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INTRODUGTION

The main feature of the investment and financial problems is the necessity
to make decisions under uncertainty and over more than one time period.
The uncertainties concern the future level of interest rates, yields of stock,
exchange rates, prepayments, external cash flows, inflation, future demand,
and liabilities, for example. There exist financial theories and various
stochastic models describing or explaining these factors and they represent
an important part of procedures used to generate the input for decision
models.

To build a decision model, one has to decide first about the purpose
or goal; this includes identification of the uncertainties or risks one wants
to hedge, of the hard and soft constraints, of the time horizon and its
discretization, and so on. The next step is the formulation of the model
and generation of the data input. An algorithmic solution concludes the
first part of the procedure. The subsequent interpretation and evaluation of
results may lead to model changes and, consequently, to a new solution, or
it may require a what-if analysis to get information about robustness of the
results.
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In this paper, we shall focus on static, one-period models. Accordingly,
let us consider a common portfolio optimization problem: There are I pre-
selected investment possibilities that result from a preliminary security and
portfolio analysis. The composition of portfolio is given by the vector of
weights x € Rl with components x;,i = 1,..., Y x; = 1, and it should satisfy
several constraints, e.g. x; > 0 Vi — —no short sales are allowed, or various
bounds given by legal or institutional investment policy restrictions, bounds
on the total number of assets in the portfolio, and so on. These constraints
determine the set X of hard constraints, and they must be satisfied. The out-
come of a decision x € X is uncertain. We suppose that it depends on a
random factor, say @ € Q; the common assumption is that the probability
distribution P of w is fully specified. Given a realization of @ the outcome of
the investment decision x is the return h(x, w) or the loss f(x, ®) related with
the decision x. However, the realization w is hardly known at the moment of
decision making, hence the goal function should reflect the random factor @
as a whole. The traditional approach is to use the expectations Eph(x, w) or
Epf(x,w). The problem to solve would be then

max Eph(x, w) or min Epf(x, w). (5.1)

Maximization of expected gains or minimization of expected losses
means to get decisions that are optimal in average, possible risks are not
reflected. Yet this need not be an acceptable goal. The present tendency is to
spell out explicitly the concern for hedging against risks connected with the
chosen (not necessarily optimal) decision x € X. However, the concept of
risk is hard to define. In practice, risk is frequently connected with the fact
that the (random) outcome of a decision is not known precisely, that it may
deviate from the expectation, and so on. Intuitively, the “outcome” may be
the ex-post observed value of the random objective h(X, ) or f(X, ) for the
chosen decision x; hence, a decision-dependent one-dimensional random
variable. There are various types of risk, their definitions depend on the
context, on decision maker’s attitude, and they may possess many different
attributes. Anyway, to reflect risk in portfolio optimization models, it is
necessary to quantify it.

Risk and Deviation Functions

An explicit quantification of risk appears in finance since 1952 in the works
of Markowitz (1952), Roy (1952), and others. Since the mid-nineties of the
last century, various functions that describe risk, briefly risk functions or
deviation functions have been introduced and their properties studied—see,
for example, Pflug and Romisch (2007), Rockafellar and Uryasev (2002),
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and Rockafellar, Uryasev, and Zabarankin (2006). Incorporating them into
the portfolio optimization model makes the model more adequate but also
much harder to solve. Moreover, inclusion of risk functions means to design
suitable stress tests, to compare alternative choices of risk functions and of
probability distributions by multimodeling, to develop stability and robust-
ness analysis, and so on. Applicability of the existing output analysis tech-
niques (e.g., Dupacova (1999, 2009), Dupacova, Hurt, and Stépan (2002)),
depends on the structure of the model, on the assumptions concerning the
probability distribution, on the available data, and on hardware and soft-
ware facilities.

Both in theoretical considerations and in applications, reasonable prop-
erties of risk functions are requested. Similarly, as the risk-neutral expected
value criterion, risk functions R should not depend on realization of @ but
they depend on decisions and on probability distribution P; the value of a
risk function will be denoted R(x, P). Coherence of R (monotonicity, trans-
lation invariance, positive homogeneity, and subadditivity, Artzner et al.
(1999)) is mostly expected. Risk functions value at risk (VaR), which is not
coherent in general, and the coherent conditional value at risk (CVaR) are
special cases of R. Monotonicity with respect to the pointwise partial order-
ing and subadditivity are evident requirements. Subadditivity, together with
positive homogeneity, imply convexity of the risk function. Hence, dual-
ity theory can be used to prove that coherent risk functions R arise as the
worst-case expectations for a family of probability measures G on Q; for a
finite set Q the details can be found in Artzner et al. (1999) and the represen-
tation can be extended to a broader class of convex risk functions. In general,
convexity of risk functions allows to keep a relatively friendly structure of
the problem both for computational and theoretical purposes, polyhedral
property, cf. CVaR introduced in Rockafellar and Uryasev (2002) or polyhe-
dral risk functions cf. Eichhorn and Romisch (2005), allow to rely on linear
programming techniques for risk-averse linear scenario-based problems.

In the classical mean-risk notion, a measure of risk expresses a devi-
ation from the expected value. The original Markowitz mean-variance
approach Markowitz (1952) was later enriched by alternative deviation
functions such as semivariance, mean absolute deviation or mean absolute
semideviation. Recently, Rockafellar, Uryasev, and Zabarankin (2006)
introduced general deviation functions D(x, P) that preserve the main
properties of standard deviation (nonnegativity, positive homogeneity,
subadditivity and insensitivity to a constant shift). Hence, contrary to the
coherent risk functions, deviation functions are not affected by the expected
value and can be interpreted as measures of variability. As shown in Rock-
afellar, Uryasev, and Zabarankin (2006), deviation functions are convex,
and they correspond one-to-one with strictly expectation bounded risk
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functions (i.e., translation invariant, positively homogenous, subadditive
risk functions satisfying R(x, P) > —Epf(x, w)) under the relations:

R(x,P) = D(x, P) + Epf(x,w) or D(x,P) = R(x, P,)

where P, is the centered distribution derived from P. Using duality theory,
one can express deviation functions in terms of risk envelopes. For a given x,
each deviation function can be paired with the corresponding risk enve-
lope A. For a coherent deviation function the risk envelope A is nonempty,
closed and convex subset of @ = {A : A(w) > 0, EA = 1}. Hence, the risk
envelope is a set of probability distributions and the dual representation of
D(x, P) is
D(x, P) = Epf(x,w) — inf Epf(x,w)
AeA

where A(w) = ‘Z—I;(a)) Vo € Q. The dual expression assesses how much worse
the expectation Epf(x,®) can be under considered alternative probability
distributions P’. These alternative distributions depend on the probability
distribution P unlike the risk envelope .A. More details can be found in Rock-
afellar, Uryasev, and Zabarankin (2006) or in a recent survey Krokhmal,
Uryasev, and Zabarankin (2011). Deviation functions, which can be eval-
uated using linear programming techniques (in scenario-based problems),
mainly CVaR-type deviation functions, are very popular in empirical appli-
cations because of their tractability, even for large number of scenarios.

