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ination technique. For the optimal value, local contamination bounds are derived and

applied to robustness analysis of the optimal value of a portfolio performance under

risk-shaping CVaR constraints. A new robust portfolio efficiency test with respect to

the second order stochastic dominance criterion is suggested and the contamination

methodology is exploited to analyze its resistance with respect to additional scenarios.
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1 Introduction

In this paper we shall deal with robustness properties of risk constrained stochastic

programs of the form

min
x∈X

F0(x, P )

subject to

Fj(x, P ) ≤ 0, j = 1, . . . , J, (1)

where

– P is the probability distribution of a random vector ω with range Ω ⊂ IRM ,

– X ⊂ IRN is a fixed nonempty convex set,

– functions Fj(x, P ), j = 0, . . . , J may depend on P.

We shall denote X (P ) the set of feasible solutions, X ∗(P ) the set of optimal solutions

and ϕ(P ) the optimal value of the objective function in (1).

Probably the first paper formulating and analyzing risk constrained stochastic pro-

grams is due to Prékopa (1973) which includes joint probability constraints and con-

straints in the form of conditional expectations; see also Wets (1989) for the problem

formulation and for properties of expectation functionals. Notice that chance or prob-

ability constraints are a special case of (1), however the set of feasible solutions X (P )

is then convex only under special distributional and structural assumptions; consult

Prékopa (2003).

Due to the tendency of an adequate treatment of risk, a growing interest in the risk

constrained problems can be observed since 2000. It turns out that among others, the

Sample Average Approximation technique, see e.g. Shapiro (2003), Pagoncelli et al.

(2009), Wang and Ahmed (2008), and its asymptotics can be applied. This assumes

that i.i.d. samples are drawn from a fixed (known, preselected) probability distribution

P.

The wish is to apply reliable, robust or efficient decisions of (1) even in situations

when the true probability distribution P has been approximated or when it is known

only partly. Partial knowledge of P can be included into the model formulation, see

e.g. Dentcheva and Ruszczyński (2010) for robust stochastic dominance constraints

or Pflug and Wozabal (2007) for an inclusion of ambiguity of P into the model. In a

similar vein a robust portfolio efficiency test will be developed in Section 3.2. A special

case of robust portfolio efficiency was analyzed in Kopa (2010). Contrary to that, our

new test allows probability distributions with nonequiprobable scenarios.

Another possibility is to rely on general quantitative stability results valid under suit-

able continuity assumptions for Fj(x, P ), j = 0, . . . , J. Such results were proved by

Römisch (2003) without convexity assumptions and were detailed e.g. for chance con-

straints of a special structure and formulated also for risk measures nonlinear in P.

Under modest assumptions they apply to the convex problem (1).

In Section 2, we shall follow the relatively simple ideas of output analysis based on the

contamination technique, cf. Dupačová (1996, 2006), Dupačová and Poĺıvka (2007).

The considered special type of perturbations gets on with needs for what-if-analysis or

stress testing. Robustness results with respect to contamination of P by another fixed

probability distribution have been mainly developed for convex stochastic programs

whose set of feasible decisions does not depend on P, an assumption which does not

apply to problem (1), and for the objective function F0(x, P ) convex in x and linear or
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concave in P. To elaborate special techniques for stress testing and robustness analysis

for problem (1) it is necessary to relax the assumption of a fixed set of feasible decisions

and to allow its dependence on P. To this purpose, it is convenient if the constraints are

linear in P being expectations of random convex functions. Even with the expectation

type constraints the problem formulation (1) covers various known examples, e.g. CVaR

constraints from Rockafellar and Uryasev (2002), Krokhmal et al. (2002) or the second

order stochastic dominance constraints. This is the class of problems for which we shall

detail our robustness analysis and provide numerical illustrations. The next example

introduces the prototype form of problem.

EXAMPLE 1 – Risk-shaping with CVaR (Rockafellar and Uryasev 2002)

Let f(x, ω) denote the random loss caused by the decision x ∈ X and α ∈ (0, 1)

the selected confidence level. The Conditional Value at Risk at the confidence level

α, CVaRα, is defined as the mean of the α-tail distribution of f(x, ω). According to

the fundamental minimization formula by Rockafellar and Uryasev (2002) it can be

evaluated by minimization of the auxiliary function

Φα(x, v, P ) := v +
1

1− αEP (f(x, ω)− v)+

with respect to v ∈ R.
The auxiliary function Φα(x, v, P ) is evidently linear in P and convex in v. Moreover,

if f(x, ω) is a convex function of x, Φα(x, v, P ) is convex jointly in (v, x).

If P is a discrete probability distribution concentrated on ω1, . . . , ωS , with probabilities

ps > 0, s = 1, . . . , S, and x a fixed element of X , then the optimization problem

CVaRα(x, P ) = minv Φα(x, v, P ) has the form

CVaRα(x, P ) = min
v

{
v +

1

1− α

S∑
s=1

ps(f(x, ωs)− v)+

}
(2)

and can be written as

CVaRα(x, P ) = min
v,z1,...,zS

{
v +

1

1− α

S∑
s=1

pszs | zs ≥ 0, zs + v ≥ f(x, ωs) ∀s

}
. (3)

Risk-shaping with CVaR handles several probability thresholds α1, . . . , αJ and loss

tolerances bj , j = 1, . . . , J. The problem is to minimize a performance function F (x)

subject to x ∈ X and constraints CVaRαj (x, P ) ≤ bj , j = 1, . . . , J. According to

Theorem 16 of Rockafellar and Uryasev (2002), this problem is equivalent to

min
x,v1,...,vJ

{F (x) |x ∈ X , Φαj (x, vj , P ) ≤ bj , j = 1, . . . , J},

i.e. it is a problem of the form (1) with expectation type constraints.
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2 Contamination bounds

Contamination means to model the perturbations of P by its contamination by an-

other fixed probability distribution Q, i.e. to use Pt := (1 − t)P + tQ, t ∈ [0, 1] in

stochastic program (1) at the place of P. Then the set of feasible solutions of (1) for

the contaminated probability distribution Pt equals

X (Pt) = X ∩ {x |Fj(x, Pt) ≤ 0, j = 1, . . . , J}. (4)

We denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value ϕ(Pt) and

the set of optimal solutions X ∗(Pt) of the contaminated problem

minimize F0(x, Pt) on the set X (Pt). (5)

This is a nonlinear parametric program with a scalar parameter t ∈ [0, 1] and a param-

eter dependent set of feasible solutions X (t) := {x ∈ X |Fj(x, t) ≤ 0, j = 1, . . . , J}.
The task is to construct computable lower and upper bounds for ϕ(t). Such bounds

were obtained for X fixed, independent of P and for objective function F0(x, P ) linear

or concave in P, cf. Dupačová (1996, 1998). In this case, one can exploit the fact that

the optimal value function ϕ(t) is a concave function of the contamination parameter

t. The derived bounds proved to be useful for testing the resistance with respect to a

sample for scenario-based stochastic programs, e.g. Dupačová (1996), in stress testing

of CVaR optimization problems, cf. Dupačová (2006), Dupačová and Poĺıvka (2007), or

for problems with polyhedral risk objectives, cf. Dupačová (2008). For the parameter

dependent sets of feasible solutions the optimal value function ϕ(t) is concave only

under rather strict assumptions such as Fj(x, t), j = 1, . . . , J jointly concave on X ×
[0, 1] (cf. Corollary 3.2 of Kyparisis and Fiacco (1987)) which is not in agreement with

our problem formulation.

We shall examine how to construct contamination bounds for SP of the type (5) whose

constraints depend on the probability distribution. These bounds will be then applied in

robustness analysis for risk-shaping with CVaR or for a stochastic dominance test with

respect to inclusion of additional scenarios. We shall see that thanks to the assumed

structure of perturbations the lower bound can be derived for Fj(x, P ), j = 0, . . . , J

linear or concave with respect to P without any smoothness or convexity assumptions

with respect to x. Convexity of the stochastic program (1) is essential for directional

differentiability of the optimal value function, and further assumptions are needed for

derivation of an upper bound.

2.1 Lower bound

Consider first only one constraint dependent on probability distribution P and an

objective F0 independent of P , i.e. the problem is

min
x∈X

F0(x) subject to F (x, P ) ≤ 0. (6)

For probability distribution P contaminated by another fixed probability distribution

Q, i.e. for Pt := (1− t)P + tQ, t ∈ (0, 1) we get

min
x∈X

F0(x) subject to F (x, t) := F (x, Pt) ≤ 0. (7)
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Theorem 1 Let F (x, t) be a concave function of t ∈ [0, 1]. Then the optimal value

function of (7)

ϕ(t) := min
x∈X

F0(x) subject to F (x, t) ≤ 0

is quasiconcave in t ∈ [0, 1] with the lower bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (8)

Proof: For arbitrary t1, t2 ∈ [0, 1] and 0 ≤ λ ≤ 1 we have

X ((1− λ)t1 + λt2) ⊂ {x ∈ X | (1− λ)F (x, t1) + λF (x, t2) ≤ 0} ⊂ X (t1) ∪ X (t2). (9)

Hence, similarly as in Proposition 3.11 of Kyparisis and Fiacco (1987), the optimal

value ϕ(t) of (7) is quasiconcave which results in the lower bound (8). ut

When also the objective function depends on the probability distribution, i.e. on the

contamination parameter t, the problem is

min
x∈X

F0(x, t) := F0(x, Pt) subject to F (x, t) ≤ 0. (10)

For F0(x, P ) linear or concave in P , a lower bound can be obtained by application of

the bound (8) separately to F0(x, P ) and F0(x, Q):

ϕ(t) = min
x∈X (t)

F0(x, (1− t)P + tQ) ≥ min
x∈X (t)

[(1− t)F0(x, P ) + tF0(x, Q)] ≥

(1− t) min{ϕ(0), min
X (Q)

F0(x, P )}+ tmin{ϕ(1), min
X (P )

F0(x, Q)}. (11)

The bound is more complicated but still computable. It requires solution of 4 problems

two of which are the non-contaminated programs for probability distributions P,Q and

the other ones use both P and Q alternating in the objective function and constraints.

COMMENT

Of course, the lower bounds (8), (11) are loose, but for small values of t, say t ≤ t0
they can be improved to ϕ(t) ≥ min{ϕ(0), ϕ(t0)} when applied to P and to Q̃ :=

(1− t0)P + t0Q. Notice that no convexity assumption with respect to x is needed.

For multiple constraints and contaminated probability distribution it would be neces-

sary to prove first the inclusion X (t) ⊂ X (0) ∪ X (1) and then the lower bound (8)

for the optimal value ϕ(t) = minx∈X (t) F0(x, Pt) can be obtained as in the case of

one constraint. As we shall see in Section 3.3, such inclusion holds true under special

circumstances, otherwise we get only the following:

Denote Xj(t) = {x |Fj(x, Pt) ≤ 0}. Then according to (9), Xj(t) ⊂ Xj(0) ∪ Xj(1),

hence

X (t) ⊂ X ∩
⋂
j

[Xj(P ) ∪ Xj(Q)] := X0.

To evaluate the corresponding lower bound minx∈X0 F0(x) would mean to solve a facial

disjunctive program.
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2.2 Directional derivative

Assume now that Fj(x, P ), j = 0, 1, . . . , J in (1) are convex functions of x. The di-

rectional derivative of the optimal value function can be obtained by the formula of

Gol’shtein (1970), Theorem 17 applied to the Lagrange function

L(x,u, t) = F0(x, t) +
∑
j

ujFj(x, t)

provided that both the set of optimal solutions X ∗(P ) = X ∗(0) and the set of Lagrange

multipliers U∗(P ) = U∗(0) are nonempty and bounded. If the functions Fj are linear

in P , i.e. functions Fj(x, t)∀j are linear in the contamination parameter t, then

ϕ′(0+) = min
x∈X∗(0)

max
u∈U∗(0)

∂

∂t
L(x,u, 0) = min

x∈X∗(0)
max

u∈U∗(0)
(L(x,u, Q)− L(x,u, P )).

