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Abstract. We shall survey and classify various ways of approximation of the true
probability distribution by a discrete distribution concentrated in a finite number of atoms,
called scenarios, which occur with preassigned probabilities. Resistance of the numerical
results with respect to the choice of scenarios and/or of their probabilities and also the
relation between results obtained for the selected scenarios and those valid for the true
underlying distribution are of great practical interest. We shall discuss various approaches
to output analysis in the framework of an expectation type stochastic program, bearing
in mind the diverse origin of scenarios.
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1. Introduction

The outcome of decision problems depends on the choice of decisions and also on
various noncontrollable parameters. One setup of values of these parameters is called
scenario. Scenarios have been exploited in various problems, such as

• stochastic immunization and dedication [38];

• tracking models [13];

• scenario analysis used in pilot or feasibility studies;

• evaluation of dynamic investment strategies [53];

• stochastic programming including multiperiod and dynamic models, e.g. [5,
23, 67, 72].

In this paper we accept the probabilistic interpretation of uncertainty with sce-
narios mostly understood as realizations of random vectors or time series trajectories.
Even with this specification, the origin of scenarios can be very diverse; they can

∗This research was supported by the Czech Science Foundation under Grants P201/12/0083
and P402/11/0150.

55



come from a truly discrete known distribution, can be obtained in the course of a
discretization/approximation scheme, by simulation or by a limited sample informa-
tion, they can result from a preliminary analysis of the problem with probabilities
of their occurrence that may reflect an ad hoc belief or a subjective opinion of an
expert.

To present different scenario generation procedures along with properties of the
obtained output we shall focus on a class of stochastic optimization problems leaving
aside both more complicated types of stochastic programs and the above mentioned,
mostly descriptive applications which are based on evaluation of the outcomes along
individual scenarios. We shall assume that in the stochastic optimization problem

minimize F (x, P0) := Ef(x, ω) on a set X (1)

ω is a random parameter with support Ω ⊂ IRm, probability distribution P0 and the
corresponding expectation E = EP0 ,
X ⊂ IRn is a given nonempty closed set,
f : IRn × Ω→ IR is a given random lower semicontinuous function.
The dimensionalities m,n can be very large.

A typical, even though not quite realistic assumption is that the probability dis-
tribution P0 is known (decision making under risk) and independent of the decision
x. The existence of expectations in (1) for all feasible decisions x ∈ X is guaran-
teed by special assumptions from case to case. The optimal value of the objective
function in (1) will be denoted ϕ(P0).

The main stumbling block for algorithmic solution of problem (1) is the necessity
to compute repeatedly at least the values of the multidimensional integral of the
random objective function f(x, ω); for continuous distributions this is tractable for
low dimensional cases or for simple separable random objective functions f(x, •) and
for special types of probability distributions. For discrete probability distributions
carried by ω1, . . . , ωS with probabilities ps > 0, s = 1, . . . , S,

∑
s ps = 1 the objective

function is the sum F (x, P0) :=
∑S

s=1 psf(x, ωs) and its evaluation is relatively easy
provided that there is a modest number of scenarios.

To deal with problems of an algorithmic solution of (1) various approximation
schemes, both stochastic and deterministic ones, were designed; see for instance [7, 5,
44] and the references therein. The goal is to get a numerically tractable optimization
problem, or a sequence of such problems, whose solution would be acceptable as an
approximation of the solution of the true underlying problem (1).

For approximation of the true probability distribution P0, one should certainly
use the structure of the problem. Stability theorems guarantee closeness of optimal
solutions of the true problem (1) and of its approximation if the probability dis-
tance of the two considered probability distributions is small; cf. [64] and references
therein.

There are relatively many prospects if the approximation of P0 reduces to an
approximation of one-dimensional probability distributions: Besides of an approx-
imation by a discrete distribution, one can use piecewise uniform distributions [3],
or approximate the density by kernel estimates [35, 36], minimize the probability
distance [60], etc. If there are independent sources of uncertainties the number of
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scenarios needed to represent their mutual influence on the results is the product of
the number of scenarios used to represent the impact of each source separately.