Risk-Shaping with CVaR [Rockafellar and Uryasev (2002)] Let f(x,w) denote
a random loss defined on X x Q, a € (0, 1) the selected confidence level and
F(x,P;v) := P{w : f(x,w) < v} the distribution function of the loss con-
nected with a fixed decision x € X. Value at risk (VaR) was introduced and
recommended as a generally applicable risk function to quantify, monitor,
and limit financial risks, to identify losses that occur with an acceptably
small probability. Several slightly different formal definitions of VaR coin-
cide for continuous probability distributions. We shall use the definition
from Rockafellar and Uryasev (2002), which applies to general probability
distributions: The value at risk at the confidence level a is defined by

VaR,(x,P) = inf, {v € R: F(x,P;v) > a}. (5.2)

Hence, a random loss greater than VaR, occurs with probability equal
(or less than) 1 — @. This interpretation is well understood in the financial
practice.

However, VaR,, does not fully quantify the loss and does not in general
satisfy the subadditivity property of coherent risk functions. To settle these
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problems, new risk functions have been introduced (see, e.g., Krokhmal,
Palmquist, and Uryasev (2002)). We shall exploit results of Rockafellar and
Uryasev (2002) to discuss one of them, the conditional value at risk.

Conditional value at risk at the confidence level a, CVaR , is defined as
the mean of the a-tail distribution of f(x, ®):

F,(x,P;v)=0 for v < VaR ,(x, P)

F(x,P;v) — «

F,(x,P;v) = 1
-«

for v > VaR, (x, P). (5.3)

According to Rockafellar and Uryasev (2002), CVaR ,(x, P) can be eval-
uated by minimization of the auxiliary function

D, (x,v,P) :=v+ 1
1-«a

Ep(f(x,0) —v)*

with respect to v. Function @, (x, v, P) is linear in P and convex in v. If f(x, w)
is convex function of x, ®,(x,v, P) is convex jointly in (v,x). It means that
CVaR,(x, P) = min, ®,(x,v, P) is convex in x and concave in P. In addition,
CVaR (x, P) is continuous with respect to a.

If P is a discrete probability distribution concentrated on o', ..., @®, with
probabilities p, > 0, s=1,..., S, and x a fixed element of X, then the opti-
mization problem CVaR,(x, P) = min, ®,(x, v, P) has the form

1

. 1 .
CVaR,(x,P) = min {v + m;ps(}[ (x,0°) = v)+} (5.4)

and it can be further rewritten as

CVaR,(x,P) = Zjzrlninzs {z/ + 1i—a2pszs: 2,20, z,+v>f(x,0°)Vs
e N

(5.5)

Tx, mean-CVaR model is a linear

For the special case f(x,w) =-w
programming problem.

Similarly, CVaR deviation function for a discrete probability distribution
can be expressed as follows:

DCVaR,(x,P) = CVaR (x,P,)

. 1
= min {v+ m;pszs: 2> 0, z5+v2f(x,w5)vs}

V.25 .-4%8

—5 X fx ).
s=1
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In dual form, CVaR deviation function at level a equals

N
S\ . — pS _l S
ﬂflai(ﬁg{gﬂsf(x’w) Zﬂs_l’ﬁss 1_a?ﬁszovs} S;f(xaw)

what corresponds to risk envelope A = {A € 9: A(w) < 1/(1 — a)}.
Risk-shaping with CVaR handles several probability thresholds
Ay O and loss tolerances bi,j =1,....J. For a suitable objective func-
tion Gy(x,P) the problem is to minimize G(x,P) subject to x € X and
CVaRa/,(x, Py<bj,j=1,....].
According to Theorem 16 of Rockafellar and Uryasev (2002), this is
equivalent to

min {Gy(x.P): x € X, @, (x.v,P)<b;. j=1,....]}, (5.6)
XU, -U] i
that is, to a problem with expectation type constraints.

Expected Utility and Stochastic Dominance

An alternative idea could be to use the expected utility or disutility function
as a criterion in portfolio selection problems. Such criterion depends on the
choice of investor’s utility function; to assume its knowledge is not realistic.
In empirical applications, several popular utility functions (power, logarith-
mic, quadratic, S-type) are often used as an approximation of the unknown
investor’s utility function. Moreover, following Levy (1992) and references
therein, one can compare investments jointly for all considered utility func-
tions using stochastic dominance relations. In this case, we shall work with
the common choice:

h(x,w) = o' x and f(x,0) = -0 x.

Having two portfolios x, y, and no assumptions about decision
maker’s preferences, we say that x dominates y by the first-order stochastic
dominance (FSD) if no decision maker prefers portfolio y to x; that is,
Epu(wTx) > Epu(wTy) for all nondecreasing utility functions #. Accepting
the common assumption of risk aversion, one limits attention to the set
of nondecreasing concave utility functions that generates the second-order
stochastic dominance. That is, portfolio x dominates portfolio y by the
second-order stochastic dominance (SSD) if Epu(w’x) > Epu(w’y) for all
nondecreasing concave utility functions u.

