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In the paper, stability of the optimal solution of a stochastic program with recourse with respect 
to small changes of the underlying distribution of random coefficients is considered. As a tool, 
contamination of the given distribution by another one is suggested and the original stability 
problem is thus reduced to that with linearly perturbed objective function. The theory of perturbed 
Kuhn-Tucker points and strongly regular equations is used to get explicit formulas for G~teaux 
differentials of optimal solutions under different assumptions. Possible exploitation of the results 
for further robustness studies is indicated. 
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Cons ide r  the fo l lowing s tochas t ic  p r o g r a m m i n g  p rob lem:  

M a x i m i z e f ( x ;  F )  = EF{C(X) -- r Z)} on the set ~ w h e r e  ~ c  R" 

is a n o n e m p t y  c losed  convex set o f  admiss ib le  solu t ions ,  c : ~ -~ R 

is a given funct ion ,  F is a given jo in t  p robab i l i t y  d i s t r ibu t ion  o f  

a r a n d o m  vector  z on (~ ,  ~ z ) ,  ~ c R  t, ~P:~  x ~ - R ~  is a given 

nonnega t ive  funct ion  such that  r  z) are  measu rab le  for all 

x ~ .  ( I )  

An example  o f  (1) is when a non l inea r  p r o g r a m  

maximize  c(x)  

s u b j e c t t o  gk(x;z)>~O, l<~k<~m, x c ~ ,  

contains r a n d o m  pa rame te r s  in gk(x; z), I ~< k~< m, and  the dec is ion  x ~  ~ has to 

be chosen before  the values  o f  these r a n d o m  paramete r s  are observed.  The  funct ion 

r  z) eva lua tes  the loss co r r e spond ing  to the case that  the chosen  x c  ~ does  not  

fulfil the cons t ra in ts  gk(X; Z)>-0, 1<~ k <~ m for the observed  values o f  the r a n d o m  

parameters.  

The essent ia l  results concern ing  the objec t ive  funct ion  in (1) are summa r i z e d  in 

the fo l lowing l emma (see e.g. [10]): 

Lemma. Let ~ : ~ x ~ ~ R ~ be Lipschitz continuous on the set g~ for  an arbitrary z c 

and let the Lipschitzian constant k~(z) be integrable with respect to F. Let the gradient 
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134 J. Dupa?ovd / Stability in stochastic programming with recourse 

~'~p(x; z) exist for x ~ ~ almost surely with respect to F and let Eric(x; z) be finite 
at least for one point x ~ 2~. Then EFw(x; z) is Lipschitz continuous on ~, the gradient 
~TxE~q~(x; z) exists for x c ~ and 

7~Ev~o(x; z)= EvVxr z). (2) 

Remark 1. Under assumptions of the Lemma, the existence of the expectation 

f ( x ;  F) = Er{c(x) -q~(x;  z)} 

is evidently guaranteed for all x e zT. Under the additional assumption that q~(. ; z) 
is convex on ~r for all z ELr and c is concave, then the function f ( x  ; F) is concave, 
ditterentiable on ~. 

As in stochastic linear programming, the optimal solution x(F)  of (1) (provided 
that it exists) depends on the assumed distribution F. In many real-life situations, 
however, the assumption of a completely known distribution F is hardly acceptable 
and the solution of (I) should be thus at least supplemented by a proper stability 
study with respect to F. In the robust case, a small change in the distribution F 
should cause only a small change of the optimal solution. In the preceding papers 
[4, 5], the first attempts were made to study stability of the optimal solution x(F)  
of (1) with respect to the distribution F and its parameters through completing the 
approaches developed for nonlinear programming stability studies by suitable statis- 
tical methods. In this paper, local behaviour o f x ( F )  will be studied via t-contamina- 
tion of  F by a distribution G belonging to a specified set of  distributions (see [3, 4] 
for special cases), i.e., instead of F, distributions of the form 