In the truly multi-dimensional case, approximation by discrete distributions is
the prevailing approach. It means that the true distribution P0 is replaced by a dis-
crete distribution P̂ concentrated in a finite number of points, say, ω1, . . . , ωS with
probabilities ps > 0 ∀s,

∑S
s=1 ps = 1 that enter the coefficients and/or the func-

tions in a known way. The atoms ωs of the distribution P are called scenarios. For
the already fixed scenarios and probabilities the problem to solve is a deterministic
mathematical program

minimize F (x, P̂ ) :=
S∑
s=1

psf(x, ωs) on a set X . (2)

Suitable statistical methods such as principal components analysis help to reduce
the dimensionality of the random vector and, at the same time, to preserve the corre-
lation structure. Principal components are uncorrelated and their simulated values
together with estimated scores are used for generating scenarios, e.g. for generating
the future joint assets returns that enter the considered two-stage multiperiod model
designed for investment planning [54]. Instead of principal components and scores
one can use factors and factor loadings; this has been suggested e.g. in [8, 11, 43].
An alternative is to model the correlation structure of the data via copulas, cf. [48].

Naturally, one is interested in results for the true underlying problem. However,
one cannot rely on a complete knowledge of the underlying probability distribution.
Generation of scenarios and a validation of obtained results is then even more de-
manding. An important item is robustness of the obtained approximate optimal
solution and optimal value: The procedure should be robust in the sense that small
perturbations of the input, i.e., of the chosen scenarios and of their probabilities,
should impair the outcome only slightly so that the obtained results remain close
to the unperturbed ones and that somewhat larger perturbations do not cause a
catastrophe. The importance of robust procedures increases with the complexity of
the model and with its dimensionality.

The purpose of this paper is to survey and classify various approaches to scenario
generation (Section 2) and to give an idea about the methodological advances de-
veloped for stability and postoptimality studies for the scenario based approximate
problems (Section 3).

2. Scenarios and their generation

We have introduced scenarios as atoms of the discrete probability distribution P̂
that is used to approximate the underlying (true, reference) probability distribution
P0. However, the main goal of scenario generation procedures is to get a representa-
tive set of scenarios which supports sensible decisions and is acceptable for the user.
This is an ambitious task in which compromise is needed between the precision of the
approximation and the size of the approximate problem, and which often requires
a specific form of the input (e.g., a scenario tree for multistage problems). Hence,
scenario generation is problem specific; for example, in financial models there are ev-
ident differences when considering prediction, pricing or decision making. Moreover,
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the procedure should reflect both the problem structure and the available informa-
tion that comes from theory, historical data and experience: To generate scenarios
it is natural to use historical data (if any) in conjunction with an assumed back-
ground model, to apply suitable estimation, simulation and sampling procedures,
heuristics, and also to reflect the opinion of experts based on their knowledge or
sentiment, see e.g. [29, 50] or Chapter 2 of [77]. These are reasons why generation
of scenarios cannot be reduced solely to forecasting the future development of the
complex system under consideration.

Concerning the level of the available information, we can distinguish four types
of problems:

• The distribution P0 is fully specified.

If this assumption is true, one needs to generate a discrete distribution P̂ which
approximates P0. The scenarios, atoms of P̂ , can be obtained by sampling from
P0 or by application of a discretization or simulation scheme. Related to the
chosen approximation technique, there are various possibilities how to draw
conclusions about the optimal solution of the original problem.

In its pure form this situation appears mostly in the context of testing the
designed models and/or the performance of newly developed solvers; this was
the case of the first papers on stochastic programming, [3, 33], as well as of
applications surveyed in [49], and the assumed fully known distribution was
mostly uniform [3], discrete [33] or normal. For application purposes, however,
one should address also the modeling error due to misspecification of P0; it
composes then with errors due to the applied approximation method.

