 1,...,S belonging to the corresponding
sets Vs (x(0)) of feasible solutions of the systems

(19) Ws}’s = hs - TSX(O), Ys = 0

for s =1,...,5; compare with (16). The optimal values of the two linear programs
in (18) can be evidently rewritten as

(20) min D Al ys =) meq (x(0),ws)

Vs€YVs(x(0)),s=1,..., S

(21) min Y padys =), paq(x(0),ws)

¥s€YVs(x(0)),s=1,...,

with ¢ (x(0),ws) the minimal recourse costs attainable for the first stage solution
x(0) and for the scenario ws:

(22) q (X(O)7 WS) i= min {q;—ys,Wsys =h, — TSX(O)a Vs 2> O}
Ys

Using (18) —(22) we get easily the upper and lower bounds for the marginal value
gp’Q(0+) over all considered contaminating distributions @), in our case identified by
probabilities 7 belonging to the set

(23) Q= {w € RY| Zil Ty = 1}

namely,

24 Ug := 1 (07) =c¢"x(0 0),ws) — (0
(24) o :=maxp(07) = ¢ x(0) + max ¢ (x(0),ws) = ¢(0)
25 Lg = min ¢},(07) = ¢ "x(0 i 0),ws) — (0
(25) 0= mino(07) =c x(0) + min q(x(0),ws) = (0)

that are attained at extremal points of Q, i. e., at the "most influential” individual
scenarios. As the original probabilities p € Q, too, the maximum value in (24) is
7



nonnegative and the minimum value in (25) is nonpositive. Using these bounds,
we can easily get the gross error sensitivity

Vg = Stelglsoﬁs(w)(0+)| = max {|Lo|, [Ugl}

interpreted according to [13] as the worst approximate influence of a fixed amount
of contamination by any degenerated distribution ) = §(w) concentrated at w € 2
on the optimal value. In our case, according to (24), (25), yo provides the worst
possible local influence of contamination by any discrete distribution ) on £2, i.
e., the worst possible influence of changing the initial probabilities ps of the given
scenarios wg, s = 1,..., 5.

Additional assumptions about the set of contaminating measures Q lead to dif-
ferent extremal points that do not necessarily coincide with individual scenarios,
nevertheless, the general methodology applies without any essential changes. For
instance, according to results of [2], one can make use of a qualitative information of
the type "scenario w; is at least as probable as scenario w;” that generates a partial
order, say, >~ on the set {2 and to reformulate it into a system of linear constraints
on the probabilities 7 € Q. For instance the set of probability distributions on 2
that is consistent with the simple partial order w; = w; mentioned above can be

written as
S
Q= {7r € Ri|7ri > Wj,zszl g = 1}

The extremal points of similar sets of probabilities were described for instance in
[2]; in our example, the set of extremal points of Q consists of unit vectors of prob-
abilities for individual scenarios with exception of w; and the vector = with nonzero
components 7; = m; = 1/2. Hence, the locally most influential changes of the initial
probabilities ps, s = 1,...,5 do not necessarily correspond to contamination by a
degenerated distribution.

Application 2 - Analysis of the expected value solution. Assume that the
expectation Fw is fixed, considered as a known input. In this case, a proper choice
of the set of contaminating distributions corresponds to probabilities belonging to

S S
(26) Q= {7r € RY] Zs:l s = 1, Zs:l TsWs = Ew}

Assume further that the expected value Ew is a scenario in €2 and that the initial
probability distribution P is degenerated, concentrated at this scenario Fw. The
corresponding optimal first stage solution x(0) = x(F) is the expected value solution
obtained by solving the expected value linear program:

Minimize

(27) c'x+[Edy
subject to

(28) Ax =b

[ET]x + [EW]|y=Eh]
8



x>0,y >0

We assume that the x— part x(E) of the optimal solution of (27), (28) is unique.
Let y (x(F)) denote an optimal second stage solution. In this case, for any discrete
distribution on €2 with the fixed prescribed expectation Fw, i.e., for 7 belonging to
the set (26), the marginal value