F , = ( I - t ) F + t G ,  0<~t<~l, (3) 

will be considered. In (3), F, is called distribution F t-contaminated by distribution 
G and for our purpose, the G~teaux differential 

x ( F +  t ( G -  F ) ) - x ( F )  
dx ( F ;  G -  F) = lira 

t ~ 0 '  t 

of  the optimal solution x(F)  at F in the direction of G - F  is of  importance. 
Disregarding the constraints (i.e., taking ~ = R " ) ,  the optimal solution x(F,) of 

the program 

maximizef (x ;  F , )=  El_{c(x)-  r  z)} (4) 

should fulfil the system of n equations 

q,(x: F,)=0 

where (for F, G fixed) g' :11~" x<0, I)--,R" and its components 

tO~(x; F,) = .-55-f(x; F,), I ~<j~< n, 
oxj 
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are assumed to exist for all j. Obviously 

~ ( x ; F , ) = ~ ( x ; F ) + t [ ~ ( x ; G ) - ~ ( x ; F ) ] ,  0 ~  < t<~ l .  

Using the implicit function theorem, the GSteaux differential d x ( F ;  G - F )  can 
be computed under suitable differentiability and regularity assumptions; taking into 
account that O(x(F) ;  F) = 0, we get 

dx (F ;  G -  F ) = - D - ~ ( x ( F ) ;  (3) 

where 

D=k(aqJJ(X(F);~ F)). k=(,92f(x( ,~x~ F)) ,  I <~J, k <~ n" 

To obtain the G~teaux differential d x ( F ;  G - F )  of the optimal solution of  (1), 
we shall use the theory of perturbed Kuhn-Tucker  points and strongly regular 
equations developed in [12], [13]. In principle, if is possible to get G~teaux differen- 
tials of optimal solutions for probabilistic constrained programs using similar tools. 

The knowledge of the G~teaux differential of x (F )  at F in the direction of G - F 
is useful not only for the first order approximation of  the optimal solutions corre- 
sponding to distributions belonging to a neighbourhood of  F but also for deeper 
statistical conclusions on robustness, namely, in connection with statistical properties 
of the estimate x(F,.) of x (F ) ,  which is based on the empirical distribution F~. For 
the special choices G = ~u (degenerated distributions concentrated at one point u), 
the Gfiteaux differential d x ( F ;  8u -  F) corresponds to the influence curve OF(u) 
widely used in asymptotic statistics. Different characteristics of 12F(y) suggested in 
[9] measure the effect of  contamination of  the data by gross errors, the local effect 
of rounding or grouping of the observations, etc. 

We shall concentrate upon obtaining formulas for the G~teaux differentials under 
different assumptions leaving the detailed investigation of the statistical aspects to 
a forthcoming paper. We shall start with the general constrained case with 

~. = {x~R~: g~(x) ~> 0, 1 <~ i<~ m, hr(x) =0,  1 <~ r<~p}; 

the Lagrange function and the Kuhn-Tucker  points will be denoted by 

L(w; F)=f (x ; -  F)+ ~ u,g,(x)+ ~ Vrhr(x), 
i .= l  r = l  

w(F) = [x(F) ,  u(F) ,  v(F)] and I (F)  = {i: g,(x(F)) = 0}. 

Theorem I. For the program 

maximize f ( x ;  F):= E v { c ( x ) - r  z)} on theset~s 

assume 

(i) /~={x~":g , (x )>~O, l<~i<~m,h , (x )=O, l<~r<~p}#(3 ,  

gi, 1 <~ i <~ m, h~, 1 <~ r <~ p, are twice continuously differentiable, 

(5) 

(6) 
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(ii) c : ~f-* R l is twice continuously differentiable. 
(iii) The distribution F on (~,  ~ )  and the function ~p : �9 x 3~ -* • l fulfil the assump- 

tions of  the Lemma and the mean value E~-~o(x ; z) is twice continuously differentiable. 
(iv) For the program (5) with �9 given by (6), Kuhn-Tucker conditions of  the first 

and second order, the linear independence condition and the strict complementarity 
conditions are fulfilled for w(F)  = [x (F ) ,  u (F) ,  v (F) ]  ~ R" x R~ x R p, and the matrix 

C =V2~L(w(F);  F) 

is nonsingular. 
(v) There is a neighbourhood ~ ( x ( F ) ) c  R ~ on which tp and the distribution G on 

(~, ~zr) fulfil the assumptions of  the Lemma and Eor  z) is twice continuously 
differentiable on r 

Then: (a) There is a neighbourhood ~7( w( F ) ) c R" x R "~ x R p, a real number to> 0 

and a continuous function w :(0, to)~ ~(w(F) ) ,  w(O) = w(F)  such that for any t c 
(0, to), w( t )= [x(t) ,  u(t),  v(t)]  is the Kuhn-Tucker point of  

max f ( x ;  F,):= EF,{c(x) -  r  z)} (7) 
x C ,~:  

for which the second order sufficient condition, the linear independence condition and 
the strict complementarity conditions are fulfilled. 

