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In this paper, stability of the optimal solution of stochastic programs with recourse with respect 
to parameters of the given distribution of random coefficients is studied. Provided that the set 
of admissible solutions is defined by equa[ity constraints only, asymptotical normality of the 
optimal solution follows by standard methods, If nonnegativity constraints are taken into account 
the problem is solved under assumption of strict complementarity known from the theory of 
nonlinear programming (Theorem 1). The general results are applied to the simple recourse 
problem with random right-hand sides under various assumptions on the underlying distribution 
(Theorems 2-4). 
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1. Introduction 

When  solving stochastic programs,  complete  knowledge  of the distr ibution of 

r andom coefficients is usually supposed.  In real-life situations, however ,  this assump- 

tion is hardly acceptable and the c o m m o n  procedures  should be at least supple- 
mented  by proper  stability studies. 

Consider  the following stochastic p rogram with recourse:  

maximize E e { c T x - ~ ( x ; A , b ) }  on t h e s e t ~  (1) 

where ~ is a set of admissible solutions. An  example of (1) is when a linear program 

maximize c Tx 

subject to A x  ~ b, x ~ O, 

has some of  componen ts  of  the m-vector  b, n-vector  c or (m, n)-matr ix  A random. 
Assume 

(i) For  fixed A,  b, g~(x ; A ,  b) is a nonnegat ive  convex function of x. 
(ii) For  arbi t rary x ~ ~f, r  ; A ,  b) is a convex function of  A,  b. 

(iii) ~ c  ~ is a nonempty  closed convex set. 

Provided that the joint  distribution F of r andom coefficients is known,  (1) is in 

principle reducible to a nonl inear  determinist ic program.  Such programs have been 
studied by many authors  f rom many different viewpoints (see e.g. [11, 14]). Their  
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explicit form as well as their optimal solution depend on the given distribution F. 
In this paper uncertainty with respect to the distribution F will be taken into account. 

A first idea could be to study stability of the optimal solution of program (1) 
with respect to the underlying distribution directly. To a certain extent, it can be 
done using empirical distributions [15] or the concept of e-contamination (see 
[6, 7, 8]). In this paper, stability of the optimal solution of program (1) with respect 
to the parameters of the distribution F will be studied. Two alternatives will be 
considered: 

I. The distribution F belongs to a given parametric family of distributions. 
II. The distribution F belongs to a specified set of distributions defined by 

prescribed values of certain moments. 
In Case I, stability of the optimal solution with respect to the parameters and 

related statistical problems were studied for the simple recourse problem with 
normally distributed right-hand sides b,, 1 <<,i<~m. (See e.g. [6, 9, 16].) On the 
following numerical example ([4, 13]) dependence of the optimal solution on the 
parameter p of the symmetrical beta distribution is illustrated: 

Example. The numerical data concern a two-stage stochastic production program 
with simple recourse. The four random right-hand sides are supposed to have 
marginal distributions B(p,p)  (with the same value of parameter p) on given 
intervals. The nonzero components of the optimal solution are given below. 

Table 1 

X] X2 -[4 X6 X8 XlO XI2 X13 X14 

0 61.24 - -  - -  I64.11 - -  165.26 - -  141,91 - -  
1 
.~ 70,93 0.64 - -  160.34 2.50 183,62 5.03 172.25 0.47 

72.86 0.60 163.33 9.38 184,17 12,93 178.90 1.05 4 

! 78,12 1.78 - -  73.36 114.54 76.71 136.48 195.35 9.31 

1 76.25 5,09 4.47 14.10 195.15 17,35 229.63 176.31 52.55 

61.95 16.81 19.~J2 22.56 214.48 22.90 264.20 54.54 251.30 

..!, 32.05 33.37 40.40 22.24 230.35 22.66 290,17 48.91 243.04 

,~ 37.56 57.53 15.09 18.48 245.67 18.48 309.34 34.50 274.86 

Let us summarize the problem we face in Case I. Our aim is to solve the program 

maximize f ix ;  r/) on theset  ~ (2) 

where 

f(x; 7) =EF~{cTx -~(x;A, b)} (3) 

and ~7 is the true parameter vector of the distribution F. If "0 is not known precisely, 
it is substituted by an estimate, say y, and the substitute program 

maximize f ix  ; y) on the set ~" (4) 

is solved instead of (2). 
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In Case II, one admits that the knowledge of the distribution F is not complete 
but limited to the fact that the distribution F belongs to a given set Y; of distributions. 
One approach is via minimax [17]; any optimal solution of 

maximize f(x)  = min EF{cTx --W(X ; A, b)} (5) 
xE~  ~" F e ~  

will be called the minimax solution of stochastic program (1). 
For solving problem (5), general results concerned with the moment  pro01em 

can be used provided that the set ~ is defined by prescribed values, 33, of certain 
moments of distributions F ~ ~-: 