(29) pe(0") =) msq(x(E),ws) - (Ea) "y (x(E))

equals the difference between the expected outcome of the optimal expected value
solution x(FE) evaluated under distribution @ belonging to the set (26) and the
outcome of the expected value problem, i.e.,

¢(0%) = EQEV — EV

in a slightly modified notation of [1]. The sign of the marginal value (29) gives an
answer to a common question: Can we improve the result based solely on the ex-
pected value problem (27), (28) by using a non degenerated probability distribution
with the same expected values? The known theoretical result based on Jensen’s
inequality holds true only for problems with a fixed recourse matrix W and fixed
recourse costs q in which case,

¢o(0") = EQEV —EV >0

for all distributions @ from (16).

The worst case analysis with respect to all contaminating probability distribu-
tions on (2 with the given expected value Fw can be done again by solving a linear
program, this time,

(30) maximize Z 7msq (x(E),ws) on the set (26)

(compare with (29)).

A similar approach can be designed for postoptimality analysis of the optimal
outcome based on another a priori selected scenario, e.g., on the most probable
scenario or on a ”base case” scenario belonging to ().

Application 3 - Postoptimality analysis with respect to additional scenarios |JJ
corresponds to a contaminating distribution () that is not carried by the given set
of scenarios €2 but for which the two-stage stochastic linear program

minimize f(x,Q) on theset (14)

has an optimal solution. Contamination by a degenerated distribution @) = Q.
concentrated at w, = [q«, T«, W, h,] means inclusion of an additional scenario
into the two-stage SLP (2), (3), an essential extension of the structure of this
program that cannot be treaed efficiently by postoptimization techniques developed
for linear programs.
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The local change of the optimal value due to inclusion of scenario w, can be
again described by means of the marginal value that is easy to compute provided
that the first stage optimal solution x(0) of the original program is unique:

(31)
0. (07) = f(x(0),Q+)—»(0) = min {a)y«[W.y. =h, — T.x(0),y. > 0}—q(x(0), P)I

As the contaminated optimal value ¢, (t) is finite and concave in ¢ on the
interval [0,1], we get immediately bounds (12) for the optimal value ¢g, (t) that
corresponds to the outcome of the inclusion of scenario w, with probability ¢ and of
proportional reduction of the original probabilities p, of scenarios ws,s =1,...,5
by the factor 1 — t:

(32) (1= 1)(0) + tq. (1) < ¢q. (t) < ¢(0) + g, (07), Vte(0,1]

where ¢¢_ (1) is the optimal value of the linear program

minimize
c'x+qly
subject to
(33) Ax =b

T.x + W.y=h,

x>0,y=>0

that is based solely on the newly considered individual scenario w,. Using the
formula (13) in our case, we can easily draw the following conclusions:

o if f(x(0),Q.) < ¢(0), inclusion of scenario w, improves the resulting out-
come, i. e., its occurence contributes to decreasing the minimal total expected
costs

o if ¢(0) < g, (1), occurence of scenario w, causes a worse resulting outcome
measured by minimal total expected costs.

In the same way, we can get bounds (32) for an arbitrary discrete distribution Q
carried by ”out-of-sample scenarios” that have not been included into the original
set 2. The optimal value ¢ (t) for the pooled sample can be estimated according to
(10); the optimal values ¢(0) and ¢ (1) are computed for each group of scenarios
separately, and evaluation of the marginal value means to compute in addition
expected recourse costs for the optimal solution x(0) under new distribution (). An
application of this result to equiprobable scenarios has been delineated in [7].

