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Abstract. For various reasons, the underlying probability measure in stochastic pro-
gramming models must be frequently substituted by a suitable approximation. This in
turn requires to investigate stability of solutions of these models with respect to the prob-
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1. Introduction

The basic model of stochastic programming

min
x∈X (P )

EPf(x, ω) (1)

is identified by

• a known probability distribution P of random parameter ω whose support Ω
is a closed subset of Rs;

• a given, nonempty, closed set X (P ) ⊂ Rn of decisions x;
In this paper we shall assume that X does not depend on P and at the same
time, P does not depend on x; hence, we can replace X (P ) by X .

• a preselected random objective f : X (P )×Ω → R (or R̄ := R∪ {+∞}) inter-
preted as a loss caused by decision x when scenario ω occurs. We assume that
as a function of ω, f is measurable and its expectation F (x, P ) = EPf(x, ω)
exists ∀x ∈ X . The form of f may be quite complicated (e.g. for multistage
problems). For convex X , a frequent assumption is that f is lower semicon-
tinuous and convex with respect to x, i.e., f is a convex normal integrand.
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We denote X ∗(P ) ⊂ X , with x∗(P ) a generic element, the set of optimal solutions
and ϕ(P ) the optimal value of the objective function in (1).

To apply a stochastic programming model it is necessary first to to get f, P,X (P ),
etc., having in mind that the goal is to support decisions, and to analyze the model
properties (e.g. existence of expectation, convexity). Contrary to statistical prob-
lems where f is a tool for estimating the true parameter value, in stochastic program-
ming the random objective function f(x, ω) reflects goals of the decision problem and
all minimizers of (1) are equally acceptable for decision making. Their uniqueness
is not required.

For the sake of numerical tractability, various approximation schemes are used to
solve the stochastic programs. For instance, one may approximate P by a discrete
probability distribution, say P ν , based on a sample from P or on historical data, by
a probability distribution belonging to a given parametric family with an estimated
parameter, approximation may reflect an additional information, etc. The choice
depends on the type of the stochastic program to be solved, on the available infor-
mation and data. Without additional analysis, however, it will be dangerous to use
the obtained output (the optimal value and the optimal solutions of the approxi-
mate stochastic program) to replace the sought solution of the “true” problem. We
refer to [8, 11, 25, 28, 33] for an overview of suitable output analysis methods that
treat partly also robustness of the optimal value and optimal solutions in case that
the true probability distribution P is not fully known. In such situations, it is not
enough to rely on asymptotic results.

In this paper we shall mostly focus on properties of optimal solutions of expec-
tation type stochastic programs when an empirical probability distribution, say P ν ,
based on a sample ω1, . . . , ων is used to approximate the true probability distribu-
tion P. Then the expectation of the objective function f(x, ω) in (1) is replaced by
the sample average, the Sample Average Approximation (SAA) problem

min
x∈X

F (x, P ν) = min
x∈X

1

ν

ν∑
j=1

f(x, ωj) (2)

is solved, and the corresponding optimal solutions x∗(P ν) are used at the place of
the true optimal solution x∗(P ).

The first task is to study the behavior of the optimal values ϕ(P ν) and optimal
solutions x∗(P ν) of (2) when {P ν , ν = 1, . . . } is a sequence of probability distri-
butions converging to P. There is a vast statistical literature dealing with similar
problems which arise in the context of maximum likelihood estimation, cf. [38], and
were extended to M-estimation, e.g. [14]. Consistency results were obtained for un-
constrained problems with some generalizations to problems with smooth equality
constraints, cf. [1]. In stochastic programming, however, the set X is defined by
inequalities. The first step to consistency results for stochastic programming can be
found e.g. in [16] and an exponential rate of convergence was proved in [17], see sec-
tion 2.1. In section 2.2 we shall present consistency results based on epi-convergence
as developed in [12] in their relation to other consistency results.