(b) The Gdteaux differential d x ( F ;  G -  F) of  the isolated local maximizer x( F) 
of  (5), (6) in the direction of  G - F is given by 

d x ( F ;  G - F) = - D - ' V ~ L ( w ( F ) ;  G), (8) 

where 

D - '  = [ I  - C - I P ( P T C - I P ) - I p T ] c  -I, 

P =[V~g,(x(F)),  ie  l (F ) ,Vxhr (x (F) )  , 1 <~ r<~p] 

and I is the n-dimensional unit matrix�9 

(9) 

Proof. The first assertion of Theorem 1 can be proved by means of  the implicit 
function theorem as in [12, Theorem 2.1]. To prove the second assertion, we shall 
use the implicit function theorem once more�9 (See also [7] for a similar approach.) 

For the sake o f  simplicity assume that I ( F ) = { I  . . . .  ,s},  denote by t i e r  ~ the 

projection of u into R ~ and define 

q-" :W" XR S XlR p x(O, I)-.+ W" XR" XW", 

a vector valued function whose components are 

�9 cghr(x) I <~j <~ Oj(x, f~, v; t) af(x F,) F u, , n, _ _ _  ~ 0g,(x)+ ~ v, 
c~xj i=, Oxj . = 1 Oxj 

~ .+~(x ,a , v ; t )=g i (x ) ,  I<~i<~s, 

0.+,+,(x, fi, v; t ) =  h,(x), 1 <~ r<~p. 
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Under our specification of I(F), the system ~(x ,  a, v; t) = 0 together with u~ = 0, 
s + 1 <~ i <~ m, forms the local Kuhn-Tucker conditions of the first order for problem 
(7) with t < to and according to (i), (ii), (iii), (v), there exists a neighbourhood 
6(x(F)) on which ~(x ,  ti, v; t) is continuously differentiable with respect to all 
variables. The matrix 

attt(x, a, v; t) D(x,a,v;t)= 0~(x-'u--'v;t) l<~j<~n, , l<~i<~s, 
\ ax~ ' aui 

_ ( V ~ . L ( w ;  F,) 

axl,(x,a,v,t) I<~r<~p ~ 
) 

with w=(x,  ti, 0, v) and 0 e R  "-s  is nonsingular for w= w(F) according to (iv). 
derivatives of i f ( t )=  This implies the existence of continuous right-hand 

[x(t), t~(t), v(t)] at 0: 

where 

d~(O+------)- D(ffp(O);O)-t~t ~ ( ~ ( 0 ) ; 0 )  (10) 
dt  

a 
- -q ' (~(O);  O) 
at 

=(Vxf(x(F); G)-Vxf(x(F);o F)) 

(Vxf(x(F); G)+ ~ u,(F)Vxg~(x(F))+ ~ vr(F)Vxhr(x(F))) 
i = l  r = l  

0 

(VxL(w(0F); G) )  (11) 

Formula (8), (9) follows from (10), (!1) by inversion of the block matrix 
D(~(0); 0)= (pc; - 8); the firstequality in (11) follows from VxL(w(F); F)= O. 

Remark. Due to the fact that (7) is a special type of a linearly perturbed nonlinear 
program, the Gfiteaux differentials of x(F) at F both in the direction of G-F and 
in the direction of G are equal: dx (F ;  G-F)=dx(F; G). 

For ~ polyhedral we get, as a special case of Theorem 1, 

theorem 2. Let in the problem 
max f(x; F) = EF{c(x)- ~p(x; z)} (12) 



138 J. Dupa~oc~i / Stabili ty in stochastic programming with recourse 

the following assumptions be fulfilled: 

(i) W = {x E R": Px = p, x/> 0} # (3, P(r, n), p ~ •" are a given matrix o f  rank r and 

a given vector; let the vertices o f~[  be nondegenerate. 
(ii) c: ~ R 1 is twice continuously differentiable. 