Let H(x, P; z) denote the cumulative probability distribution function of
returns h(x, ). The twice cumulative probability distribution function of
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returns of portfolio x in point w is defined as:
w
H®(x,P;w) = / H(x, P; z)dz. (5.7)

Similarly, for p,q € (0, 1], we consider a quantile function of returns
h(x, w):
HD(x, P;p) = min{v € R: H(x,P;v) > p}

and the second quantile function (absolute Lorenz curve):

q
H"?(x,P;q) = / HD(x, P; p)dp. (5.8)

—00

We summarize the necessary and sufficient conditions for the first
and the second-order stochastic dominance relations (see, e.g., Ogryczak
and Ruszczynski (2002), Dentcheva and Ruszczynski (2003), Post (2003),
Kuosmanen (2004), Kopa and Chovanec (2008)):

Portfolio x € X dominates portfolio y € X by the first-order stochastic
dominance if and only if:

® H(x,P;2) < H(y,P;2)Vz € R or
= H"D(x, P;p) > H=V(y, P;p) Vp € (0,1] or
® VaR, (x, P) < VaR,(y,P) Va € (0, 1], see (5.2).

Similarly, the second-order stochastic dominance relation holds if and
only if

H®(x, P;w) < H?(y, P;w) Vw € R or

H"Y(x,P;q) > H=2(y, P;q) Vg € (0,1] or

CVaR,(x, P) < CVaR(y, P) Va € [0, 1], see (5.3), or

Epln — o"x]" < Epln — @Ty]* ¥ € R such that both expectations exist,
where[.]* = max(0, .).

In general, one can consider any generator U of stochastic dominance,
especially the choice Uy = {u(w) : (-1)"'u"(w) < 0Vw, n=1,...,N} gives
the Nth-order stochastic dominance relation. Since these relations allow only
for pairwise comparisons, one needs to have a benchmark for practical appli-
cations of stochastic dominance. Having a benchmark, one can enrich the
mean-risk model by stochastic dominance constraints, cf. Dentcheva and
Ruszczynski (2003). Another application of stochastic dominance relations
leads to a portfolio efficiency testing whether a given portfolio is the opti-
mal choice for at least one of considered decision makers, see Kopa and Post
(2009), Post and Kopa (2013).



Trim Size: 6in x 9in ‘@‘ Zopounidis  c05.tex V1 -02/06/2015 2:44pm Page 105

Output Analysis and Stress Testing for Risk Constrained Portfolios 105

Mean-Risk Efficiency

For a chosen risk function R(x, P) ideas of multiobjective optimization (see,
e.g., Ehrgott (2005)), lead to the mean-risk formulations

rr‘1:_1>r<1 {AEpf(x, ®) + R(x, P)}, (5.9)
or
max {Eph(x,w) — aR(x, P)}, (5.10)

or to inclusion of risk constraints,

mi)lg R(x, P) subject to Eph(x,w) > k, (5.11)
xe
or
max Eph(x, ) subject to R(x, P) < v; (5.12)
xXe

compare with the mean-variance model of Markowitz (1952) with the ran-
dom return quantified as h(x, w) := o’ x and risk quantified as the variance
or standard deviation of the portfolio yield. See also Krokhmal, Palmquist,
and Uryasev (2002) for the risk quantified as the conditional value at risk
CVaR, which is known also under the name expected shortfall.

Solutions of any of these problems (for preselected nonnegative param-
eters A,a and for k, v such that there exist feasible solutions of (5.11), (5.12))
are mean-risk efficient. At least theoretically, the whole mean-risk efficient
frontier can be constructed; see Ruszczynski and Vanderbei (2003) for
an application of parametric programming in the case of the Markowitz
mean-variance efficient frontier. The above formulations may be extended
to deal with multiple risk functions (see, e.g., Roman, Darby-Dowman, and
Mitra (2007)) for “mean-variance-CVaR” model.

Formulations (5.9) or (5.10) with a probability independent set of feasi-
ble decisions X are convenient for applications of quantitative stability anal-
ysis: Sets of parameter values for which a point x, € X is an optimal solution
(local stability sets) can be constructed, and on these sets, the optimal value
is a linear function of the parameter in question. We refer to Chapter 5 of
Bank et al. (1982) for related theoretical results and to Dupacova (2012)
and Dupacova, Hurt, and Stépan (2002) for an application to stability with
respect to the choice of 4 in the Markowitz model

xeX

min {—AEPwa + %xT [Varpco] x}

of the type (5.9).
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On the other hand, risk management regulations ask frequently for sat-
isfaction of risk constraints with a prescribed limit v displayed in (5.12).
Moreover, (5.12) is favored in practice: Solving it for various values of v one
obtains directly the corresponding points [v, Epw! x(v)] on the mean-risk effi-
cient frontier. Then, the purpose of the study indicates the formulation to be
tackled.

Comment: Numerical tractability of the mean-risk problems depends on
the choice of the risk function R, on the assumed probability distribution P
and on the choice of random objectives f(x, ) or h(x,w). Programs (5.9)
to (5.12) are convex for convex risk functions R(e, P), such as CVaR, see
Dupacova (2006), Dupacova and Polivka (2007), and for convex random
loss f(e,w) and concave random return h(e,®). They are equally suitable
when the goal is to get a mean-risk efficient decision and/or properties of
such decision.

Robustness and Output Analysis (Stress Testing)

As the probability distribution P is fully known only exceptionally, there is
a growing interest in robustness of portfolio optimization problems. Since
several large financial disasters in the nineties of the last century, observing
various risk functions and stress testing have entered the praxis of finan-
cial institutions. We shall focus on output analysis and stress testing with
respect to uncertainty or perturbations of input data for static risk portfolio
optimization problems, which involve risk considerations.

Moreover, for the sake of numerical tractability, various approximation
schemes have been proposed to solve the resulting optimization problems.
For example, one may approximate P by a discrete probability distribution
based on historical data, by a probability distribution belonging to a given
parametric family with an estimated parameter, and so on. The popular
sample average approximation (SAA) method solves these problems using
a sample counterpart of the optimization problem; that is, instead of P it
uses an empirical distribution based on independent samples from P, and
asymptotic results can support decisions concerning recommended sample
sizes. See Shapiro (2003), Wang and Ahmed (2008), and references therein.
The choice of a suitable technique depends on the form of the problem, on
the available information and data. Anyway, without additional analysis,
it will be dangerous to use the obtained output (the optimal value and the
optimal investment decision based on the approximate problem) to replace
the sought solution of the “true” problem. Indeed, the optimal or efficient
portfolios are rather sensitive to the inputs, and it is more demanding to
get applicable results concerning the optimal solutions—optimal investment
policies—than robustness results for the optimal value.