The next step, asymptotic analysis of the empirical optimal value and optimal
solutions x∗(P ν), will be discussed in section 3. As we shall see, asymptotic normality
of empirical optimal solutions cannot be expected in general; see e.g. [10, 12, 32, 34].
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In section 4 we shall briefly indicate parallel results for the parametric case, i.e.
when the approximate solutions are obtained by solving the stochastic program for
probability distribution with estimated parameters; cf. [7, 36]. We conclude by brief
remarks on non-asymptotic results for empirical stochastic programs.

2. Consistency of empirical solutions

Consider a sample space (Z,F , µ) with an increasing sequence of σ-fields (Fν)∞ν=1

contained in F . For an increasing sample size the sample path ζ leads to a sequence
of Fν-measurable probability distributions {P ν(•, ζ), ν = 1, 2, . . . } on (Ω,B) based
on information collected up to ν.
The optimal value ϕ(P ν) and optimal solutions x∗(P ν) of the approximate stochastic
program

min
x∈X

F (x, P ν) := EP νf(x, ω) (3)

based on P ν(•, ζ) depend on the used sample path ζ and all presented results hold
true for almost all sample paths ζ, i.e., µ-a.s.

The empirical probability distributions are a special case with the sample path
ζ = {ω1, ω2, . . . } obtained by the simple random sampling from (Ω,B, P ), µ = P∞,
and the empirical stochastic program is the Sample Average Approximation problem
(2).

2.1. Classical consistency results

(i) If P ν → P weakly and f(x, •) is a continuous bounded function of ω for all
x ∈ X , the pointwise convergence of expected value objectives F (x, P ν) →
F (x, P )∀x ∈ X follows directly from the definition of weak convergence.

(ii) If X is compact and the convergence of expectations in (i) is uniform on X
then µ-a.s. convergence of optimal values ϕ(P ν) → ϕ(P ) follows. It implies
convergence in probability, i.e. for all t > 0

µ{ζ : |ϕ(P ν)− ϕ(P )| > t} → 0 for ν → ∞.

(iii) A stronger result

µ{ζ : νβ|ϕ(P ν)− ϕ(P )| > t} → 0 for ν → ∞

suggests a rate of convergence of the empirical optimal value. The exponent
β depends, inter alia, on existence of finite moments of the random objective
function; consult [19] and references therein. Existence of a finite moment
generating function is sufficient to guarantee an exponential convergence rate.

(iv) If in addition to (i), (ii), X is convex and f(•, ω) is strictly convex on X then
the (unique) optimal solutions x∗(P ν) of (3) converge µ-a.s. to the unique
optimal solution x∗(P ) of the original problem

min
x∈X

F (x, P ) := EPf(x, ω). (4)
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This approach was used for instance in early papers of Kaňková [16, 17].
Notice that merely the pointwise convergence of the empirical expectations does

not imply consistency of optimal values. Convexity of f(x, •) helps; (e.g. [13, 24,
33]); in this case, consistency of empirical optimal values follows from the pointwise
Law of Large Numbers (LLN) and boundedness assumptions (e.g. [13, 24, 33]).

2.2. General consistency results

A general consistency result based on the notion of epi-convergence of lower semi-
continuous (lsc.) functions was proved in [12]. The main step is to prove that the
approximate objective functions F (x, P ν) epi-converge to the true objective function
in (4), which in turn implies convergence results for optimal values and for sets of
optimal solutions [27].

Definition 1 (Epi-convergence). A sequence of functions {uν : Rn → R̄, ν =
1, . . . } is said to epi-converge to u : Rn → R̄ if for all x ∈ Rn the two following
properties hold true:

lim inf
ν→∞

uν(xν) ≥ u(x) for all sequences xν → x (5)

and for some sequence of x̃ν converging to x

lim sup
ν→∞

uν(x̃ν) ≤ u(x). (6)

Pointwise convergence implies condition (6), additional assumptions are needed to
get validity of condition (5). For example, pointwise convergence of lsc. convex
functions u, uν with int dom(u) 6= ∅ implies epi-convergence. See e.g. Corollary 4 of
[41].

Epi-convergence implies that any cluster point x̂ of any sequence {xν , ν = 1, . . . }
with xν ∈ argminuν belongs to argminu and convergence of optimal values follows;
consult [27].