• P0 is known to belong to a specified parametric family.

The true probability distribution P0 belongs to P = {Pθ, θ ∈ Θ} and is iden-
tified by an unknown parameter value, say, θ0 ∈ Θ. The assumed parametric
form of the distribution Pθ should be preferably based on a theoretical model.
If this assumption is accepted, the problem of an incomplete knowledge of dis-
tribution is transferred into a problem of estimation of the parameter θ0 from
the available data. The choice of the parametric form of the probability dis-
tribution or of the stochastic process corresponds to the choice of the model,
the estimation of parameters to calibration of the model and a subsequent
simulation, sampling or discretization procedure follows similarly as before.
An example is sampling from the estimated model for loads and water quality
in [74] or for electricity demand and oil prices in [32].

The procedure is to estimate the parameter θ0, say by θ̂, to generate scenarios
using the estimated probability distribution Pθ̂ and to exploit the quantita-
tive stability results in the output analysis. The quality of the parametric
approach depends on the right choice of the parametric model and on the
applied estimation procedure: Besides of the modeling error, there is also an
estimation error by estimation of parameters and errors due to simulation from
the already estimated probability distribution Pθ̂.

This type of information appears frequently in stochastic programming prob-
lems in finance and water resources management and planning, partly due to
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the fact that the relevant stochastic models of interest rates, cf. [1], and assets
prices or those of water inflows came to the attention relatively early and have
been well developed and supported by historical data. At present, it seems to
be an increasing interest in building appropriate models for probability distri-
butions of demand in service network design or for energy problems [9, 32],
technological processes [26], etc.

Sometimes, the type of the parametric family of distributions may reflect the
fact that, for the sake of the numerical tractability, only a specific family of
probability distributions is taken into account. Frequently it is the multinor-
mal distribution which is inter alia consistent with common models of mul-
tidimensional time series of observed data. However, this assumption may
influence the results substantially; we refer to [75] which illustrates differences
in results obtained for Gaussian and stable non-Gaussian distributions.

• Only a sample information about P0 is available.

Such information is mostly based on observed past data, e.g. [35, 36, 68].
For large sets of available data that are homogeneous enough, independent,
identically distributed, the straightforward possibility is to use the empirical
distribution Pν based on a sample of size ν, the corresponding empirical objec-
tive function F (x, Pν), the set of empirical optimal solutions and the optimal
empirical value ϕ(Pν).

It is necessary to say that the available historical data are not always satisfac-
tory for various reasons; they need not be observed in regular time instances;
non-equilibrium markets or change-points are other examples. In such situa-
tion, an additional expert knowledge [50] and preprocessing can help to build
sensible scenarios. We refer to preprocessing procedures (e.g. in [28, 35] for
electricity demand or [41] for water inflows) or to adjustments to preserve
specific values of sample moments [8, 51, 56].

For small sample sizes it pays to exploit all available information to get an ap-
proximation which is a good substitute of the true problem. Several examples
how to use such “soft” information were delineated in [76].

• The above mentioned procedures fail if there are no reliable data. Under such
circumstances, scenarios and their probabilities are mostly based on experts
forecasts (see e.g. [6] for predictions of future economic development, [31] for
demand outlooks in production planning or in power generation planning, [26]
for optimization of a technological process, [73] for financial models). Based
on observed data or on sample moments, simple extremal scenarios can be
constructed; branching to “upper” and “lower” cases and the expected value
scenario are typical examples; see e.g. [29, 58] for an application and [13]
for a discussion. Even though it is impossible to draw conclusions about the
optimal solution of the true underlying problem, these scenarios are useful
for obtaining bounds for the optimal value and it pays to analyse robustness
and stability of the approximate solutions with respect to changes of these
scenarios and their probabilities or inclusion of additional scenarios.
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In majority of applications one can trace interactions of the four information
levels and to use all available information is the best thing to do.