Besides of focused simulation studies (e.g., Kaut et al. (2007)) and
backtesting, there are two main tractable ways for analysis of the output
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regarding changes or perturbation of P—the worst-case analysis with
respect to all probability distributions belonging to an uncertainty set P or
quantitative stability analysis with respect to changes of P by stress testing
via contamination, see Dupacovd (2006, 2009), Dupacova and Polivka
(2007), Dupacova and Kopa (2012, 2014). We shall present them in the
next two sections.

WORST-CASE ANALYSIS

The worst-case analysis is mostly used in cases when the probability distri-
bution P is not known completely, but it is known to belong to a family P
of probability distributions. It can be identified by known values of some
moments, by a known support, by qualitative properties, such as unimodal-
ity or symmetry, by a list of possible probability distributions or by scenarios
proposed by experts with inexact values of probabilities. The decisions fol-
low the minimax decision rule, accordingly, the investor aims at hedging
against the worst possible situation.
The “robust” counterpart of (5.9) is

;Ig)r(l max {AEpf(x,w) + R(x, P)} (5.13)

whereas for (5.12) we have

max m'g Eph(x,w) s.t. R(x,P) <vVP € P (5.14)

xeX Pe

or equivalently, subject to the worst-risk constraint

<uv. .
rlglea;)( R(x,P)<v (5.15)

If R(x,P) is convex in x on X and linear (in the sense that it is both
convex and concave) in P on P, then for convex, compact classes P defined
by moment conditions and for fixed x, the maxima in (5.13), (5.15) are
attained at extremal points of P. It means that the worst-case probability dis-
tributions from P are discrete. In general, these discrete distributions depend
on x. Under modest assumptions this result holds true also for risk functions
R(x, P) that are convex in P. Notice that whereas expected utility or disutility
functions and the Expected Regret criterion are linear in P, various popular
risk functions are not even convex in P: CVaR (x, P) and variance are concave
in P, the mean absolute deviation is neither convex nor concave in P.

Worst-Case Analysis for Markowitz Model (1952)

For the Markowitz model, one deals with the set P of probability distribu-
tions characterized by fixed expectations and covariance matrices without
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distinguishing among distributions belonging to this set. Incomplete knowl-
edge of input data (i.e., of expected returns u = Ew and covariance matrix
V = varw) may be also approached via the worst-case analysis or robust
optimization; see Fabozzi, Huang, and Zhou (2010), Pflug and Wozabal
(2007), and Zymler, Kuhn, and Rustem (2013). The idea is to hedge against
the worst possible input belonging to a prespecified uncertainty or ambigu-
ity set U. We shall denote M, V considered uncertainty sets for parameters
u and V and will assume that U = M x V. This means to solve

min  max {—ﬂ,uTx+1xTVx} (5.16)
x€X (u,V)eU 2
or
min max x! Vx subject to mlny Tx >k, (5.17)
xeX Vey
or
min min x”x subject to max x7 Vx < v. (5.18)
xeX pueM Vey

Consider, for example U described by box constraints 0 < H oS <

Hni=1,...,I, V<V <V componentwise and such that V is posmve defi-
nite. WithX {xeR!:x;,>0Vi, Z x; = 1}, the inner maximum in (5.16)

is attained for y; = u Vi and V = V. The robust mean-variance portfolio is
the optimal solution of

- 7., 1 17
min {—Aﬁ x + zx Vx} .

We refer to Fabozzi, Huang, and Zhou (2010) for a survey of various
other choices of uncertainty sets for the Markowitz model.

Comment: For the class of probability distributions P identified by
fixed moments y, V known from Markowitz model and for linear random
objective f(x,w), explicit formulas for the worst-case CVaR and VaR can
be derived (e.g., Cerbdkovad (2006)), and according to Theorem 2.2 of
Zymler, Kuhn, and Rustem (2013), portfolio composition x € X satisfies
the worst-case VaR constraint <= satisfies the worst-case CVaR constraint.

Worst-Case (Robust) Stochastic Dominance

Applying the worst-case approach to stochastic dominance relation,
Dentcheva and Ruszczynski (2010) introduced robust stochastic dominance
for the set of considered probability distributions P: A portfolio x robustly
dominates portfolio y by SSD if Epu(w’x) > Epu(w’y) for all concave utility
functions and all P € P. Similarly, one can define a robust FSD relation
when the expected utility inequality needs to be fulfiled for all utility


Kopa
Poznámky k textu
please, correct the size


Trim Size: 6in x 9in ‘@‘ Zopounidis  c05.tex V1 -02/06/2015 2:44pm Page 109

Output Analysis and Stress Testing for Risk Constrained Portfolios 109

functions (allowing also nonconcave ones) and for all P € P. The choice of
P is very important and typically depends on the application of the robust
stochastic dominance relation. The larger set P is the stronger the relation
would be. If the set is too large than one can hardly find two portfolios
being in the robust stochastic dominance relation and the concept of robust
stochastic dominance is useless. Therefore, Dentcheva and Ruszczynski
(2010) considered a convexified closed and bounded neighborhood P of a
given P,. Alternatively, one can follow Zymler, Kuhn, and Rustem (2013)
and define P as the set of all probability distributions having the same first
and second moments as a given distribution P. Typically, distribution Py, is
derived from data—for example, as an empirical distribution.

Example: Robust Second-Order Stochastic Dominance Consider I investments
and a benchmark as the (I + 1)-st investment. Let the original probability
distribution P, of all investments (including the benchmark) is a discrete
distribution given by S equiprobable scenarios. They can be collected in
scenario matrix:

A

2

,

R=]|".