(12)

Formula (12) simplifies substantially when U∗(0) is a singleton. When the constraints

do not depend on P we get

ϕ′(0+) = min
x∈X∗(0)

∂

∂t
F0(x, 0+) = min

x∈X∗(0)
(F0(x, Q)− F0(x, P ))

= min
x∈X∗(0)

F0(x, Q)− ϕ(0). (13)

These formulas can be exploited to construct an upper bound for the optimal value

function ϕ(t) of the form

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, 1] (14)

provided that ϕ(t) is concave; see e.g. Dupačová (1996, 2006), Dupačová and Poĺıvka

(2007). The contaminated probability distribution Pt may also be understood as a

result of contaminating Q by P and an alternative upper bound may be constructed

in a similar way.

Under additional assumptions, Theorem 17 of Gol’shtein (1970) provides a formula

for derivative of the optimal value function also in case of nonlinear dependence of

functions Fj on t. See Dupačová (1990, 1996, 1998) for details and applications for

problems with a fixed set X of feasible solutions. The general nonconvex case is treated

e.g. in Theorems 4.25 and 4.26 of Bonnans and Shapiro (2000).

EXAMPLE 2 – Upper contamination bound for CVaR

With reference to Rockafellar and Uryasev (2002), Example 1 and Dupačová (2006),

Dupačová and Poĺıvka (2007) we shall use the formula

CVaRα(x, P ) = min
v
Φα(x, v, P ) := v +

1

1− αEP (f(x, ω)− v)+

and apply the contamination technique to get an upper bound. It is an unconstrained

optimization problem, the set V∗(x, P ) of its optimal solutions is a nonempty compact

interval of IR, for a fixed x the objective function is convex in v and linear in P. Formula

(13) for CVaRα(x, (1− t)P + tQ) reduces to

∂

∂t
CV aRα(x, 0+) = min

v∈V∗(x,P )
Φα(x, v,Q)− CVaRα(x, P ). (15)
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The optimal value function, now CVaRα(x, t) := CVaRα(x, (1− t)P + tQ) is a concave

function of t, hence, its lower bound is (1 − t)CVaRα(x, P ) + tCVaRα(x, Q). For an

arbitrary optimal solution v∗(x, P ) ∈ V∗(x, P ), the upper bound for the contaminated

CVaR value at x follows by substitution to (14):

CVaRα(x, (1− t)P + tQ) ≤ (1− t)CVaRα(x, P ) + tΦα(x, v∗(x, P ), Q). (16)

2.3 Upper bound

To derive an upper bound for the optimal value of the contaminated problem with

probability dependent constraints we shall confine ourselves mostly to the expectation

type of the objective function and constraints. Hence, all functions Fj(x, t), j = 0, . . . , J,

are linear in t on the interval [0, 1]. Denote F (x, Pt) = F (x, t) := maxj Fj(x, t). For

convex Fj(•, P ) ∀j the “max” function F (•, P ) is convex as well. This allows to rewrite

the set X (t) of feasible solutions of (5) in the form

X (t) = X ∩ {x : F (x, t) ≤ 0}

with one linearly perturbed convex constraint.

Assume first that F (x∗(0), P ) = 0 for an optimal solution x∗(0) := x∗(P ) of (1) and

F (x∗(0), Q) ≤ 0. Then at least one of the constraints is active at the optimal solution.

Moreover, x∗(0) ∈ X (t), ∀t ∈ [0, 1] :

F (x∗(0), t) = max
j

[(1− t)Fj(x∗(0), P ) + tFj(x
∗(0), Q)]

≤ (1− t)F (x∗(0), P ) + tF (x∗(0), Q) ≤ 0.

It means that there is a trivial global upper bound

ϕ(t) ≤ F0(x∗(0), t)∀t ∈ [0, 1]. (17)

When F0(x, •) is linear, a more convenient form of (17) follows:

ϕ(t) ≤ F0(x∗(0), t) = (1− t)ϕ(0) + tF0(x∗(0), Q) ∀t ∈ [0, 1] (18)

otherwise one may apply suitable numerically tractable upper bounds for F0(x∗(0), t);

see Example 3.

If the above assumption F (x∗(0), P ) = 0 and F (x∗(0), Q) ≤ 0 is not fulfilled, to get at

least a local upper bound for ϕ(t) valid for small t we shall switch to stability results

for nonlinear parametric programming. Let J0 := {j : Fj(x
∗(0), P ) = 0} be the set of

indexes of active constraints of (1) at x∗(0).

In the convex case, it is possible to analyze the optimal value function by the first order

methods. Various results in this direction can be mentioned: For example, according

to Robinson (1987) the perturbed problem with a fixed convex polyhedral set X in (4)

reduces locally to a problem with a parameter independent set of feasible solutions if

x∗(0) is a nondegenerate point and the strict complementarity conditions hold true. In

particular, x∗(0) is a nondegenerate point of (1) iff gradients ∇xFj(x∗(0), P ), j ∈ J0

are linearly independent, i.e. under the linear independence condition; cf. Bonnans and
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Shapiro (2000), Example 4.78. Then for t small enough, t ≤ t0, t0 > 0, the optimal

value function ϕ(t) is concave and its upper bound equals

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (19)

A more detailed insight can be obtained if there is a continuous trajectory [x∗(t),u∗(t)]
of optimal solutions and Lagrange multipliers of the perturbed problem (5) emanating

from the unique optimal solution x∗(0) and unique Lagrange multipliers u∗j (0), j =

1, . . . , J of (1). Such result follows usually by the implicit function theorem applied to

the first order necessary conditions. In addition to the nondegeneracy and the strict

complementarity conditions it requires also nonsingularity of the Hessian matrix of the

Lagrange function on the tangent space to the active constraints, i.e. the second order

sufficient condition valid at x∗(0),u∗(0); see e.g. Bonnans and Shapiro (2000) or Fiacco

(1983). At this point, convexity with respect to x is not needed and the trajectory

[x∗(t),u∗(t)] satisfies the first order optimality conditions also for 0 < t ≤ t0 :

Fj(x
∗(t), Pt) ≤ 0, u∗j (t) ≥ 0, Fj(x

∗(t), Pt)u
∗
j (t) = 0, j = 1, 2, . . . , J

∇xF0(x∗(t), Pt) +
∑
j

u∗j (t)∇xFj(x∗(t), Pt) = 0.