(iii) The distribution F on (~, .~ and the function ~o : ~' x ~ ~ ~ l fulfil the assump- 
tions o f  the Lemma and the mean value Et-~o(x; z) is twice continuously differentiable. 

(iv) There exists a K u h n -  Tucker point [x(F);  zr( F)] for  (12) such that the second 

order sufficient condition and the strict complementarity conditions are fulfilled. For 

J = { j : x j ( F )  > 0}, the matrix 

c, 1,3  
\ Ox i OXk ' 

is nonsingular. 

(v) There is a neighbourhood ~ ( x ( F ) ) = R "  on which the function ~o and the 

distribution G on (~ ,  .oj~) fulfil assumptions o f  the Lemma and f ( x ;  G)  is twice 

continuously differentiable on C(x(  F)  ). 

Then (a) There are neighbourhoods Ct( x(  F)  ) c C( x(  F)  ), ~ c gU, a real number 

t o > 0 and continuous funct ions 

x:(0,  to)~Cl(x(F)) ,  x ( O ) = x ( F ) ,  

w:(0, to)~ T'('n'(F)), or(0) = w(F) ,  

such that for  any t c (0, to), [x(t);  ~(t)] is a K u h n - T u c k e r  point for  the problem 

m a x f ( x ;  F,) = EF,{c(x) - r  z)} (14) 
x ~ ,~' 

with Ft = (I - t ) F + tG, 0 <~ t <~ 1. The second order sufficient condition and the strict 

complementarity conditions are fulfilled for  [ x (t) ; ~'( t ) ] and 

x~(F , )=x~( t )=O,  j ~ J ,  

xj(F,)=xj(t)>O, jeJ. 

(b) The vector dx j (F ;  G -  F) o f  the components o f  the G~teaux differential o f  the 

isolated local maximizer  x(  F)  o f  (12) in the direction o f  G - F  for  j E J is given by 

dx j (F ;  G - F ~ = - D } ' q t j ( x ( G ) ;  , r (F) ;  G) (15) 

where 

D j  ' = [ lj  - C ) ' P ~ ( P s C ; ' P ~ ) - ' P s ] C j ' ,  

P~ = (Pk j ) ,~k~ , ,  
~c:J 

lj is a unit matrix o f  dimension s = card J and Cj is given by (13). 
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The remaining components o f  the G~teaux differential d x ( F ;  G - F )  are equal to 

zero. 

In the special case of a simple recourse problem with random right-hand sides 
and with ~-~ R~, i.e., for 

max EF C T X - qi aOxj - bi , (16) 
x ~ 0  i =  I j I 

we have the following theorem: 

Theorem 3 [4]. Assume:  

(i) F is an m-dimensional continuous distribution o f  b for  which EFb exists. 
(ii) The optimal solution x(  F)  o f  (16) exists and the strict complementarity condi- 

tions hold true. Let J = {j : xj(F) > 0}. 
(iii) q~ > O, 1 <~ i ~ m, A.t = (a,j), I <~ i <~ m, j ~ J has ful l  column rank. 
(iv) The marginal densities f~, 1 <~ i <~ m, are continuous and positive at the points 

X,( F) = ~ j~ j  aqx~( F),  I <~ i <~ m, respectively. 

(v) G is an m-dimensional distribution whose marginal distribution functions Gi 

have continuous derivatives in a neighbourhood o f  the points X i ( F ) =  ~ .~ j  aoxj( F) ,  

I <<- i <~ m, respectively. 
Then (a) There is a neighbourhood tT(x(F))  and a real number to> 0 such that the 

program 

max Ev, crx  - qi a i jx j -b ,  (17) 
x ~ 0  ~=1  j I 

with Ft = ( 1 - t) F + tG has a unique optimal solution x(  Ft ) E G( x (F) )  for  any 0 <~ t < to, 
xj( F,), j c J are nonzero components o f  x(  F,) and xj(F,) = 0 for  j ~ J. 