The worst case analysis with respect to a given set of possible additional scenar-
i0s, say, 1., can be performed similarly as in the first application provided that the
first stage optimal solution x(0) of the original problem is unique: The lower and
upper bounds for go’Q(OJF) are again obtained for degenerated distributions () on €2,
(i.e., for extremal feasible solutions of the corresponding linear program) and the
gross error sensitivity follows immediately.
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4. ROBUST OPTIMIZATION MODEL

The model introduced in Example 2
minimize

S

(5) Z;psﬁs +A Z; Ps {58 -2

subject to

2
lpjfj:|

(6) Ax =b
TSX+W8ys :hs
CTX+ quys —&=0

x>0,y >0,s=1,...,8

and its modifications have been applied in financial and other problems; see e.g.
[15], [16], [18], [19]. We are not going to discuss here the pros and cons of the
choice of the objective function (5) in robust optimization. The only fact important
for our applications is that the model is based on a fized universe of scenarios
Q = {w1,...,ws} and on given probabilities ps, Vs so that the question of resistance
of the results with respect to this choice of probability distribution arises once more.

We shall substitute ¢ 'x +q/y, for &, into the objective function (5) and we
shall apply the contamination technique to the problem

minimize

S S g 2
(33) Y. plex+aly]+AY b [q;rys -2 ij;Yj}

subject to

(34) Ax =b
T5X+Wsys - hs

x>0,y >0,s=1,...,8

with a fixed parameter value \. We denote by Z the set of feasible solutions
z := [X,Yys, Vs| described by (34), we assume that the set Z(0) of optimal solutions
of (33), (34) is nonempty and bounded and we denote by ¢, (0) the optimal value
of (33), (34). The objective function fy(z, P) defined by (33) is concave in the
probability distribution P and convex with respect to all considered variables z =
[X,¥s,Vs]. It can be briefly written as

(35) £z, P)=c'x+ Ep{q'y} + Avarp{q'y}

and its special form implies that for a unique x-part of the optimal solution of
(33), (34), there is necessarily either a unique optimal compensation y,(0) for each
11



of scenarios ws that enter with a positive probability ps or that for all optimal
compensations, the variance of the recourse costs q] ys,s = 1,...,5 equals zero -
a trivially robust case.

The objective function that corresponds to contamination of P by another prob-
ability distribution @ is again of the form fy (z, (1 —¢)P +tQ) := fi (2, 1), ie.,
equals the original objective function parametrized by a scalar parameter ¢t € [0, 1]:

(36)
holzt)=c'x+ (1-t)Ep{q 'y} +tEg{a’y} + A1 — t)varp{q y} + Atvarqg{q 'y}

£28(1—1) [Erfa"y} - Fola'y}]” I
is a concave quadratic function of ¢, f o(2z,0) = fi(z, P), and its derivative
(37)
< falmt) = Eo{a"y) ~ Erfa’y} + Mvarg{a"y} ~ varp{ay)
+A(1 - 2t) [Br{d"y} - Bola v}’
= /3(2.Q) ~ fr( P) + M1 -20) [Ep{a’y} — EofaTy}]"

We shall assume that the optimal value ¢y g(1) is finite, i.e., that the problem
has an optimal solution when P, identified by probabilities ps,s = 1,...,95, is
replaced in (33) by the considered discrete contaminating distribution Q.

Application 1 - Sensitivity analysis with respect to probabilities. Let the
distribution @) be carried by scenarios belonging to the given universe of scenarios
Q= {wi1,...,wg} with probabilities 7, > 0,5 =1,...,5,>  ms = 1. According to
(37), we have at any feasible point z € Z

C hra(m07) = [15Q) — fale, )+ A [ (- paly.]

and in the light of (10), the derivative of the optimal value function ¢y ¢(t) of the
contaminated problem at the point t = 0™ equals

3 o0 = min 1@+ (T n-paly.) | 60

ZEZ) (0)

where Z,(0) denotes the set of optimal solutions of the original problem (33), (34).