Moreover, for convex expectation type functionals Fj , j = 0, . . . , J, the derivative (12)

of the optimal value function reduces to

ϕ′(0+) =
∂

∂t
L(x∗(0),u∗(0), 0) = L(x∗(0),u∗(0), Q)− L(x∗(0),u∗(0), P )

= F0(x∗(0), Q) +
∑
j

u∗j (0)Fj(x
∗(0), Q)− F0(x∗(0), P ). (20)

If no constraint is active at x∗(0), we face a locally unconstrained optimization problem

and the optimal value function ϕ(t) is concave on a right neighborhood of 0, say for

t ∈ [0, t0], t0 > 0, hence, for t ≤ t0, the upper bound (19) applies.

In the opposite case, the strict complementarity conditions imply that for small t ∈
[0, t0], t0 > 0 the set J0 of indexes of active constraints remains fixed and for a local

analysis, constraints Fj(x, P ) ≤ 0 with j /∈ J0 need not be considered. Then X (t)

reduces locally to the set of solutions of the system of equations Fj(x, t) = 0, j ∈ J0

which can be replaced locally by a parameter independent set.

To summarize – there exists t0 > 0 such that for 0 ≤ t ≤ t0 the optimal value ϕ(t) of

the contaminated problem (5) can be obtained as ϕ(t) = minx∈X0 F0(x, t) where the

set of feasible solutions X0 does not depend on t. Hence, ϕ(t) is concave on [0, t0], t0 > 0

which opens the possibility of constructing local upper contaminations bounds (19).

Accordingly, the following Theorem holds true:

Theorem 2 Let (1) be a twice differentiable program, x∗(P ) = x∗(0) its optimal solu-

tion and ϕ(P ) = ϕ(0) its optimal value. Assume that at x∗(0) linear independence, the

strict complementarity and the second order sufficient conditions are satisfied. Then

there exists t0 > 0 such that for all t ∈ [0, t0] the optimal value function ϕ(t) is concave

and the local upper contamination bound is given by

ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, t0]. (21)

Moreover, for convex expectation type problems (1) the directional derivative is given

by (20).
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COMMENT

Except for the form of the directional derivative, Theorem 2 applies also to problems

with nonconvex functions Fj(•, P ) ∀j.

2.4 Illustrative examples

Consider S = 50 equiprobable scenarios of monthly returns % of N = 9 assets (8

European stock market indexes: AEX, ATX, FCHI, GDAXI, OSEAX, OMXSPI, SSMI,

FTSE and a risk free asset) in period June 2004 - August 2008. The scenarios can be

collected in the matrix

R =


r1

r2

...

rS


where rs = (rs1, r

s
2, . . . , r

s
N ) is the s-th scenario. We will use λ = (λ1, λ2, ..., λN )′ for

the vector of portfolio weights and the portfolio possibilities are given by

Λ = {λ ∈ IRN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . , N},

that is, the short sales are not allowed. The historical data comes from pre-crisis period.

The data are contaminated by a scenario rS+1 from September 2008 when all indexes

strongly fell down. The additional scenario can be understood as a stress scenario or

the worst-case scenario. It can be seen in Table 1 presenting basic descriptive statistics

of the original data and the additional scenario (A.S.).

Index Country Mean Max Min A.S.
AEX Netherlands 0.00456 0.07488 -0.14433 -0.19715
ATX Austria 0.01358 0.13247 -0.14869 -0.23401
FCHI France 0.0044 0.0615 -0.13258 -0.1005
GDAXI Germany 0.01014 0.07111 -0.15068 -0.09207
OSEAX Norway 0.01872 0.12176 -0.19505 -0.23934
OMXSPI Sweden 0.00651 0.08225 -0.14154 -0.12459
SSMI Switzerland 0.00563 0.05857 -0.09595 -0.08065
FTSE England 0.00512 0.06755 -0.08938 -0.13024
Risk free 0.002 0.002 0.002 0.002

Table 1 Descriptive statistics and the additional scenario of returns of 8 European stock
indexes and of the risk free asset

We will apply the contamination bounds to mean-risk models with CVaR as a mea-

sure of risk. Two formulations are considered: In the first one, we are searching for

a portfolio with minimal CVaR and at least the prescribed expected return, see e.g.

Dupačová (2006) or Kilianová and Pflug (2009). Secondly, we minimize the expected

loss of the portfolio under the condition that CVaR is below a given level, a special

case of Example 1.

EXAMPLE 3 – Minimizing CVaR
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Mean-CVaR model with CVaR minimization is a special case of the general formu-

lation (1) when F0(x, P ) = CVaR(−%′λ) and F1(x, P ) = EP (−%′λ) − µ(P ); µ(P ) is

the maximal allowable expected loss. We choose

µ(P ) = −EP%′(
1

9
,

1

9
, ...,

1

9
)′ =

1

50

50∑
s=1

−rs(
1

9
,

1

9
, ...,

1

9
)′.

It means that the minimal required expected return is equal to the average return of

the equally diversified portfolio. The significance level α = 0.95 and Λ is a fixed convex

polyhedral set representing constraints that do not depend on P . Since P is a discrete

distribution with equiprobable scenarios r1, r2, ..., r50, using (3), the mean-CVaR model

can be formulated as the following linear program:

ϕ(0) = min
λ∈Λ,v∈R,zs∈R+

v +
1

50 ∗ 0.05

50∑
s=1

zs (22)

s.t. zs ≥ −rsλ− v, s = 1, 2, ..., 50

1

50

50∑
s=1

−rsλ− µ(P ) ≤ 0.

By analogy, for the additional scenario we have:

ϕ(1) = min
λ∈Λ,v∈R,z∈R+

v +
1

0.05
z (23)

s.t. z ≥ −r51λ− v, −r51λ− µ(Q) ≤ 0

or, equivalently:

ϕ(1) = min
λ∈Λ
{−r51λ | − r51λ− µ(Q) ≤ 0} (24)

where µ(Q) = −r51( 1
9 ,

1
9 , ...,

1
9 )′.