Different information levels can apply to distinct parameters of the model sepa-
rately. In portfolio management, for instance, different classes of securities require
different treatment, cf. [8, 53], inflation should be taken into account [53], de-
posits and liabilities can be driven by external factors such as mortality data or
demographic situation [24] and also user intervention may play a substantial role.
Similarly, the inflow scenarios can be based on a model fitted to historical data
whereas scenarios of future water and electricity demand are roughly forecasted.

Also the structure of the problem influences essentially the possibilities of an
adequate scenario generation. The easy case is the simple recourse problem with
random right hand sides for which scenario generation reduces to a discretization of
one-dimensional marginal distributions of the random right-hand sides. The most
complicated problems are multistage stochastic programs with interstage dependent
coefficients. They have been solved mainly for scenario trees designed by experts or
constructed from individual scenario paths, cf. [21].

Monte Carlo simulation from the assumed probability distribution or directly
from the data often enters the last step of the scenario generation procedure. The
general strategy of scenario generation is concerned with the number of scenarios
to be employed because of the evident trade-off between the dimensionality of the
resulting problem and the information preserved. Importance sampling is used to
increase the precision and efficiency of the crude Monte Carlo techniques, e.g. [11, 12,
40, 52, 57]. Another suggestion is to adjust the sample so that the sample moments
are equal to the reference values, see e.g. [8, 39, 51]. Instead of using random
sampling, Quasi Monte Carlo methods exploit function evaluations in points selected
according to a specific non-random scheme. For a succinct discussion of differences
in Monte Carlo sampling versus Quasi Monte Carlo methods, and other numerical
techniques see [65] and Chapter 9 of [5].

Using simulation approaches one may generate very large sets of scenarios. The
question is how to select a smaller, representative set of scenarios for which the
optimization problem (2) will be manageable. There exist examples of successfully
applied heuristic ideas, see e.g. [4, 32]. Scenario reduction technique based on
quantitative stability results was initiated in [22]; see a brief summary in [65].

3. How to draw inference about the solution of the true
problem?

As we shall see, there are various general results and specific approaches ready for
the sought output analysis. Their application depends on the solved problem, is
nontrivial and evaluation of their efficiency requires extensive numerical tests and
experiments. It is necessary to take into account both the structure of the stochastic
optimization problem and the probabilistic specification and to reflect properties of
the input data. Generally speaking, the precision of the output cannot be higher
than that of the input and it is easier to get conclusions concerning the optimal
value than those for optimal decisions.
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Scenario generation approaches are frequently composed of the following steps:

• choice of an appropriate probabilistic model of random parameters;

• calibration of the model (estimation of parameters) from data;

• generation scenarios using the calibrated model by means of simulation, dis-
cretization, etc.;

• evaluation of model coefficients or function values for each of considered sce-
narios.

Each of these steps may introduce a specific error into the final results – a model-
ing, estimation and sampling or simulation error. To quantify them one may use
approaches of asymptotic or robust statistics and of parametric programming.

To simplify the exposition, we shall focus on stability of optimal values and we
shall assume in addition that in (1) X is convex, compact and F is a class of convex
functions f(•, ω) on X such that all expectations of f(x, ω) are finite.

3.1. Use of parametric programming

Stability results for (1) with respect to the probability distribution, cf. [64], imply
that under suitable assumptions, the optimal values and sets of optimal solutions of
the true problem (1) with probability distribution P0 and of its approximation with
probability distribution P̂ are close to each other if the distance of the two proba-
bility distributions is small enough. There are various distances or semi-distances
of probability distributions, see e.g. [62], and an adequate choice is related to the
structure of the stochastic program. For our problem (1) a natural possibility is

dF(P, P̂ ) = sup
f∈F
|
∫

Ω

f(ω)P (dω)−
∫

Ω

f(ω)P̂ (dω)|

with F a suitable class of measurable functions from Ω to IR and P, P̂ belonging
to a class P of probability distributions on Ω. Here, F should contain all random
objectives f(x, •) that may be considered.