To formulate the consistency result, we shall assume

a. X ⊂ Rn is a nonempty closed set independent of P,

b. f(x, ω) is a random lower semicontinuous function, i.e. f is jointly measurable
and f(•, ω) is lower semicontinuous for all ω ∈ Ω,

c. P ν → P weakly.

To get epi-convergence of expectations F (x, P ν) → F (x, P ), additional assumptions
on convergence of P ν → P and on properties of f are needed. These assumptions
mimic to a certain extent those of the classical consistency result:

d. continuity of f(x, •) on Ω for all x ∈ X ;

e. uniform integrability (asymptotic neglibility, tightness) of probability distribu-
tions P, P ν with respect to functions f(x, •) ∀x ∈ X ; this replaces assumption
of bounded integrands f(x, •)∀x.
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f. local (lower) Lipschitz property of f(•, ω) for all ω ∈ Ω;
in case of f(•, ω) convex for all ω ∈ Ω, this assumption is not needed.

Proposition 2 (cf. Theorems 3.7, 3.8 of [12]). Under assumptions a–f, F (x, P ν)
are µ-a.s. proper random lsc. functions and F (x, P ) is µ-a.s. both epi-limit and
pointwise limit of F (x, P ν) for ν → ∞.

Epi-convergence of objective functions, cf. [27], implies the consistency result:

Proposition 3 (cf. Theorem 3.9 of [12]). Under assumptions a–f we have that
µ-a.s.

lim sup
ν→∞

ϕ(P ν) ≤ ϕ(P ),

X ∗(P ν) is a closed-valued Fν-measurable multifunction and any cluster point x̂ of
any sequence {x∗(P ν), ν = 1, 2, . . . } of optimal solutions x∗(P ν) ∈ X ∗(P ν) belongs
to X ∗(P ).

In particular, if there is a compact set D ⊂ Rn such that µ-a.s., X ∗(P ν)∩D 6= ∅
for ν = 1, 2, . . . , and {x∗(P )} = X ∗(P )∩D, then there exists a measurable selection
x∗(P ν) of X ∗(P ν) such that x∗(P ) = limν→∞ x∗(P ν) for µ-almost all ζ and also
ϕ(P ) = limν→∞ ϕ(P ν)µ-a.s.

The problem is much simpler if the underlying probability distribution P is
discrete.

Application 1. Consistency result for a convex polyhedral stochastic
program with a discrete true distribution.
Let ω1, . . . , ωN be the atoms of P and πj, j = 1, . . . , N, their probabilities, let X
be a nonempty bounded convex polyhedron, f(x, ω) a continuous function of ω on
conv{ω1, . . . , ωN} and a piece-wise linear convex function of x on X , i.e. the type
of the random objective function which is common for two-stage stochastic linear
programs.

This implies that F (x, P ) :=
∑N

j=1 πjf(x, ω
j) is also a piece-wise linear convex

function, hence, there exists a finite number of bounded nonoverlapping convex
polyhedra X k, k = 1, . . . , K, such that X = ∪K

k=1X k and F (x, P ) is linear on each
of X k. Then the set of optimal solutions X ∗(P ) evidently intersects the set X (P )
of all extremal points of X k, k = 1, . . . , K.

Assume that the true probability distribution P is estimated by empirical dis-
tributions P ν based on finite samples of sizes ν from P , carried by subsets of
{ω1, . . . , ωN}. The empirical objective functions F (x, P ν) are also convex, piece-
wise linear and the sets of the related extremal points X (P ν) intersect X (P ). This
means that the assumptions of Proposition 2 are fulfilled with the compact set
D = X (P ). Consequently, with probability one, any cluster point of any sequence
of points xν ∈ X ∗(P ν) ∩ X (P ) is an optimal solution of the true problem.

Assume in addition that there is a unique optimal solution x∗(P ) of the true
problem

min
x∈X

N∑
j=1

πjf(x, ω
j).