S
where ¥ = (rs,r;, ,V;H) are the returns along the s-th scenario and r;, =
(rl.l,rf, ,rf) are scenarios for return of the i-th investment. We will use
x = (x1,%,,...,x7,1)T for the vector of portfolio weights and the portfolio

possibilities are given by
X={xeRM :1Tx=1,x,>0,i=1,2,....1+1},

that is, the short sales are not allowed. Then, following Kuosmanen
(2004) and Luedtke (2008), the necessary and sufficient condition for the
second-order stochastic dominance relation between a portfolio x and
the benchmark is: Rx > Wrp,; for a double stochastic matrix W (i.e.,
1TW =17, W1 =1, W > 0 componentwise). Hence the classical optimiza-
tion problem with SSD constraints Dentcheva and Ruszczynski (2003):
min Gy(x, P) with respect to all portfolios x that dominate the benchmark
by SSD, leads to:

min Gg(x, P) (5.19)
s.t. Rx > Wrpy
Tw=1T, Wi=1, W>0

x € X.
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Following Kopa (2010), we consider P containing all discrete proba-
bility distributions with S equiprobable scenarios and scenario matrix Rp
from the e-neighbourhood of P, that is, satisfying d(P, P;)) < €. Let matrix

S, I+1 T
Y = {Div/}i,f:1 be deﬁned as Y = RP -R and U4 = (1)1’1+1, ’DS,I+1) .

Moreover, if d(P, Py) = max;;|v;| then a robust counterpart of (5.19) can
be formulated as follows:

min G(x, P)

st.(R+Y)x > W(r +0141)
Tw=1", Wi=1,W>0

—€e<vy; <k¢, i=1,....,8 /=1,....I+1

x € X.

STRESS TESTING VIA CONTAMINATION

In practice, approximated or simplified stochastic decision problems are
solved instead of the true ones, and it could be misleading, even dangerous,
to apply the results without any subsequent analysis such as stress testing,
output analysis, or backtesting.

Stress testing is used in financial practice without any generally accepted
definition, and it differs among institutions. It appears in the context of quan-
tification of losses or risks that may appear under special, mostly external,
circumstances. It uses

1. Scenarios that come from historical experience (a crisis observed in the
past)—historical stress test, or from the worst-case analysis;

2. Scenarios that might be possible in future, given changes of macroeco-
nomic, socioeconomic or political factors—prospective stress test, and
SO on;

3. Recommended, stylized scenarios, such as changes in the interest rates,
parallel shift of the yield curve for +100 bp, changes of the stock index
for +6 percent, of volatility 20% for +20 percent.

Stress testing approaches differ due to the nature of the tested problem
and of the stress scenarios. Performance of the obtained optimal decision is
frequently evaluated along these stress, possibly dynamic scenarios or the
model is solved with an alternative input. We shall present stress testing via
contamination, which puts together both of these ideas.


Kopa
Poznámky k textu
please, replace it by "extreme"

Kopa
Poznámky k textu
Please, delete it.


Trim Size: 6in x 9in ‘@‘ Zopounidis  c05.tex V1 -02/06/2015 2:44pm Page 111

Output Analysis and Stress Testing for Risk Constrained Portfolios m

Stress testing via contamination was originally derived for the mini-
mization type of model (5.1), with the set X independent of P and and for
expectation type objective Gy(x, P):= Epf(x,®) to be minimized.

Assume that the problem (5.1) was solved for probability distribu-
tion P, denote ¢(P) the optimal value and X*(P) the set of optimal solutions.
Changes in probability distribution P are modeled using contaminated
distributions P,,

P,:=(1-5P+:Q, t€[0,1]

with Q another fixed probability distribution, the alternative or stress distri-
bution. It does not require any specific properties of the probability distribu-
tion P. Via contamination, robustness analysis with respect to changes in P
gets reduced to much simpler analysis with respect to the scalar parameter ¢.
The objective function in (5.1) is the expectation of the random objective
function f(x, w), (i.e., is linear in P), and we denote it Gy(x, P) to stress its
dependence on P. Hence, Gy(x, P,):= Eptf(x, ) is linear in ¢ and the optimal
value function
@(t):= irg)l(l Go(x, P,)

is concave on [0, 1]. This implies continuity and existence of its directional
derivatives on (0, 1). Continuity at # = 0 is property related with stability
for the original problem (5.1). In general, one needs that the set of optimal
solutions X*(P) is nonempty and bounded.

Stress testing and robustness analysis via contamination with respect to
changes in probability distribution P is straightforward for expected disu-
tility models (the objective function is again linear in P). When the risk or
deviation measures are concave with respect to probability distribution P
they are concave with respect to parameter # of the contaminated probability
distributions P,, hence, ¢(#) is concave and stress testing via contamination
can be developed again. The results are contamination bounds for the opti-
mal value function, which quantify the change in the optimal value due to
considered perturbations of probability distribution P.

Contamination Bounds

The bounds are a straight consequence of the concavity of the optimal value
function @():

»(0) + 19" (0%) > () > (1 = He(0) + te(1), t € [0,1]. (5.20)

For the case of unique optimal solution x*(P) of (5.1) the directional
derivative equals Gy(x*(P), Q) — (0). In general, each optimal solution
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x*(P) provides an upper bound
@'(0%) < Gy(x*(P), Q) — 9(0)

which can be used in (5.20).

Similarly one may construct the upper bound in (5.20) for the optimal
value ¢(t) on the interval [0, 1] starting from the right end # = 1 of the inter-
val. This provides the right upperbound marked on Figure 5.1.

The obtained contamination bounds (5.20) are global, valid for all ¢ €
[0, 1]. They quantify the change in the optimal value due to considered per-
turbations of (5.1); see the application to stress testing of CVaR by Dupacova
and Polivka (2007) and of multiperiod two-stage bond portfolio manage-
ment problems by Dupacovd, Bertocchi, and Moriggia (1998). Notice that
to get the bounds (5.20), one has to solve the portfolio problem with the
alternative probability distribution Q to get ¢(1) and to evaluate the perfor-
mance Gy(x*(P), Q) of an optimal solution of the original problem in case
that O applies. Both of these calculations appear in various stress tests.

Also, a specific value of contamination parameter ¢ can be fixed in agree-
ment with the stress testing purpose. For stability studies with respect to
small changes in the underlying probability distribution, small values of the

1.4

o(Py)

O T T T T 1
0 0.2 0.4 0.6 0.8 1
A
— o(P)) right upperbound
----- left upperbound ——= lowerbound

FIGURE 5.1 Lower and upper bound for a concave optimal value function.
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contamination parameter ¢ are typical. The choice of ¢t may reflect the degree
of confidence in expert opinions represented as the contaminating distribu-
tion O, and so on. Using a contaminating distribution Q carried by addi-
tional scenarios, one can study the influence of including these additional
‘out-of-sample’ scenarios, also the response on an increasing importance of
a scenario can be quantified, and so on.