Then we have

Theorem 1 (Theorem 1 in [22]). Under the assumptions of the model (1), when-
ever P, P̂ ∈ P then there exists ε > 0 such that for dF(P, P̂ ) < ε the optimal values

|ϕ(P )− ϕ(P̂ )| < dF(P, P̂ ).

More stringent assumptions concerning the structure of the problem (1) are needed
to get qualitative and quantitative stability results for optimal solutions; see Theo-
rems 5 and 9 of [64].

There are scenario generation methods based on the above quantitative stability
results, e.g. [60, 62]. The idea is to construct scenarios and probabilities so that the
distance of the discrete approximation P̂ from the true probability distribution P0

is as small as possible.
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Another question is how far is the optimal output from the true one if the true
probability measure P0 has been misspecified. A possibility is to use the contamina-
tion technique to study the influence of specific deviations from the assumed prob-
ability distribution P0: For an alternative fixed probability distribution P one uses
in (1) instead of P0 the contaminated probability distribution Pλ = (1− λ)P0 + λP
with 0 ≤ λ ≤ 1. The considered perturbation is thus represented only by a scalar
parameter λ which enters the objective function in a linear way. This opens var-
ious possibilities for exploitation of parametric programming results. The optimal
value function ϕ(Pλ) is concave for λ ∈ [0, 1] and global lower and upper bounds
for its value can be constructed. For the development of the theory see [15, 17], for
applications e.g. [20, 25].

3.2. Empirical approximations

To a certain extent stability results of the preceding section apply also to approxi-
mations of P0 by an empirical distribution Pν . However, there is one main difference,
namely, Pν are random probability distributions and then also distances d(P0, Pν)
are random and the results are valid almost surely. This can be formulated as
follows:

Consider a sample space (Z,Z, µ) of infinite sequences ζ, with an increasing
sequence of σ-fields (Zν)∞ν=1 contained in Z. For an increasing sample size the
sample path ζ ∈ Z leads to a sequence of Zν-measurable probability distributions
{Pν(•, ζ), ν = 1, 2, . . . } on (Ω,B) based on information collected up to ν.

The optimal value ϕ(Pν) and optimal solutions x∗(Pν) of the approximate stochas-
tic program

min
x∈X

F (x, Pν) := EPνf(x, ω) (3)

based on Pν(•, ζ) depend on the used sample path ζ and all presented results hold
true for almost all sample paths ζ, i.e., µ-a.s.

The empirical probability distributions are a special case with the sample path
ζ = {ω1, ω2, . . . } obtained by the simple random sampling from (Ω,B, P ), µ = P∞.

The asymptotic properties of empirical estimates, such as consistence, rates of
convergence and asymptotic distributions have been studied in a host of papers; see
e.g. [27, 61, 70] or Chapter 6 of [66] and in selected papers listed in [19]. For empirical
distributions and for continuous, bounded random objectives f(x, •) the pointwise
convergence of expected values F (x, Pν) → F (x, P0)∀x ∈ X follows directly from
the Law of Large Numbers. If X is compact and the convergence of expectations
F (x, Pν) is uniform on X then µ-a.s. convergence of optimal values ϕ(Pν)→ ϕ(P0)
follows. It implies convergence in probability, i.e. for all t > 0

µ{ζ : |ϕ(Pν)− ϕ(P0)| > t} → 0 for ν →∞.