First, we compute for t ∈ [0, 1] the optimal value function of the contaminated problem.

ϕ(t) = min
λ∈Λ,v∈R,zs∈R+

v +
1

0.05

(
50∑
s=1

1

50
(1− t)zs + tz51

)
(25)

s.t. zs ≥ −rsλ− v, s = 1, 2, ..., 51

−
50∑
s=1

1

50
(1− t)rsλ− tr51λ− µ((1− t)P + tQ) ≤ 0

where µ((1− t)P + tQ) = −
∑50
s=1

1
50 (1− t)rs( 1

9 ,
1
9 , ...,

1
9 )′ − tr51( 1

9 ,
1
9 , ...,

1
9 )′.

Secondly, applying (11), we derive a lower bound for ϕ(t). Note that now

min
X (Q)

F0(x, P ) = min
λ∈Λ,v∈R,zs∈R+

v +
1

50 ∗ 0.05

50∑
s=1

zs

s.t. zs ≥ −rsλ− v, s = 1, 2, ..., 50

−r51λ− µ(Q) ≤ 0

and

min
X (P )

F0(x, Q) = min
λ∈Λ
{−r51λ | 1

50

50∑
s=1

−rsλ− µ(P ) ≤ 0}.
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Finally, we construct an upper bound for ϕ(t). Since the optimal solution λ∗ of (22) is

a feasible solution of (24) we can apply (17) with x∗(0) = λ∗ as a trivial upper bound

for all t ∈ [0, 1] :

ϕ(t) ≤ F0(x∗(0), t) = min
v∈R,zs∈R+

v +
1

0.05

(
50∑
s=1

1

50
(1− t)zs + tz51

)
s.t. zs ≥ −rsλ∗ − v, s = 1, 2, ..., 51.

The disadvantage of this trivial bound is the fact, that it would require evaluation of

the CVaR for λ∗ for each t. Linearity with respect to t does not hold true, but we may

apply the bound (16). This yields an upper estimate for F0(x∗(0), t) which is a convex

combination of ϕ(0) and Φα(x∗(0), v∗(x∗(0), P ), Q). The optimal value ϕ(0) is given

by (22) and

Φα(x∗(0), v∗(x∗(0), P ), Q) = v∗ +
1

0.05
(−r51λ∗ − v∗)+

where v∗ and λ∗ are optimal solutions of (22). The graphs of ϕ(t), its lower bound

and two upper bounds (trivial one and its upper estimate) for small contamination

t ∈ [0, 0.1] are presented in Figure 1. Since all original scenarios have probability 0.02,

the performance for t > 0.1 is not of much interest. For t > 0.04, ϕ(t) in (25) coincides

with its lower bound because the optimal portfolios consist only of risk free asset. The

upper bound is piecewise linear in t and for small values of t it coincides with the

estimated upper bound.

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,02 0,04 0,06 0,08 0,1

t

CVaR(t)

LB

UB

EUB

Fig. 1 Comparison of minimal (CVaR(t)) value of mean-CVaR model with lower bound (LB),
upper bound (UB) and the estimated upper bound (EUB).

EXAMPLE 4 – Minimizing expected loss

As the second example, consider the mean-CVaR model minimizing the expected loss

subject to a constraint on CVaR. This corresponds to (1) with F0(x, P ) = EP (−%′λ)

and F1(x, P ) = CVaR(−%′λ) − c where c = 0.19 is the maximal accepted level of
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CVaR. For simplicity, this level does not depend on the probability distribution. Sim-

ilarly to the previous example, we compute the optimal value ϕ(t) and its lower and

upper bound. Using Theorem 16 of Rockafellar and Uryasev (2002), the minimal CVaR-

constrained expected loss is obtained for t ∈ [0, 1] as

ϕ(t) = min
λ∈Λ,v∈R

−
50∑
s=1

1

50
(1− t)rsλ− tr51λ (26)

s.t. v +
1

0.05

(
−

50∑
s=1

1

50
(1− t)rsλ− tr51λ− v

)+

− c ≤ 0 (27)

and equals thus the optimal value function of the parametric linear program

ϕ(t) = min
λ∈Λ,v∈R,zs∈R+

−
50∑
s=1

1

50
(1− t)rsλ− tr51λ (28)

s.t. v +
1

0.05

(
50∑
s=1

1

50
(1− t)zs + tz51

)
− c ≤ 0

zs ≥ −rsλ− v, s = 1, 2, ..., 51

for t ∈ [0, 1]. In particular, for t = 1 we have

ϕ(1) = min
λ∈Λ,v∈R,zs∈R+

−r51λ

s.t. v +
1

0.05
z51 − c ≤ 0, z51 + v ≥ −r51λ,

what is equivalent to

ϕ(1) = min
λ∈Λ
{−r51λ | − r51λ− c ≤ 0};

compare with (24). Using (11), we can evaluate the lower bound for ϕ(t) with

min
X (Q)

F0(x, P ) = min
λ∈Λ
{−

50∑
s=1

1

50
rsλ | − r51λ− c ≤ 0}

and

min
X (P )

F0(x, Q) = min
λ∈Λ,v∈R,zs∈R+

−r51λ

s.t. v +
1

0.05

50∑
s=1

1

50
zs − c ≤ 0, zs ≥ −rsλ− v, s = 1, 2, ..., 50.

Finally, we compute an upper bound for ϕ(t). Contrary to the previous example, the

optimal solution x∗(0) of the noncontaminated problem is not a feasible solution of

the fully contaminated problem. Therefore, the trivial global upper bound (17) cannot

be used. We apply instead the local upper bound (21) with the directional derivative

(20). In this example, the value of multiplier u∗(0) corresponding to (27) for t = 0 is

equal to zero, the CVaR constraint (27) is not active and for sufficiently small t, the

upper bound reduces to:

ϕ(t) ≤ (1− t)ϕ(0) + tF0(x∗(0), Q) (29)



13

-0,02
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-0,014

-0,012

-0,01

-0,008

-0,006

-0,004
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0
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t

mean loss

LB

UB

Fig. 2 Comparison of minimal mean loss value with its lower bound (LB) and upper bound
(UB).