Example Consider the problem of investment decisions in the international
debt and equity markets. Assume that historical data allow us to construct
many scenarios of returns of investments in the considered assets categories.
We denote these (in principle equiprobable) scenarios by w*, s =1, ..., S, and
let P be the corresponding discrete probability distribution. Assume that for
each of these scenarios, the outcome of a feasible investment strategy x can
be evaluated as f(x, ®*). Maximization of the expected outcome

Go(x,P) = %z f(x,w®) with respect to x € X
s=1

provides the optimal value @(P) and an optimal investment strategy x(P).

The historical data definitely do not cover all possible extremal situa-
tions on the market. Assume that experts suggest an additional scenario w*.
This is the only atom of the degenerated probability distribution Q,
for which the best investment strategy is x(Q)—an optimal solution of
max,cyf(x,®*). The contamination method explained above is based on
the probability distribution P,, carried by the scenarios w®, s=1,...,S,
with probabilities % and by the experts scenario w* with probability z.
The probability # assigns a weight to the view of the expert and the bounds
(5.20) are valid for all 0 <¢< 1. They clearly indicate how much the
weight ¢, interpreted as the degree of confidence in the investor’s view,
affects the outcome of the portfolio allocation.

The impact of a modification of every single scenario according to the
investor’s views on the performance of each asset class can be studied in a
similar way. We use the initial probability distribution P contaminated by Q,
which is now carried by equiprobable scenarios @° = w® + 6%, s=1,...,8S.
The contamination parameter ¢ relates again to the degree of confidence in
the expert’s view.

Contamination by a distribution O, which gives the same expectation
Eow = Epw is helpful in studying resistance with respect to changes of the
sample in situations when the expectation of random parameters w is to be
preserved.

Comment: The introduced contamination technique extends to
objective functions Gg(x, P) convex in x and concave in P including the
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mean-variance objective function; see Dupacova (1996; 1998; 2006) for
the related contamination results. To get these generalizations, it is again
necessary to analyze persistence and stability properties of the parametrized
problems min, .G (x, P,) and to derive the form of the directional deriva-
tive. For a fixed set X of feasible solutions, the optimal value function ¢(z)
is again concave on [0,1]. Additional assumptions (e.g., Gol’shtein (1970))
are needed to get the existence of its derivative; the generic form is

. d
e+ — a
'O )=_Din dtGO(x’ P)ly=o+-

Contamination Bounds—Constraints Dependent on P

Whereas the stress testing and robustness analysis via contamination with
respect to changes in probability distribution P are straightforward when the
set X does not depend on P, difficulties appear for models, which contain risk
constraints:

min Gy (x, P

xeX 0( )

subject to
G P)<0,j=1,....]; (5.21)

such as the risk shaping with CVaR (5.6). Assume the following:

® X C R" is a fixed nonempty closed convex set.

® Functions G;(x,P), j =0, ..., ] are convex in x and linear in P.

® P is the probability distribution of the random vector w with range
Q c R™.

Denote X(#) = {x € X: Gj(x,P) <0, j=1,.... ]} o), X*() the set of
feasible solutions, the optimal value and the set of optimal solutions of the
contaminated problem

minimize Gy (x, P,) on the set X(¢). (5.22)

The task is again to construct computable lower and upper bounds for
@(t) and to exploit them for robustness analysis. The difficulty is that the
optimal value function ¢(#) is no more concave in t.

Thanks to the assumed structure of perturbations a lower bound for
@(t) can be derived under relatively modest assumptions. Consider first only
one constraint dependent on probability distribution P and an objective G,
independent of P; that is the problem is

min G (x) subject to G(x, P) < 0. (5.23)
xeX
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For probability distribution P contaminated by another fixed probabil-
ity distribution Qj that is, for P,:= (1 — )P +tQ, t € (0, 1) we get

mi}l{l G (x) subject to G(x,#):= G(x,P,) < 0. (5.24)
xXe

Theorem [Dupacova and Kopa (2012)]
Let G(x,t) be a concave function of ¢ € [0, 1]. Then, the optimal value
function ¢@(¢) of (5.24) is quasiconcave in ¢ € [0, 1] and

(1) > min{e(1), ¢(0)}. (5.25)

When also the objective function depends on the probability distribu-
tion, that is, on the contamination parameter #, the problem is

mi}rg Go(x,t):= Gy(x, P,) subject to G(x,t) < 0. (5.26)
XE

For Gy(x, P) linear or concave in P, a lower bound can be obtained by
application of the bound (5.25) separately to G(x, P) and Gy(x, Q). The
resulting bound

(5.27)
is more complicated but still computable.

Multiple constraints (5.21) can be reformulated as G(x,P):=
max;G,(x, P) < 0, but the function G(x, P) is convex in P. Still for G,(x, P) =
Epf,-(x, w) and for contaminated distributions, G(x,):= max;G;(x, P,) in
(5.24) is a convex piecewise linear function of . It means that there exists
7> 0 such that G(x,?) is a linear function of ¢ on [0,7] and according to
Theorem we get the local lower bound @(z) > min{¢(0), (%)} valid for
t € [0,7]. This bound applies also to objective functions G (x, P) concave in
P similarly as in (5.27). Notice that no convexity assumption with respect
to x was required.