General consistency results are based on the notion of epi-convergence of lower
semicontinuous (lsc.) functions, cf. [27]. The main step is to prove that the empirical
objective functions F (x, Pν) epi-converge to the true objective function F (x, P0),
which in turn implies convergence results for optimal values and for sets of optimal
solutions, see [63].
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Consistency results are of a limited use for the sought output analysis as they do
not provide any information about the rate of convergence of the empirical optimal
values to the true one. For empirical distributions, Central Limit Theorem implies
pointwise asymptotic normality of random objectives provided that the variance σ2

x

of f(x, ω) exists. It means that

√
ν

(
1

ν

ν∑
1=1

f(x, ωi)− Ef(x, ω)

)
→d N (0, σ2

x), (4)

that is 1
ν

∑ν
i=1 f(x, ωi) is asymptotically normal N (Ef(x, ω), σ

2
x

ν
). The accuracy of

the normal approximation can be estimated via the Berry-Esseén theorem provided
that there exist higher moments of f(x, ω). See [69] and an application in [14].

If the optimal solution of the true problem (1) is unique and the objective func-
tion is Lipschitz continuous, also asymptotic normality of the empirical optimal
values ϕ(Pν) can be proved; see e.g. Theorem 5.7 of [72]. Such type of results allows
to construct approximate confidence intervals for the true optimal value.

In the presence of constraints x ∈ X asymptotic normality of empirical optimal
solutions x∗(Pν) cannot be in general expected even when all solution sets X ∗(P )
and X ∗(Pν)∀ν are singletons. It is possible to prove that under reasonable assump-
tions, the asymptotic distribution of unique consistent empirical optimal solutions
x∗(Pν) is conically normal being projection of normal distribution on a convex cone.
Additional assumptions are needed to get asymptotic normality. It may hold true
when the true optimal solution x∗(P0) is an interior point of X or when the problem
reduces on a neighborhood of the true optimal solution x∗(P0) to one with affine
constraints. This occurs e.g. when X is a convex polyhedron with nondegenerated
vertices and the strict complementarity conditions are valid at the true solution; see
e.g. [16] and additional references in [47].

Another field of interest is a relaxation of the assumed independence of sam-
pled data connected with the assumed simple random sampling, see e.g. [47] and
references therein, and of the existence of second order moments or of the moment
generating function which would allow to get asymptotics also for the heavy tailed
distributions; see [47, 75].

3.3. Non-asymptotic results and small sample asymptotics

Asymptotic results support the idea that reliable approximate solutions can be ob-
tained via a tractable numerical procedure assuming that the probability distribution
is known and an arbitrarily large sample can be used. The required sample size,
however, is not indicated. Hence, non-asymptotic confidence bounds valid for any
sample size are of interest, namely in situations when the probability distribution
is not known and just a finite sample from this distribution is available. They can
be based on various probability inequalities. One can use inequalities for differences
of the true and empirical expectations (e.g., Hoeffding inequality applied already in
[46] or more general results by [59, 61] applied in [62]) or to rely on the quantitative
stability results combined with bounds on the distance d(P0, Pν) of the true and the
empirical probability distribution, see e.g. [37].
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For example, using the Chernoff bound, exponential rate of convergence of con-
sistent empirical objective functions F (x, Pν) to F (x, P0) holds true: For arbitrary
real numbers a, t,

P (F (x, Pν)− F (x, P0) ≥ a) ≤ e−ta[M(
t

ν
)]ν

provided that the moment generating function M(t) of deviations f(x, ω)−F (x, P0)
is bounded. Under additional assumptions, exponential convergence

P (F (x∗(Pν), P0)− ϕ(P0) ≥ ε) ≤ αe−βν (5)

can be proved and extended also to exponential convergence for deviations of the
empirical optimal values from the true optimum and deviations of unique minimizers,
cf. [10]. A general possibility is to apply the Large Deviations Theorems, cf. [45, 61,
70, 71]. However, when using the inequalities based on the large deviation theory one
accepts the assumption that the moment generating function exists. It means that
their straightforward application to heavy tailed distributions may be misleading.

The above results provide information about the quality of the already obtained
solution and may support construction of stopping rules or indicate the need for
larger sample sizes, cf. [70, 71].