In this case there is a measurable selection x∗(P ν) from X ∗(P ν) ∩ X (P ) such that
with probability 1, limν→∞ x∗(P ν) = x∗(P ). Due to the special form of the objective
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functions and of the sets X ∗(P ν) ∩ X (P ), this is equivalent to

x∗(P ν) ≡ x∗(P )µ-a.s. for ν large enough. (7)

It means that for ν large enough the empirical problem provides µ-a.s. the exact
optimal solution of the true problem. The sample size ν needed to get the above
result depends on the data path ζ and on the structure of the problem and it can
be estimated, see [33, 35]. For example, in our Application 1 with a unique true
optimal solution, there is an exponential rate of convergence for (7).

Comments 1.
• For convex functions f(•, ω), convex X and for empirical probability distributions
P ν , epi-convergence of F (x, P ν) to F (x, P ) follows from the strong law of large num-
bers for sums of random closed sets and the consistency result can be extended from
Rs to reflexive Banach spaces, cf. [22].
• The general consistency result holds true not only for the empirical probability
distributions based on i.i.d. sequences of observations. Hence, it can be a starting
point for proving consistency under various weaker assumptions about approximate
probability distributions P ν . For the sake of robustness it is important, inter alia,
to relax the independence assumptions and to get results for slightly dependent ωj’s.
An idea can be to replace the independence assumption by mixing conditions. This
was done in [18] along with the rate of convergence.
• For extensions to problems with expectation type constraints see e.g. [25, 33], for
consistency of complete local minimizing sets consult [26].
• An important generalization is to discontinuous integrands f(x, •). In such cases,
uniform integrability is not sufficient for semicontinuity of integrals F (x, P ν). A suit-
able additional condition is that the probability of the set of discontinuity points of
f(x, •) for the true problem is zero; cf. [3]. See [30] for an application to approxi-
mated integer stochastic programs or probabilistic programs.
• An alternative approach to consistency proofs is via uniform convergence of ex-
pectations, cf. [34]. Its disadvantage is that it leads to difficulties when extending
consistency results to problems whose constraints depend on probability distribu-
tions.

3. Asymptotic distribution

Under assumption that consistency holds true one may try to derive an asymptotic
distribution. See [40] for the first attempts in this direction.

3.1. Asymptotic normality of empirical optimal values

For empirical stochastic program (2), asymptotic normality of the objective function
1
ν

∑ν
j=1 f(x, ω

j) at each point x ∈ X is a consequence of the Central Limit Theorem
(CLT) if the variance of f(x, ω) is finite. Also asymptotic normality of the optimal
value ϕ(P ν) can be proved under relatively weak assumptions, such as compact
X 6= ∅, unique true optimal solution x∗(P ) and f(•, ω) Lipschitz continuous ∀ω,
with finite expectation E{f(x̂, ω)}2 at a point x̂ ∈ X ; see e.g. [32, 33, 34]. This
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result allows us to construct approximate confidence intervals for the true optimal
value.

For inference based on these approximate confidence intervals one should realize
that the empirical optimal value ϕ(P ν) has a one-directional bias in the sense that

Eµϕ(P
ν) ≤ ϕ(P ).

(Empirical point estimate of Eµϕ(P
ν) follows from the LLN. ) Asymptotic confidence

interval for this lower bound for the true optimal value ϕ(P ) can be obtained from
CLT. An upper bound for the true optimal value ϕ(P ) is the expected value of the
objective function evaluated at an arbitrary point x̂ ∈ X . Again, its point estimate
follows from LLN and an asymptotic confidence interval from CLT. This idea was
elaborated in [23] and applied e.g. to a bond portfolio management problem [4]. The
resulting bounds are important for designing stopping rules and for testing quality
of a “candidate” solution.

3.2. Asymptotic distribution of empirical optimal solutions

Asymptotic normality of constrained maximum likelihood estimators was proved in
[1] using the classical Lagrangian approach for problems with explicit equality con-
straints. It turns out, however, that in the presence of general constraints asymptotic
normality of empirical optimal solutions x∗(P ν) cannot be expected even when all so-
lution sets X ∗(P ) and X ∗(P ν)∀ν are singletons. This was observed already in [5]
and detailed also in [13].