Further assumptions are needed for derivation of an upper bound:
Formulas for directional derivative ¢’(0%) based on Lagrange function
L(x,u,t) = Gy(x, P,) + Z/-uf-Gf-(x, P,) for the contaminated problem follow,
for example, from Theorem 17 of Gol’shtein (1970) if the set of optimal
solutions X*(0) and of the corresponding Lagrange multipliers U*(x, 0) for
the original, noncontaminated problem are nonempty and bounded. Their
generic form is

0h= mi 95 2
POD= B B0 a7 O 28
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Nevertheless, to get at least a local upper bound (5.20) means to get X(#)
fixed, that is, @(#) concave, for ¢ small enough. For X convex polyhedral this
can be achieved for (5.21) if the optimal solution x*(0) of the noncontami-
nated problem is a nondegenerated point in which the strict complementarity
conditions hold true. Then, for ¢ small enough, ¢ < #,, t, > 0, the optimal
value function ¢(#) is concave, and its upper bound equals

() < 9(0) +tp'(0%) Vt € [0, 1,]. (5.29)

For a discussion and general references, see Dupacova and Kopa (2012).
Differentiability of G,(e,P,) can be exploited, but there are rather limited
possibilities to construct local upper contamination bounds when neither
convexity nor differentiability is present (e.g., for nonconvex problems with
VaR constraints). In some special cases, trivial upper bounds are available—
for example, if x*(0) is a feasible solution of (5.22) with ¢ = 1, then

@) < Gy(x*(0),1) Ve € [0, 1]. (5.30)

See Dupacova and Kopa (20125 2014).

In the general case, to allow for the stress testing an indirect approach
was suggested; see Branda and Dupacova (2012): Apply contamination tech-
nique to penalty reformulation of the problem. Then the set of feasible solu-
tions does not depend on P and for approximate problem, global bounds
(5.20) follow. See Example 4 of Branda and Dupacova (2012) for numerical
results.

lllustrative Examples [Dupacova and Kopa (2012)]

Consider S = 50 equiprobable scenarios of monthly returns of I = 9 assets
(8 European stock market indexes: AEX, ATX, FCHI, GDAXI, OSEAX,
OMXSPI, SSMI, FTSE, and a risk-free asset) in period June 2004 to August
2008. The scenarios can be collected in the matrix R as in the example
titled “Robust second-order stochastic dominance”; however, now without
a benchmark, that is, a vector of portfolio weights x = (x,%,,...,x)7T is
taken from the portfolio possibilities set:

X={xeRl :1Tx=1,x,>0,i=1,2,...,1}.

The historical data come from the precrisis period. The data are contam-
inated by a scenario 7*! from September 2008 when all indexes strongly fell
down. The additional scenario can be understood as a stress scenario or the
worst-case scenario. It can be seen in Table 5.1 presenting basic descriptive
statistics of the original data and the additional scenario (A.S.).
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TABLE 8.1 Descriptive Statistics and the Additional Scenario of Returns of 8
European Stock Indexes and of the Risk-Free Asset

Index Country Mean Max Min A.S.
AEX Netherlands 0.00456 0.07488 -0.14433 -0.19715
ATX Austria 0.01358 0.13247 -0.14869 -0.23401
FCHI France 0.0044 0.0615 -0.13258 -0.1005
GDAXI Germany 0.01014 0.07111 -0.15068 -0.09207
OSEAX Norway 0.01872 0.12176 -0.19505 -0.23934
OMXSPI Sweden 0.00651 0.08225 -0.14154 -0.12459
SSMI Switzerland 0.00563 0.05857 -0.09595 -0.08065
FTSE England 0.00512 0.06755 -0.08938 -0.13024
Risk-free 0.002 0.002 0.002 0.002

We will apply the contamination bounds to mean-risk models with
CVaR as a measure of risk. Two formulations are considered: In the first
one, we are searching for a portfolio with minimal CVaR and at least the
prescribed expected return. Second, we minimize the expected loss of the
portfolio under the condition that CVaR is below a given level.

Minimizing CVaR Mean-CVaR model with CVaR minimization is a special
case of the general formulation (5.1) when Gy(x,P)= CVaR(x,P) and
G,(x,P) = Ep(~0Tx) — u(P); u(P) is the maximal allowable expected loss.
We choose

T 50 T

11 1 1 11 1

Py=—-Epo (222 ) === (2.2, 2
ulb)=—Epew (9’9’ 9) 504’ (9 9 9)

It means that the minimal required expected return is equal to the aver-
age return of the equally diversified portfolio. The significance level a = 0.95
and X is a fixed convex polyhedral set representing constraints that do not
depend on P. Since P is a discrete distribution with equiprobable scenarios
72, ..., using (5.5), the mean-CVaR model can be formulated as the
following linear program:

50

p0)= m ;Zzs (5.31)

in v+
x€X,vER,z,€R+ 50 % 0.05 =

st.z,>—rx—v,s=1,2,...,50

1 50
- — ) rx—ulP)<0.
502
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By analogy, for the additional scenario we have:

1
1) = : 1 5.32
o= min 't 0.05° (5.32)

st.z>—rlx—v, —rlx - Q) <0
or, equivalently:
(1) =min{—r"lx : —r’lx — u(Q) < 0} (5.33)
T
where u(Q) = —r5l<%, %, o %) .

First, we compute for ¢ € [0, 1] the optimal value function of the con-
taminated problem.

50
o(t) = min v+ 1 < 51—0 1=z, + tz51> (5.34)
s=1

xeX,veR,z,eR+ 0.05

st.zg,>—rx—v,s=1,2,...,51

- Z —(1 —0rx—tr'x — (1 -HP+1tQ) <0

T T
where u((1- )P+1Q) = -320, L(1 - ( %) —t 51(; L. %)
Second, applying (5.27), we derive a lower bound for ¢(t). Note that
now
50

in Go(x.p) = .
§(I}IQH) ox-P) xeX,vIél[ér,lzseRJr v 50 % 0.055=21 %

stz, > —-r’x—v,s=1,2,...,50
- lx—u(Q)<0

and

50
mmGO(x 0)= mm{—r x: Z —r'x — y(P)<O}

Finally, we construct an upper bound for ¢(¢). Since the optimal solution
x*(0) of (5.31) is a feasible solution of (5.32) we can apply (5.30). [as a]


Kopa
Poznámky k textu
please, replace it by "as a"


Trim Size: 6in x 9in ‘@‘ Zopounidis  c05.tex V1 -02/06/2015 2:44pm Page 119

Output Analysis and Stress Testing for Risk Constrained Portfolios 119

trivial upper bound for all ¢ € [0, 1]:

vER z ERT 0.05

50
P(1) < Go(x"(0),5) = min_ v+ 1 <Z 51—0 (1-1tz + tz51>

st.g, > —rx"—v,s=1,2,...,51.