Instead of increasing the sample size one can try to decrease the error in the
asymptotically normal approximation (4) using higher order expansions, e.g. Edge-
worth expansions or small sample asymptotics, cf. [34]. Quite precise results valid
also for very small sample sizes have been reported for approximations of expecta-
tions and for M -estimators. Optimal solutions of (1) are related with M-estimators,
hence, there is an open possibility of application of the small sample asymptotics
results within stability and output analysis of (1). However, it will be necessary
to deal with presence of constraints in (1) and with the large dimensionality of the
decision vector x, etc.

3.4. Parametric families

Assume now that the true probability distribution P0 is known to belong to a para-
metric family P = {Pθ} of probability distributions, indexed by a parameter vector
θ belonging to an open set Θ ⊂ IRp. It means that stability and sensitivity analysis
of (1) with respect to parameters can be treated via techniques of parametric pro-
gramming; this was done e.g. in the early paper [2]. In the context of stochastic
programming the true parameter values are often estimated from sample data, and
the estimates θν usually enjoy quite convenient statistical properties such as consis-
tency or asymptotic normality. If the optimal value function is continuous in θ on
a neighborhood of the true parameter value θ0 properties of transformed random
sequences, cf. [69], imply consistency of the estimated optimal value ϕ(θν). Asymp-
totic normality of ϕ(θν) follows by δ-theorem if ϕ is continuously differentiable at
the true parameter value θ0 with non-zero gradient. See [14] for details.

An example where an explicit manageable form of the optimal value function ϕ
can be obtained is maximization of expected utility function 1− exp{−a.ω>x} with
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a > 0 and normal N (θ,Σ) distribution of ω over a convex polyhedral set X . The
resulting minimization problem of the form (1) is the quadratic program

min
x∈X
−1

a
θ>x+

1

2
x>Σx (6)

with coefficients θ,Σ. If Σ is assumed known, the optimal value ϕ(θ) is continuous
in θ, hence for consistent θν consistency of optimal values of ϕ(θν) holds true.

Such explicit results are rare and the common procedure is to estimate θ0 as
θ̂ and to solve (1) with the objective function F (x, Pθ̂) by a usual discretization
technique. We refer to [66] for discussion of assumptions under which such approach
is legitimate. They include consistency of the estimate and also continuity properties
of the random objective function f(x, ω) and of densities g(ω, θ) of the distributions
Pθ, θ ∈ Θ. A natural question is how much the sampling error interferes with the
error due to estimation. The impact of the applied estimation procedure on the
results is discussed in [55].

An alternative is to apply an adaptive Bayesian approach which exploits a sample
information about the true probability distribution Pθ0 . It was suggested in [42] and
elaborated for a special type of problem (1).

3.5. Sample information about the true probability distribution

If the data is homogeneous enough it can be used directly for constructing an em-
pirical probability distribution Pν based on a sample of size ν, the corresponding
empirical objective function F (x, Pν), the set of empirical optimal solutions and the
optimal empirical value ϕ(Pν). For large sample sizes it is possible to think about
sampling from a finite population and to apply asymptotic results as in 3.4.

For small sample sizes one can analyse robustness of results with respect to
possible changes in scenarios, their probabilities or inclusion of additional scenarios
by the contamination method delineated in section 3.1. Inclusion of an additional
scenario ω∗ corresponds to degenerated distribution P concentrated in ω∗, parameter
λ ∈ (0, 1) reflects the importance of the additional scenario; see [20, 25].

4. Hints for extensions

Scenario generation is a crucial task for applications of stochastic decision models
and we listed only selected papers dealing with scenario generation procedures; see
[18] for additional references. Papers dealing with approximation of the expectation
in (1) by means of various bounding schemes were not included; consult e.g. Chapter
8 of [5] and references therein.