Due to the nonlinearity of the objective function fy(x,e) with respect to the
probability distribution, the marginal value (38) is equal to the difference of the ob-
jective function values computed at the initial optimal solution z(0) for the changed
probabilities m and for the initial ones plus the minimal value of the additional qua-

dratic term )
A (Zs(ﬂ's - ps)q;r}’s)

This term drops out if both the distribution P and @) lead to equal expected recourse
costs >, psq)ys and Y. msq/ys for the y —parts of the optimal solutions z €
Z5(0).
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The upper and lower bounds for the marginal value ¢ ,(0") with respect to
all discrete contaminating distributions on €2 can be obtained similarly as for the
two-stage SLP provided that the set of optimal solutions of (33), (34) is a singleton,
say, Z2x(0) = {z(0)} = [x(0),ys(0),Vs]. In this case, @) is represented by a vector
of probabilities 7 € Q defined by (23) and ¢} ,(0%) is linear in 7, so that the
maximum and minimum values of ¢ ,(07) are attained at extremal points on
Q, i.e., for individual scenarios. We denote go’)HS(OJF) the marginal value for @)
concentrated at scenario ws; with probability 1. The corresponding formula for
marginal value follows easily from (36):

S

Pra(0) = ¢Tx(0) = 2(0) + a3 (0) 4 A [alv0) - X7 pya]y, 0]

The upper and lower bounds for ¢, ,(07) are given by

— S’ - 2
max Q(O*) = max {quys(O) + A alys(0) - ijlqujTyj(O) +¢"x(0)—px(0)

QeQ ’ s=1,...,8

Qe 77 s=1,...,

— S - 2
min ¢’ Q(0+) = min {qs ys(0) + X |q] ys(0) — ijlqujTyj(O) +¢"x(0)—px(0)

and they are attained at the locally most influential individual scenarios.

Application 2 - Analysis of the expected value solution. Similarly as in
Application 2 for two-stage SLP we assume that the expectation Fw is fixed and
equal to one of the considered scenarios w € €2, say, Fw = w; and that P is the
degenerated distribution concentrated in Fw. The corresponding expected value
solutions of the robust optimization problem (33), (34) and of the two stage SLP (2),
(3) are identical and can be obtained by solving the linear program (27), (28). For
simplicity we assume again that the x— part of this expected value solution is unique,
equal to x(F); it means that the minimal costs for compensation equal ¢(x(E)) :=
(Eq)"y(x(E)) for all optimal second stage solutions y(x(E)) of (27), (28). Let
YV*(x(E)) denote the set of these solutions. The sets of optimal compensations
of x(F) for the remaining scenarios ws, ...,ws equal the sets of the second stage
feasible solutions

Vs (x(E)) = {ys|Wsys = hy — T;x(E),ys > 0}
Accordingly, the marginal value for ) concentrated at wy, ...,wgs with probabilities
s >0,>  ms=1and )  mws, = Fw equals

(39)
Pho(07) = _‘J(X(E)Hyseys(x(‘%iff,s:z ..... < {W1Q(X(E)) + Z; Tl ys + Amig?(x(E)) +
Y m (v’ - amee(E) - 2ax(2) . mal v, 3P |

_ min . {[1 —2)\q(x(E))] ZS: Tl Y + AZ (a. y8)2} *

yseys(x(E)) 5=2,...,
14?: (11 = Da(x(E)) + A1 = m1)¢*(x(E))



where the minimization can be obviously split into minimization of the individual
terms for each of scenarios separately. Let us denote

(1) raE) = min {1 22a(E)]a]ye + A (a]y:)’}

for s =2,...,5 and for s = 1 put similarly
(41)  rm(x(E)) = [1 - 2Xq(x(E))] a(x(E)) + A\¢*(x(E)) = q(x(E)) — A\¢*(x(E))

Using (40), (41) in (39), we get the final formula for the corresponding marginal
value

o 2
(42) o0 =D meri(x(E)) — a(x(E)) + Alg(x(E))]

Once more, the sign of this marginal value helps to draw conclusions about the
position of the expected value solution, this time for the robust optimization model
(5), (6). The marginal value (42) is linear in probabilities w4 that identify the con-
taminating distribution ) and similarly as for two stage stochastic linear programs,
the worst case analysis with respect to the set Q of contaminating distributions on
Q identified by probabilities belonging to (26) reduces to the solution of a linear
program, this time of the form

s=1

(43) maximize Y wry(x(E)) on the set (26)