It is possible to prove that under reasonable assumptions, the asymptotic distri-
bution of unique consistent empirical optimal solutions x∗(P ν) is conically normal
being projection of normal distribution on a convex cone. Additional assumptions
are needed to get asymptotic normality. It may hold true when the true optimal
solution x∗(P ) is an interior point of X or when the problem reduces on a neighbor-
hood of the true optimal solution x∗(P ) to one with affine constraints. This occurs
e.g. when X is a convex polyhedron with nondegenerated vertices and the strict
complementarity conditions are valid at the true solution. A less evident sufficient
condition for asymptotic normality was derived in [12], Theorem 4.1. It turns out,
however, that it is again connected with the strict complementarity conditions [10].

The general tool for derivation of asymptotic distribution is the generalized δ-
theorem, cf. [32], Theorem 2.1, or [20, 25]. It requires certain differentiability
property of optimal solution map x∗ at P , and a suitable version of CLT for (gen-
eralized) gradients of the empirical objective function. Under various assumptions,
the empirical optimal solutions converge in distribution to the optimal solution of
a randomly perturbed convex quadratic program. The most general results con-
cerning these conically normal asymptotic distributions are contained e.g. in papers
[20, 21].

Comments 2.
• CLT for ∇xF (x, P ν) is obtained e.g. for f(•, ω) convex C1,1-functions for all ω,
with square integrable Lipschitz constants, with a finite nonsingular variance matrix
V = var[∇xf(x

∗(P ), ω)], a finite expectation E‖∇xf(x
∗(P ), ω)‖2 and for empirical

probability distributions P ν .
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• Differentiability assumptions concerning f(x, ω) or F (x, P ) restrict applicability
of the above results. To an extent, they can be relaxed; see for instance [21] for
stochastic program with a linear-quadratic convex recourse.
• Using Lagrangians the asymptotic results can be extended to (1) with the set
X (P ) of feasible solution described by smooth or convex inequalities, see e.g. [12,
25, 32, 33].
• Conically normal asymptotic distribution of optimal solutions of approximate
problems can be also obtained for certain types of empirical distributions based
on slightly dependent observations, cf. [39].
• For nonnormal asymptotic distributions and for rates of convergence different from
(
√
ν)−1 see e.g. [25]. The key property is again validity of a version of CLT for (gen-

eralized) gradients of approximate objective functions.
• If there are multiple optimal solutions asymptotic results concerning convergence
of sets of optimal solutions can be treated via asymptotic results for suitably chosen
distances of these sets; see e.g. [29].

4. Asymptotic results for a parametric family

Assume now that the true probability distribution P is known to belong to a para-
metric family P = {Pθ} of probability distributions indexed by a parameter vector
θ belonging to an open set Θ ⊂ Rq. The objective function now depends on θ,
F (x, Pθ) := F (x, θ), and (1) is a standard parametric program minx∈X F (x, θ). As-
sume that the optimal value ϕ(θ) exists for all θ ∈ Θ and is a continuous function of θ
on a neighborhood of the true parameter value, say, θ0. Having a statistical estimate
θν of θ0 and knowing its asymptotic properties we can obtain parallel asymptotic
properties of the optimal value ϕ(θν), cf. [31]:

Proposition 4.Whenever θν → θ0 with probability 1 or in probability, then ϕ(θν) →
ϕ(θ0) with probability 1 or in probability, respectively.

This assertion can be complemented by the rates of convergence and an asymp-
totic distribution can be based on the δ-theorem:

Proposition 5. Let θν be an asymptotically normal estimate of θ0, i.e.,
√
ν(θν −

θ0) ∼ N(0,Σ), and ϕ be continuously differentiable at θ0 with ∇ϕ(θ0) 6= 0. Then
ϕ(θν) is asymptotically normal,

√
ν(ϕ(θν)− ϕ(θ0)) ∼ N(0,∇ϕ(θ0)

>Σ∇ϕ(θ0)). (8)

Similar assertions can be proved for optimal solutions provided that these solu-
tions are unique, continuous, differentiable on a neighborhood of θ0. However, even
for unique optimal solutions special assumptions related to the “true” stochastic
program are needed. They are not always realistic and their verification is not
straightforward. See [7, 9] for asymptotic results based on parametric programming
stability, such as:

Proposition 6. Let X be a closed convex polyhedral set with intX 6= ∅ and x∗(θ0) be
the unique optimal solution of minx∈X F (x, θ0). Let ∇xf(x, θ),∇xxf(x, θ), ∇xθf(x, θ)
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exist and be jointly continuous on a neighborhood of [x∗(θ0), θ0] with ∇xxf(x
∗(θ0), θ0)

positive definite. Let θν be an asymptotically normal estimate of θ0.
Then

√
ν(x∗(θν)− x∗(θ0)) converges in distribution to a mixture of normal distribu-

tions conditioned by convex polyhedral sets (the stability sets of the related quadratic
program).

Comments 3.
• The accuracy of the normal approximation can be estimated via the Berry-Esseén
theorem provided that there exist higher moments of ω. See [7] for an example which
was applied in [2].
• An asymptotic expansion of the density of

√
ν(x∗(θν)−x∗(θ0)) was derived in [36].

• The quality of the parametric approach depends on the right choice of the para-
metric model. If the model is accepted and P0 is known to belong to the specified
parametric family of probability distributions, this information can be exploited
when choosing a suitable sample based approximation of P0.

5. Non-asymptotic results

The asymptotic results help to get reliable solutions via a numerical procedure as-
suming that the probability distribution is known and an arbitrarily large sample can
be used. In situations where the probability distribution is not known, but there is
at disposal a finite sample from this distribution, non-asymptotic confidence bounds
valid for any sample size are of interest. They can be based on various probability
inequalities. For example, using the Chernoff bound (see e.g. [31]), exponential rate
of convergence of consistent empirical objective functions F (x, P ν) to F (x, P ) holds
true: For arbitrary real numbers a, t,

P (F (x, P ν)− F (x, P ) ≥ a) ≤ e−ta[M(t/ν)]ν

provided that the moment generating function M(t) of deviations f(x, ω)−F (x, P )
is bounded. Under additional assumptions, exponential convergence

P (F (x∗(P ν), P )− ϕ(P ) ≥ ε) ≤ αe−βν (9)

can be proved and extended also to exponential convergence for deviations of the
empirical optimal values from the true optimum and deviations of unique minimiz-
ers, cf. [6]. This idea appears already in the paper [17] who used the Hoeffding
inequality to prove an exponential rate for empirical optimal values under bound-
edness assumption. A general possibility is to apply the Large Deviations Theory,
cf. [15, 25, 33].

The above results provide information about the quality of the already obtained
solution and may support construction of stopping rules or indicate the need for
larger sample sizes. To apply them, it is necessary to estimate parameters, such as
α, β in (9); an approach is delineated in [15].

Comments 4.
• The results were achieved mostly for i.i.d. observations. For robustness reasons
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one is again interested in “slightly” dependent variables. Generalizations under var-
ious mixing assumptions are indicated e.g. in [18], see also [6].
• The rates of convergence can be obtained also for sets of empirical optimal solu-
tions, e.g. [15, 29].
• For small sample sizes it pays to exploit all available information to provide an ap-
proximation which is a good substitute of the true problem. Several possibilities of
exploitation of such “soft” information were delineated already in [42]. For example,
information about the growth condition for the true objective function and about
the tail behavior of the true probability distribution is essential for construction of
universal confidence sets for optimal solutions which are applicable for any sample
size; cf. [37].
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[4] Bertocchi, M., Dupačová, J., and Moriggia, V.: Sensitivity of bond portfolio’s behav-
ior with respect to random movements in yield curve: A simulation study, Annals of
Oper. Res. 99 (2000), 267–286.

[5] Chernoff, H.: On the distribution of the likelihood ratio, Ann. Math. Statist. 25
(1954), 573–578.

[6] Dai, L., Chen, C. H., and Birge, J.L.: Convergence properties of two-stage stochastic
programming, J. Optim. Theory. Appl. 106 (2000), 489–509.
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[18] Kaňková, V.: A note on estimates in stochastic programming, JCAM 56 (1994),
97–112.
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