The disadvantage of this trivial bound is the fact that it would require
evaluation of the CVaR for x*(0) for each t. Linearity with respect to #
does not hold true, but we may apply the upper bound for CVaR derived
in Dupacova and Polivka (2007):

CVaR,(x,(1 = )P +tQ) < (1 — HCVaR ,(x, P) + t® (x,v*(x, P), Q). (5.35)

This yields an upper estimate for G,(x*(0), ), which is a convex combi-
nation of ¢(0) and @, (x*(0), v*(x*(0), P), Q). The optimal value ¢(0) is given
by (5.31) and

@, (x*(0),v*(x*(0),P), Q) = v* + L(—r‘”x* -vH*

0.05
where v* and x* are optimal solutions of (5.31). The graphs of ¢(%), its lower
bound and two upper bounds (trivial one and its upper estimate) for small
contamination ¢ € [0, 0.1] are presented in Figure 5.2. Since all original sce-
narios have probability 0.02, the performance for ¢ > 0.1 is not of much
interest. For £ > 0.04, ¢(¢) in (5.34) coincides with its lower bound because
the optimal portfolios consist only of the risk free asset. The upper bound is
piecewise linear in ¢, and for small values of # it coincides with the estimated
upper bound.

Minimizing Expected Loss As the second example, consider the mean-CVaR
model minimizing the expected loss subject to a constraint on CVaR.
This corresponds to (5.21) with Gy(x,P) = Ep(~0'x) and G (x,P) =
CVaR(x, P) — ¢ where ¢ = 0.19 is the maximal accepted level of CVaR. For
simplicity, this level does not depend on the probability distribution. Similar
to the previous example, we compute the optimal value ¢(¢) and its lower
and upper bound. Using Theorem 16 of Rockafellar and Uryasev (2002),
the minimal CVaR-constrained expected loss is obtained for ¢ € [0, 1] as

50
_ S oI 51
(t)= min_ ; sg(1—orx—u'lx (5.36)
1 Q1 "
s.t.v+m<—25(l—t)rsx—trﬂx—v) -c<0 (5.37)
: s=1
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FIGURE 5.2 Comparison of minimal (CVaR(t)) value of mean-CVaR model with
lower bound (LB), upper bound (UB) and the estimated upper bound (EUB).
and thus equals the optimal value function of the parametric linear program

50
- : N 1_ _ 51
o) = xeX,v@ﬁggﬂ)f S; 50(1 Hrix —tr'x (5.38)

50
1 1
S.t.l/+m (s;%(l—t)zs+tz51)—c$0
L, 2-rx—-v,s=1,2,...,51

for ¢t € [0, 1]. In particular, for £ = 1 we have

o) = min - 'x
xeX,veR z,eRT

1 51
stv+ ——2s1—¢c<0, 251 +v>-1"x
0.05%51 51 5

what is equivalent to
D =minf{—rlx: - lx—c<0):
@(1) 1;161}1(1{ Plx: —rlx—c<0};
compare with (5.33). Using (5.27), we can evaluate the lower bound for ¢(z)
with

50
gbn) Go(x,P) = 1;161}1{1 {—Z %rsx: —rPly—c< O}
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and
in G ) _ . 51
r)l(’l(lPI} O(x Q) xeX,l/renl}g,lzsERJr T
1 w1
S —
s.t.v+ m; %zs -¢c<0,z,>2-1rx-v,s=12,..,50.

Finally, we compute an upper bound for ¢(t). Contrary to the previous
example, the optimal solution x*(0) of the noncontaminated problem is not
a feasible solution of the fully contaminated problem. Therefore, the trivial
global upper bound (5.30) cannot be used. We apply instead the local upper
bound (5.29) with the directional derivative

@'(0") = %L(X*(O), u*(0),0) = L(x"(0),27(0), Q) — L(x*(0), «*(0), P)

= Go(x*(0), Q)+ Y u (0)G(x*(0), Q) = Go(x*(0),P),  (5.39)
I

which takes into account the uniqueness of optimal solutions and Lagrange
multipliers in (5.28). In this example, the value of multiplier #*(0) corre-
sponding to (5.37) for ¢ = 0 is equal to zero, the CVaR constraint (5.37) is
not active, and for sufficiently small ¢, the upper bound reduces to:

o) < (1 = 1p0) +tGy(x*(0), O). (5.40)

Figure 5.3 depicts the graph of ¢(¢) given by (5.38) and its lower and
upper bound.

0 T T T T 1
-0.002 O 0.01 0.02 0.03 0.04——0.05
—-0.004
-0.006 =

-0.008
~0.01 ~ mean loss

~0.012 P -—-Le
-0.014 W -—-UB
-0.016

-0.018 —

-0.02

FIGURE 8.3 Comparison of minimal mean loss with its lower bound (LB) and
upper bound (UB).
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The upper bound coincides with ¢(¢) for ¢ < 0.02. It illustrates the fact
that the local upper bound is meaningful if the probability of the additional
scenario is not too large—that is, no more than probabilities of the original
scenarios for our example.

CONCLUSIONS AND NEW PROBLEMS

Applicability of output analysis techniques depends on the structure of the
model, on assumptions concerning the probability distribution, on avail-
able data, hardware and software facilities. Incorporating risk and deviation
measures into the portfolio optimization model, presence of stochastic dom-
inance constraints, or presence of multiple stages make the model much
harder to solve. It means to design suitable stress tests, to compare alternative
choices of risk measures, utility functions and of probability distributions
by multimodeling, to develop stability and robustness analysis, and so on.
Convexity allows keeping a relatively friendly structure of the problem both
for computational and theoretical purposes, and polyhedral property allows
to rely on linear programming techniques for scenario-based problems with
incorporated polyhedral risk measures, such as CVaR. For static models dis-
cussed in this chapter, the outcome is a decision dependent one-dimensional
random variable; this does not apply to dynamic multistage stochastic deci-
sion problems. Modeling suitable multidimensional risk measures and ana-
lyzing their properties was initiated by Artzner et al. (2007). It has become an
active area of research. Using them in dynamic portfolio optimization brings
along various problems connected with model building, scenario generation
and output analysis that have not been solved satisfactorily yet. We refer
to Pflug and Romisch (2007), Shapiro, Dentcheva, and Ruszczynski (2009),
and numerous references therein.
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