(b) Components o f  the Gdteaux differential o f  the optimal solution x ( F )  at F in 
the direction o f  G - F  corresponding to the nonzero components o f  x ( F )  are given by 

d x j ( F ;  G - F ) =  ( A ~ K A j ) - ' ( c j  - A ~ k )  (18) 

where cj = (cj)j~j, k = (k,), 1 <~ i <~ m with 

k,= qiGi(h~ ~ a ,hxh(F)) ,  1<~ i<~ m, 

and 

Theorem 3 illustrates, inter alia that the assumption of twice continuous 
differentiability of f ( x ;  F)  can be fulfilled in practice. For detailed discussion of  
this question see [15]. 
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ExampLe. Let us compute the influence curve corresponding to the case considered 
in Theorem 3. Having solved the program (16) for the chosen distribution F, the 
set J, reduced matrices Aj, cj and the diagonal matrix K are known. Let u ~ Ax(F) 
be a chosen point and G = 8~. For the vector k we have k = q(u; F), where 

q,(u; F)=q,  if u ,<X,(F) ,  

= 0 otherwise. 

The influence curve OF(u) is given by 

OF(U) = (A~KAj)-I(cj - AXjq(u; F)) 

and to get its characteristics, e.g., the gross-error-sensitivity 

3'* = sup IlaF(u)ll 
u 

means to solve a discrete optimization problem 

maximize~[~otkj(cj-~Siq~ao)]  2 (19) 

with zero-one variables ~5~, l ~ i ~ m .  (In (19), ak/s denote the corresponding 
elements of  (A~KAj)-t.) 

The assumptions of strict complementarity play an essential role in the proofs of 
Theorems 1, 2 and 3. They guarantee that the interval (0, to) on which w(t) (resp. 
[x(t) ,  It(t)]) is the Kuhn-Tucker  point of  (7) (resp. of (14)) is nonempty. Alterna- 
tively, the strict complementarity conditions can be replaced by the strong second 
order sufficient condition [ 13] which gives the existence of  continuous Kuhn-Tucker  
points on a nonempty interval (0, to). This approach was applied in imbedding 
methods [8] and it will be used to get parallel results in our case. 

Without assuming the strict complementarity conditions in (5), (6) denote 

I+(F) = {i: g,(x(F)) = 0 and u,(F) > 0}, 

I~ = {i: g,(x(F)) = 0 and u,(F) = 0} 

and formulate the strong second order sufficient condition [13]: 
For each y ~ 0 with 

yrVxg,(x(F))=O, i~.l+(F), yrv,,h,.(x(F))=O, l~r<~p, 

the inequality yrv~:,L(x(F), u(F), v(F))y < 0  holds true. 

Theorem 4. Let assumptions (i)-(iii), (v) of Theorem ! be fulfilled and the assumption 
(iv) be replaced by 

(iv') For the program (5) with �9 given by (6), the linear independence condition 
and the strong second order sufficient condition are fulfilled for the Kuhn- Tucker point 

w(F) = [ x ( F ) ,  u(F) ,  v(F)].  
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Then: (a) There is a neighbourhood fY(w( F ) ) cR"  xR'~ xR P, a real number to>0 
and a continuous function 

w:(0, t o ) ~ ( w ( F ) ) ,  w ( 0 ) = w ( F ) ,  

such that for any t e (0, to), w( t ) = ix(t) ,  u( t ), v(t)] is the Kuhn- Tucker point of 
m a x f ( x ; / : ; )  := EF,{C(X)- ~(x;  z)}. 
xEZ~" 

differential d x ( F ;  G-F)  is the unique solution of the quadratic 

subject to 

I T 2 ~x V~xL(w(F); F)x + xXVxL(w(F); G) 

xVV,g,(x(F)) = 0, 

x rV,g,(x( F)) >I O, 

xrV~h,(x(F)) = 0, 

ie I+(F), 

i c I~ 

l<~r<~p, 

(20) 

and du( F; G-F),  dv(F ;  G-F)  are the unique Lagrange muhipliers for (20) related 
with dx(F; G-F)  with zero components du,(F; G-F ) f o r  i~ I(F). 

Proof. The first part follows from [13, Theorem 2.1] and the second one is a variant 
of I8, Theorem 5]. 