Figure 2 depicts the graph of ϕ(t) given by (28) and its lower and upper bound. The

upper bound coincides with ϕ(t) for t ≤ 0.02. It illustrates the fact that the local upper

bound is meaningful if the probability of the additional scenario is not too large, i.e.

no more than probabilities of the original scenarios for our example.

3 Robustness in portfolio efficiency testing

3.1 Portfolio efficiency test

In this section, we shall study robustness of portfolio efficiency tests with respect

to the second-order stochastic dominance relation. Consider N assets and a random

vector of their returns %. Since all existing portfolio efficiency tests have been derived

for a discrete probability distribution P of returns we assume that % takes S values

rs = (rs1, r
s
2, . . . , r

s
N ), called scenarios, with probabilities p1, p2, ..., pS . Contrary to

all former tests, e.g. Kopa and Chovanec (2008) or Kopa (2010), we do not assume

equiprobable scenarios. Again, the scenarios are collected in the matrix

R =


r1

r2

...

rS


and the portfolio possibilities are given by

Λ = {λ ∈ RN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . , N}.

Alternatively, one can consider any bounded polytope: Λ′ = {λ ∈ RN |Aλ ≥ b}.
For any portfolio λ ∈ Λ, let (−Rλ)[k] be the k-th smallest element of (−Rλ) , i.e.

(−Rλ)[1] ≤ (−Rλ)[2] ≤ . . . ≤ (−Rλ)[S] and let I(λ) be a permutation of the index

set I = {1, 2, ..., S} such that −ri(λ)λ = (−Rλ)[i]. Accordingly, we can order the cor-

responding probabilities and we denote pλi = pi(λ). Hence, pλi = P (−%λ = (−Rλ)[i]).

The same notation is applied for the tested portfolio τ = (τ1, τ2, ..., τN )′.
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Let F%′λ(x) denote the cumulative probability distribution function of returns of port-

folio λ. The twice cumulative probability distribution function of returns of portfolio

λ is defined as

F
(2)
%′λ(y) =

∫ y

−∞
F%′λ(x)dx. (30)

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec

(2008) and Kopa (2010), we define the second-order stochastic dominance relation in

the strict form in the context of SSD portfolio efficiency.

Definition 1 Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the second-order stochas-

tic dominance (%′λ �SSD %′τ ) if and only if

F
(2)
%′λ(y) ≤ F (2)

%′τ (y) ∀y ∈ R

with strict inequality1 for at least one y ∈ R.

As in Ogryczak and Ruszczyński (2002) or Kopa and Chovanec (2008), we express the

SSD relation using the conditional value at risk (CVaR).

Lemma 1 Let λ, τ ∈ Λ. Then %′λ �SSD %′τ if and only if

CVaRα(−%′λ) ≤ CVaRα(−%′τ ) for all α ∈ [0, 1] (31)

with strict inequality for at least one α.

Since we limit our attention to a discrete probability distribution of returns, the in-

equality of CVaRs need not be verified in all α ∈ [0, 1], but only in at most S + 1

particular points.

Theorem 3 Let qλs =
∑s
i=1 p

λ
i and qτs =

∑s
i=1 p

τ
i , s = 1, 2, ..., S. Let qλ0 = qτ0 = 0.

Then %′λ �SSD %′τ if and only if CVaRqλ
s

(−%′λ) ≤ CVaRqλ
s

(−%′τ ) for all s =

0, 1, 2, ..., S with strict inequality for at least one qλs .

Proof: Assume α > 0. Following Rockafellar & Uryasev (2002), Proposition 8, let s(α)

be the unique index such that qλs(α) ≥ α > qλs(α)−1. Then

CVaRα(−%′λ) =
1

1− α

(qλs(α) − α)(−Rλ)[s(α)] +

S∑
i=s(α)+1

pλi (−Rλ)[i]

 .
Consider LCα(−%′λ) := (1 − α)CVaRα(−%′λ). Since 1 − qλs(α) =

∑S
i=s(α)+1 p

λ
i we

have:

LCα(−%′λ) = qλs(α)(−Rλ)[s(α)] − α(−Rλ)[s(α)] +

S∑
i=s(α)+1

pλi (−Rλ)[i]

= (1− α)(−Rλ)[s(α)] − (−Rλ)[s(α)](1− qλs(α)) +

S∑
i=s(α)+1

pλi (−Rλ)[i]

= (1− α)(−Rλ)[s(α)] +

S∑
i=s(α)+1

pλi

(
(−Rλ)[i] − (−Rλ)[s(α)]

)
.

1 This type of SSD relation is sometimes referred to as the strict second-order stochastic
dominance. If no strict inequality is required then the relation can be called the weak second-
order stochastic dominance.
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A similar analysis can be done for portfolio τ . Since both LCα(−%′λ) and LCα(−%′τ )

are concave piecewise linear functions in α, Lemma 1 implies that %′λ �SSD %′τ
if and only if LCα(−%′λ) ≤ LCα(−%′τ ) for all α = qλs , s = 0, 1, ..., S, with strict in-

equality for at least one qλs . Passing back to CVaR expressions completes the proof. ut

Following Ruszczyński and Vanderbei (2003), Kuosmanen (2004), Kopa and Chovanec

(2008) and Kopa (2010) we define portfolio efficiency with respect to the second order

stochastic dominance.

Definition 2 A given portfolio τ ∈ Λ is SSD inefficient if there exists portfolio λ ∈ Λ
such that %′λ �SSD %′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio τ ∈ Λ as SSD efficient if and only if no other portfolio

is better (in the sense of the SSD relation) for all risk averse and risk neutral decision

makers. Inspired by Kopa and Chovanec (2008) we consider the following measure:

ξ(τ , R,p) = min
as,λ

S∑
s=0

as (32)

s.t. CVaRqλ
s

(−%′λ)− CVaRqλ
s

(−%′τ ) ≤ as, s = 0, 1, ..., S

as ≤ 0, s = 0, 1, ..., S

λ ∈ Λ.