Application 3 - Postoptimality with respect to additional scenarios. We
assume again that the problem (5), (6) has been solved for the distribution P iden-
tified by probabilities ps of given scenarios wy,s = 1,...,5. The contaminating
distribution @) = @), is a degenerated distribution that assigns probability 1 to a
scenario w, ¢ ) for which the corresponding single scenario problem is solvable.
We can think of the original probability distribution as being carried by QU {w.}
with the original probabilities p1, ..., ps and with zero probability p, = 0 of the ad-
ditional scenario w,. Any optimal solution of the corresponding, formally extended
problem consists of an optimal solution [x(0),ys(0),s =1,...,5] € Z,(0) extended
for an arbitrary element y, of the set Y.(x(0)) of feasible second stage solutions
for the given first stage solution x(0) and for the additional scenario w,. Let Z,(0)
be a singleton, Z,(0) = [x(0),ys(0),s = 1,...,5]; then the numerical evaluation of
the marginal value

(44)

2
S
! 0")=c"x(0)+ min *T*—F)\[I*— STSO} —pA(0
¥rq.(07) (0)+  _min qd.y alye = psalys(0)] p—pa(0)

reduces to solution of a simple quadratic program that corresponds to the addi-
tional scenario w, and it is easy to obtain the bounds (12), (13) and to use them
for classification of the considered additional scenarios as to their impact on the
resulting outcome.
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Notice that, once more, the influence of the additional scenario w, does not
depend solely on the difference

T . T
c x(0)+ min LY — 0
(0) y*Ey*(x(o)){q y+} —©a(0)

between the value of the objective function (35) evaluated for the additional scenario
at the obtained optimal solution and the original optimal value p(0); the additional
quadratic term relates to the variability of the costs for compensation of the optimal
first stage solution x(0).

An extension of this approach to a set of out-of-sample scenarios is quite straight-
forward.

5. CONCLUSIONS

Postoptimality analysis via contamination technique as suggested in the preced-
ing Sections for scenario based stochastic programs provides an easily tractable and
flexible tool for exploring the effects of changes in the selected scenarios and their
probabilities on the optimal value. The essence of this method implies that one does
not need to worry about convexity properties with respect to random coefficients
when constructing bounds for the optimal value of the perturbed problem.

The starting point for the proposed postoptimality analysis is, of course, the
solution of the initial stochastic program that provides the optimal value and at
least one of optimal solutions. The considered contaminated distribution P; that
models the perturbed input information is carried by the pooled sample of scenarios
belonging to the original set of scenarios 2 and the out-of-sample scenarios. The
described postoptimality approach provides, inter alia, bounds for the optimal value
based on this pooled sample of scenarios, see (12). To compute the bounds, one has
to solve the problem for the contaminating distribution @) carried by out-of-sample
scenarios and to evaluate the marginal value (10).

The general formula (10) can be easily specified to the case of two-stage sto-
chastic programs with relatively complete random recourse, see e.g., (18) or (31),
and to the robust optimization model, see e.g., (38) or (42). If the initial problem
has a unique optimal solution, the main computational effort needed for evaluation
of the marginal value consists of evaluating the objective function at the initial
optimal solution but under the contaminating distribution ). Moreover, linearity
of the marginal values with respect to the contaminating distributions reduces the
worst case analysis with respect to a whole set of discrete contaminating distribu-
tions described by a given polyhedral set of probabilities to a linear programming
problem.

The presence of multiple optimal solutions complicates the worst case analysis;
still, for any of these optimal solutions, one gets an upper bound on the marginal
value simply by omitting the min operation in the corresponding formulas based
on (10).

Examples of other problems to which the contamination technique could be
applied in a similar way were mentioned in Section 1. For instance, it is obvious
how to get postoptimality analysis for a tracking model regarding changes of weights

or inclusion of an additional scenario.
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