Assuming strict complementarity condition valid for the optimal solution 
dx(F;  G - F )  of  (20), one can get the new active set I(F,) for (7) with t small enough: 

I(F,) = l + ( F ) u { i e  I~ d x ( F ;  G-F)TV,g~(x(F))=0} 

[8, Corollary 1]. For the special case of Theorem 2 we have 

l + ( F ) = { j : x j ( F ) = O a n d ~ f ( x ( F ) ; F ) + ~ p k F r k ( F ) < O } ,  

I~ = j: x j (F)=0andoxJ(X(F);  pkjTrk(F)=0 $ 

so that J = { I , . . . ,  n } - [ l§  u I~ The program (20) has the form 

! T 2 maximize ~x Vx , f (x (F) ;  F ) x + x X V j ( x ( F ) ;  G) 

subjectto x j = O , . j ~ I §  xj~O, j e I ~  

and for t > 0  small enough, the new set J(F.)  = {j: xj(F,) > 0} fulfils 

Jc  J(F,)c Ju  I~ 

In the simple case where I ~  {jo}, we have explicitly 

Theorem 5. Let assumptions (i)-(iii), (v) of Theorem 2 be fulfilled. Assume further 
the existence of a Kuhn-Tucker point i x (F) ,  r r(F)]  for (12) such that the strong 
second order sufficient condition is fulfilled and l~  = {Jo}. 



1 4 2  J .  Dupa(ootl / Stability in stochastic programming with recourse 

Then: (a) There exist a neighbourhood t~(x( F)) and a real number to > 0 such that, 
forO<~t<to, 

xj(t) = 0, j ~ J ~ 1 7 6  

and x( t) is the isolated local maximizer of one of the following problems: 

max{f (x ;  F,): x ~ f ~ }  or max{f  (x; F , ) : x c ~ j o }  

where for H c { i , . . . ,  n}, 

~ .  = { x C R " :  Px=p,x~ = 0 , j ~  H}. 

(b) Correspondingly, the components of the G~teaux differential are 

d x n ( F ;  G-F) I = _(CH 
dzr(F;  G-F) ] P .  

where for H = J or jo  

=(a2f(x(F); F)) 
Cn \ ax~ axj ~,j~ . '  PH = (Pkj)l<<_k~r, 

jCH 

(af(x(F); G) r I 
~ . ( x ( F ) ,  z r ( f ) ;  G) = k ~xj + Z pa~zrk(F) 

k =  1 / j ~ :  H 

The remaining components of d x ( F ;  G-F) for j ~ H equal zero. 

By specifying the set ~d of distributions G under consideration, the effect of 
t-contamination of F by distributions belonging to ~ on the optimal solution x(F)  
can be studied. As a rule, F e ~. Typical examples are 

1. F uniform distribution of  the random vector z on a closed interval I c I~ t and 
~d the set of  distributions such that 

EGZ=EFZ and PG(z~I )=i  VG~q3. (21) 

2. The marginal distributions Fi are normal N(/zi, cr~) and q3 is the set of  distribu- 
tions of  the random vector z or R t such that 

Ecz, = ~,, varG z~ = cr 2, 1 ~< i <~ 1, VG e ~. (22) 

In this context, the extremal distributions belonging to q3 are of  main interest, 
For the derivative of  the objective function in (7) or (14) 

3 
~ f ( x ;  F,)=f(x:  G ) - f ( x ;  F) 

we have, for all G c ~, 

f (x ;  G ) - f ( x ;  F)<~-~.f(x; F,)<~ sup f ( x ;  G ) - f ( x ;  F). inf 
( j  C ~f/ Oi G ( ~  
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Let G*, G** be such that 

inf f(x; G)=f(x; G*), sup f ( x ;  G ) = f ( x ;  G**). 

The local changes of  x(F) in the direction of G * - F  or G * * - F  give the extremal 
local decrease or increase of the optimal value of the objective function f(x; F). 
The c o r r e s p o n d i n g  p r o b l e m ,  for  G = G * ,  

m a x f ( x ;  (I - t ) F +  tG*)  = m a x  [(1 - t ) f ( x ;  F) + t i n f  f ( x ;  G ) ]  

can be evidently related to the Hodges-Lehman decision rule [14] or to the Nadeau-  
Theodorescu restricted Bayes strategies [11]. The existence of the extremal distribu- 
tions G*, G** has been proved for wide classes of recourse problems and for various 
sets ~ of distributions, e.g., for the sets qd given by (21) and (22). For details see 
[1,2,6]. 
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