The objective function of (32) represents the sum of differences between CVaRs of

a portfolio λ and CVaRs of the tested portfolio τ . The differences are considered

in points qλs , s = 0, 1, ..., S. All differences must be non-positive and at least one

negative to guarantee that portfolio λ dominates portfolio τ . Moreover, minimizing

these differences, we find portfolio λ∗ that cannot be dominated by any other one. On

the other hand, if no dominating portfolio exists, that is, portfolio τ is SSD efficient,

then ξ(τ , R,p) = 0 because the only feasible solutions of (32) are τ and portfolios

λ satisfying Rλ = Rτ . Summarizing, Theorem 3 implies the following necessary and

sufficient SSD portfolio efficiency test:

Theorem 4 A given portfolio τ is SSD efficient if and only if ξ(τ , R,p) = 0. If

ξ(τ , R,p) < 0 then the optimal portfolio λ∗ in (32) is SSD efficient and it dominates

portfolio τ by SSD.

Until now, perfect information about the probability distribution of returns was as-

sumed and portfolio τ was tested with respect to this distribution. However, in many

practical applications, the probability distribution of returns is not perfectly known.

And therefore, we will study robust versions of SSD efficiency.

3.2 Portfolio efficiency with respect to ε-SSD relation

Assume that the probability distribution P̄ of random returns %̄ takes again values rs,

s = 1, 2, ..., S but with other probabilities p̄ = (p̄1, p̄2, ..., p̄S). We define the distance

between P and P̄ as d(P̄ , P ) = maxi |p̄i − pi|.
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Definition 3 A given portfolio τ ∈ Λ is ε-SSD inefficient if there exists portfolio

λ ∈ Λ and P̄ such that d(P̄ , P ) ≤ ε with %̄′λ �SSD %̄′τ . Otherwise, portfolio τ is

ε-SSD efficient.

The introduced ε-SSD efficiency is a robustification of the classical SSD portfolio effi-

ciency. It guarantees stability of the SSD efficiency classification with respect to small

changes (prescribed by parameter ε) in probability vector p. A given portfolio τ is

ε-SSD efficient if and only if no portfolio λ SSD dominates τ neither for the original

probabilities p nor for arbitrary probabilities p̄ from ε-neighborhood of the original

vector p. For testing ε-SSD efficiency of a given portfolio τ we modify (32) in order to

introduce a new measure of ε-SSD efficiency:

ξε(τ , R,p) = min
as,λ,p̄

S∑
s=0

as (33)

s.t. CVaRq̄λ
s

(−%′λ)− CVaRq̄λ
s

(−%′τ ) ≤ as, s = 0, 1, ..., S

q̄λs =

s∑
i=1

p̄λi , s = 1, ..., S

q̄λ0 = 0

S∑
i=1

p̄i = 1

−ε ≤ p̄i − pi ≤ ε, i = 1, 2, ..., S

p̄i ≥ 0, i = 1, 2, ..., S

as ≤ 0, s = 0, 1, ..., S

λ ∈ Λ.

Theorem 5 Portfolio τ ∈ Λ is ε-SSD efficient if and only if ξε(τ , R,p) given by (33)

is equal to zero.

Proof: The proof directly follows from Theorem 4 because (33) is obtained from (32)

by an additional minimization over p̄ from ε-neighborhood of the original probability

vector p. ut

3.3 Resistance of SSD portfolio efficiency with respect to additional scenarios

In the previous sections, we assumed a fixed set of scenarios. In many practical ap-

plications, an additional scenario may be of interest. Therefore, the aim of this sec-

tion is to analyze the robustness of SSD portfolio efficiency with respect to the ad-

ditional scenario denoted by rS+1. For a contamination parameter t ∈ [0, 1], we

assume that the random return %̃(t) takes values r1, r2, ..., rS+1 with probabilities

p̃(t) = ((1 − t)p1, (1 − t)p2, ..., (1 − t)pS , t). The cumulative probabilities for portfolio

λ are

q̃λs =

s∑
i=1

p̃λi =

s∑
i=1

P (−%̃(t)λ = (−R̃λ)[i]), s = 1, 2, ..., S + 1, q̃λ0 = 0
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and the same notation is used for portfolio τ . We denote the extended scenario matrix

by R̃, that is,

R̃ =

(
R

rS+1

)
.

Definition 4 A given portfolio τ ∈ Λ is directionally SSD inefficient with respect to

rS+1 if it exists t0 > 0 such that for every t ∈ [0, t0] there is a portfolio λ(t) ∈ Λ

satisfying %̃(t)′λ(t) �SSD %̃(t)′τ .

Definition 5 A given portfolio τ ∈ Λ is directionally SSD efficient with respect to

rS+1 if there does not exist t0 > 0 such that for every t ∈ [0, t0] there is a portfolio

λ(t) ∈ Λ satisfying %̃(t)′λ(t) �SSD %̃(t)′τ .

According to these definitions, a given portfolio is classified as directionally SSD effi-

cient (inefficient) with respect to scenario rS+1 if it is SSD efficient (inefficient) and

a sufficiently small contamination of the original probability distribution of returns by

the additional scenario does not change the SSD efficiency classification, that is, the

SSD efficient (inefficient) portfolio remains SSD efficient (inefficient). Applying (32) to

contaminated data, portfolio λ(t) ∈ Λ satisfying %̃(t)′λ(t) �SSD %̃(t)′τ exists if and

only if ξ(τ , R̃, p̃(t)) < 0, where

ξ(τ , R̃, p̃(t)) = min
as,λ

S∑
s=0

as (34)

s.t. CVaRq̃λ
s

(−%̃(t)′λ)− CVaRq̃λ
s

(−%̃(t)′τ ) ≤ as, s = 0, 1, ..., S

as ≤ 0, s = 0, 1, ..., S

λ ∈ Λ.

EXAMPLE 5

(a) Consider the following three assets and three scenarios example:

R =

 0 3 2

2 2 2

4 1 2

 .

Assume that scenarios are equiprobable. It can be shown that portfolio τ = ( 1
3 ,

2
3 , 0)

is SSD efficient. Let the additional scenario r4 = (0, 0, 2) and consider portfolio λ =

(0, 0, 1). Then %̃(t)′λ �SSD %̃(t)′τ for any contamination parameter t > 0. Hence,

portfolio τ is SSD efficient but not directionally SSD efficient with respect to scenario

r4.