The output analysis that should follow applications of scenario based models is
rather involved. It cannot be reduced only to ad hoc numerical experiments and
backtesting for a specific application. The general ideas were explained here for
static expectation type stochastic programs with the set X of feasible decisions in-
dependent of the assumed probability distribution. Possible extension of the results
to multistage problems, to sets of feasible decisions depending on the probability
distribution and to risk objectives is at present an active area of research. Another
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field of interest concerns the probabilistic assumptions where the focus is on re-
laxation of the independence assumption, on developing output analysis techniques
valid for heavy tailed distributions and also on attempts to get non-asymptotic out-
put analysis results valid for small samples. The interplay of the theoretical results
and requirements of real-life applications is evident and plays an important role.
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[46] Kaňková, V.: An approximate solution of a stochastic optimization problem. In:
Trans. 8th Prague Conf., Academia, Prague, 1978, pp. 349–353.

[47] Kaňková, V.: Empirical estimates in optimization problems via heavy tails and de-
pendent samples, Bull. Czech Econometric Soc. 19 (2012), 92–111.

68



[48] Kaut, M. and Wallace, S. W.: Shape-based scenario generation using copulas, CMS
8 (2011), 181–199.

[49] King, A. J.: Stochastic programming problems: Examples from the literature. In [30],
pp. 543–565.

[50] Koskosides, Y. A. and Duarte, A. M.: A scenario-based approach to active asset
allocation, J. of Portfolio Management, Winter 1997, 74–85.

[51] Kouwenberg, R.: Scenario generation and stochastic programming models for asset
liability management, EJOR 134 (2001), 279–292.

[52] Kozmı́k, V. and Morton, D.: Evaluating policies in risk-averse multi-stage stochastic
programming, Math. Progr. submitted 2013.

[53] Mulvey, J. M.: Generating scenarios for the Towers Perrin investment system, Inter-
faces 26.2 (1996), 1–15.

[54] Mulvey, J. M. and Vladimirou, H.: Stochastic network optimization models for in-
vestment planning, Annals of Oper. Res. 20 (1989), 187–217.

[55] Mulvey, J. M., Rosenbaum, D. P., and Shetty, B.: Parameter estimation in stochastic
scenario generation systems, EJOR 118 (1999), 563–577.

[56] Mulvey, J. M. and Zenios, S. A.: Capturing the correlations of fixed-income instru-
ments, Manag. Sci. 40 (1994), 1329–1342.

[57] Nielsen, S. S.: Importance sampling in lattice pricing models. Chapter 12 in: In-
terfaces in Computer Science and Operations Research: Advances in Metaheuristics,
Optimization and Stochastic Modeling Technologies (R. S. Barr, R. V. Helgason, and
J. Kennington, eds.), Kluwer, Dordrecht, 1997.

[58] Pereira, M. V. F. and Pinto, L. M. V. G.: Multi-stage stochastic optimization applied
to energy planning, Math. Progr. 52 (1991), 359–375.

[59] Pflug, G. Ch.: Stochastic programs and statistical data, Annals of Oper. Res. 85
(1999), 59–78.

[60] Pflug, G. Ch.: Scenario tree generation for multiperiod financial optimization by
optimal discretization, Math. Progr. 89 (2001), 251–271.

[61] Pflug, G. Ch.: Stochastic optimization and statistical inference. Chapter 7 in [67],
pp. 427–482.

[62] Pflug, G. Ch. and Pichler, A.: Approximations for probability distributions and
stochastic optimization problems. In: Stochastic Optimization Methods in Finance
and Energy (M. Bertocchi, G. Consigli, and M. A. H. Dempster, eds.), Springer, New
York, 2011, pp. 343-387.

[63] Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer, New York,
1997.

[64] Römisch, W.: Stability of stochastic programming problems. Chapter 8 in [67], pp.
483–554.

69



[65] Römisch, W.: Scenario generation in stochastic programming. In: Wiley Encyclo-
pedia on Operations Research and Management Science (J. J. Cochran, ed.), Wiley,
Hoboken, 2010.

[66] Rubinstein, R. Y. and Shapiro, A.: Discrete Event Systems. Sensitivity Analysis and
Stochastic Optimization by the Score Function Method, Wiley, Chichester, 1993.
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