(b) Consider another three assets and three scenarios example:

R =

 0 3 2

2 2 3

4 1 2

 .

Assume again that scenarios are equiprobable. It can be shown that portfolio τ =

( 1
3 ,

2
3 , 0) is SSD inefficient, because portfolio λ = (0, 0, 1) SSD dominates portfolio

τ . Let the additional scenario r4 = (2, 2, 0). Then no portfolio SSD dominates τ =

( 1
3 ,

2
3 , 0) for any contamination parameter t > 0. Hence, portfolio τ is SSD inefficient

but not directionally SSD inefficient with respect to scenario r4.
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Example 5 shows that there are situations where an arbitrarily small contamination of

the original probability distribution of returns leads to the opposite SSD classification.

Using contamination bounds we will derive a sufficient condition for directional SSD

efficiency and directional SSD inefficiency with respect to additional scenario rS+1.

Theorem 6 Let τ ∈ Λ be an SSD efficient portfolio for the noncontaminated distri-

bution P . Let

rS+1τ ≥ rS+1λ for all λ ∈ Λ. (35)

Then τ ∈ Λ is directionally SSD efficient with respect to rS+1.

Proof: The SSD efficiency of τ implies that ξ(τ , R,p) = 0. Condition (35) gives

ξ(τ , rS+1, 1) = 0. Since the objective function of (32) does not depend on probability

distribution, verification of (9) for t1 = 0, t2 = 1 will imply the lower bound (8).

Consequently, ξ(τ , R̃, p̃(t)) will necessarily be equal to zero for all t ∈ [0, 1] what yields

directional SSD efficiency with respect to rS+1 of τ . Hence, it suffices to show, that

any feasible solution λ of (34) with an arbitrary parameter t ∈ (0, 1) is a feasible

solution of (32). Let F
(2)
λ,S+1(z) be a cumulative distribution function of returns of

portfolio λ for the contaminated distribution taking S + 1 scenarios with probabilities

p̃ = ((1−t)p1, (1−t)p2, ..., (1−t)pS , t). Similarly, let F
(2)
λ,S(z) correspond to the original

distribution with S scenarios. Then

F
(2)
λ,S+1(z) =

∫ z

−∞
Fλ(y)dy =

∫ z

−∞

S+1∑
s=1

p̃s1(rsλ≤y)dy

=

S+1∑
s=1

p̃s(z − rsλ)1(rsλ≤z) =

S+1∑
s=1

p̃s(z − rsλ)+. (36)

The same notation and analysis is applied to portfolio τ .

Since λ is a feasible solution of (34), Theorem 3 implies that %(t)′λ �SSD %(t)′τ .

Hence, directly from Definition 1, one obtains

F
(2)
λ,S+1(z) ≤ F (2)

τ ,S+1(z) ∀z ∈ R. (37)

Applying (36) to (37)

S∑
s=1

(1− t)ps(z − rsλ)+ + t(z − rS+1λ)+

≤
S∑
s=1

(1− t)ps(z − rsτ )+ + t(z − rS+1τ )+. (38)

Note that according to (35) (z − rS+1λ)+ ≥ (z − rS+1τ )+. Combining it with (38)

implies that
∑S
s=1 ps(z − rsλ)+ ≤

∑S
s=1 ps(z − rsτ )+. Therefore

F
(2)
λ,S(z) ≤ F (2)

τ ,S(z) ∀z ∈ R.

According to Definition 1, %′λ �SSD %′τ and the rest of the proof directly follows

from Theorem 3. ut

In Example 5(a), ξ(τ , r4, 1) = −2 and ξ(τ , R̃(t), p̃(t)) < 0 for all t ∈ (0, 1] because

%̃(t)′λ �SSD %̃(t)′τ for all t ∈ (0, 1].
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Theorem 7 Let τ ∈ Λ be an SSD inefficient portfolio for the noncontaminated distri-

bution P . If there exists a portfolio λ ∈ Λ such that

CVaRqλ
s

(−%′λ)− CVaRqλ
s

(−%′τ ) < 0, s = 0, 1, ..., S (39)

rS+1λ ≥ min((Rτ )[1], rS+1τ ) (40)

then τ is directionally SSD inefficient with respect to rS+1.

Proof: Let j(τ ) be such index that (−R̃τ )[j(τ )] = −rS+1τ and similarly let j(λ) be

such that (−R̃λ)[j(λ)] = −rS+1τ . If j(λ) ≥ 2 then continuity of CVaR and assump-

tions (39) imply that there exists a sufficiently small t0 such that for all t ∈ [0, t0]

CVaRq̃λ
s (t)(−%̃(t)′λ)− CVaRq̃λ

s (t)(−%̃(t)′τ ) < 0, s = 0, 1, ..., S

CVaRq̃τ
s (t)(−%̃(t)′λ)− CVaRq̃τ

s (t)(−%̃(t)′τ ) < 0, s = 0, 1, ..., S

holds true. Hence, %̃(t)′λ �SSD %̃(t)′τ and therefore λ is a feasible solution of (34) for

all t ∈ [0, t0]. The directional SSD inefficiency with respect to rS+1 of τ follows.

If j(λ) = 1 then (40) implies that (R̃λ)[1] ≥ (R̃τ )[1] and the rest of the proof is similar

to the previous case. ut

Condition (40) is needed to guarantee that even in the contaminated case the smallest

return of portfolio λ is larger than or equal to that of portfolio τ what is a necessary

condition of SSD relation. For data in Example 5(b), none of the conditions (39)-(40)

is fulfilled.

4 Conclusions

The contamination technique was extended to construction of bounds for the optimal

value function of perturbed stochastic programs whose set of feasible solutions depends

on the probability distribution. In spite of the local character of these bounds their

usefulness was illustrated for analysis of resistance with respect to additional scenarios

in stochastic programs with risk constraints and in a new SSD portfolio efficiency

test. Unlike the former portfolio efficiency tests, neither this test nor its robust version

assume equiprobable scenarios.
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3. Dupačová, J. (1990). Stability and sensitivity analysis for stochastic programming. Ann.
Oper. Res. 27, 115–142.



20
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