Let Z ~ R ~ and g = (g ~ . . . . .  gk) : Z --, R k, h : Z ~ ~ be a Borel measurable mapping 
and function, respectively. Denote  g (Z)  the image of the set Z in mapping g, 
Y = c o n v g ( Z )  and assume that int Y r  For 33 ~int Y denote by ~ .  the set of 
distributions of a random vector z on (Z, ~ z )  such that g~ . . . . .  g~, h are integrable 
with respect to all F ~ ~ .  and 

E~g(z)=n VF ~ ~ . .  (61) 

The problem is 

U(33)= sup E~h(z) or L(n)  = inf Evh(z). (17) 

In many important cases, the suprema or infima in (7) are assumed by a discrete 
distribution F * ~ .  and, correspondingly, for o ~ = ~ . ,  the explicit form of the 
objective function in (5) can be found (see [4, 5, 17]). As a result, one gets relatively 
easily computable interval estimates for the optimal value of program (1): 

max rain Ev{c3:x -q~ (x ; A, b)}~ m a x  EF{gTx --~O (X ; A, b)) 
xeW  F ~ .  " x c ~  

~ m a x  maxEF(eTx - ~ ( x ; A ,  b)} V F ~ . ,  

The explicit form of the objective function 

f(x" r / )=  min EF{eTx--q~(X ;A, b)} 
' F ~ "-~n 

and the optimal solution of (5) depend on the parameter  vector 33. When the 
prescribed values 33 of the moments are not known precisely enough, which is often 
the case, the problem of stability of the minimax solution comes to the fore. Similarly 
as in Case I, one substitutes 33 by an estimate y and solves the substitute program 

max f(x : y) = rain EF{CTX --q?(X" A,  b ) }  ( 8 )  

instead of m a x ~ f ( x  ; 33). 
Leaving aside the deterministic stability concepts such as the global and local 

stability (for a result concerning Case II see [7, Theorem 6]) we shall aim to prove 
asymptotical normality of the optimal solution s of the substitute programs (4) 
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and (8). Provided that the set X of admissible solutions is defined by equality 
constraints only, asymptotical normality of the optimal solution follows by standard 
methods of mathematical statistics (see similar results for the case of maximum 
likelihood estimates [1]). Inequality constraints, however, bring along additional 
problems. In this paper, nonnegativity constraints are taken into account. 

2. General theorem 

Let Y c R" be an open set, rt c Y and f :  N" x Y --, I~ ~. Let the set of admissible 
solutions 

E' ={x e I~" :Px = p , x  i>0} (1) 

where P-(r, n) and p e N "  are a given matrix and vector, r ( P ) = r  For any y~ Y, 
let s denote the optimal solution of the program 

maximize f(x;y) o n t h e s e t ~ .  (2) 

For the optimal solution ~ (aT) of the program 

denote 

maximize f (x;  n) on the set ~o, (3) 

J={/:Yj(~)>O}, cardf=s ,  s163 P/=(Pkj)1~k-~. 

\ Oxj Oxt . 
(4) 

Theorem 1. Assume : 

(i) For any y ~ Y, f(-  ; y) is a concave function on ~" such that the second order 
derivatives 

: f  ozy 
axj ax~' o.rj Oy~" l <~ j' t ~ n' l <~ i <~ m' 

exist and are continuous in a neighborhood of the point [~ (7t), ~] and the matrix CI 
is nonsingutar. 

(ii) y~  is an asymptotically normally distributed estimate of  the vector of  true 
parameters, ~1 E Y:  

~fN(),N - -q) ~ N(O, Z) 

with a known nonsingutar matrix ,Y,. 
(iii) The set of  admissible solutions (1) is a nonempty convex polyhedron with 

nondegenerated vertices. 
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(iv) A strict complementarit), condition hams true for the components of the optimal 
solution .~ (tl ) and of the corresponding vector :r( o ) of multipliers: 

Ox  i k = 

Then asymptotically 

./N(~;(y")-~:(n). 1 ~i ~<n) ~N(O. V.) 

with the variance matrix 

\ oy : Y ( ~ y " > ) ~ ;  

the submatrix O.(,(n)/oy) -- (~s ~ 
lmi~rn 

and 

(6) 

of the matrix (Os is given by 

--~y / - u ~ -  J ~-~t :.~J r s :  j j  j ~ (7) 

Os f o r j ~ J , l ~ i < ~ m .  (8) 

The rank of  the distribution (6) is determined b), r(V~). 

Proof. (a) According to (i), (iii) for arbitrary fixed y e Y there is an optimal solution 
.~(y) of program (2) which together with the corresponding r-vector ~'(y) of 
multipliers fulfils the local Kuhn-Tucker  conditions 

v d ( ~ ( y ) ;  y) +Prr7 (y) ~ O, 

e.~(y), - p - - O ,  

; ( y ) ~ O ,  

(y)T[v~ f(~ (y); Y ) + p ' r~  (y)] =_ O. 

(9) 

(10) 

(11) 

(12) 

Using (iv), these conditions can be for y = 17 rewritten in an equivalent form 

dxj 

of(;(,), n) 
Ox/ k 

Pk~ft(t/), -Pk --0, l<-k<-r, 
jey 

s  j ~ J  and ,~j(~7)=O, j ~J .  

(13) 

(14) 

(15) 

(16) 
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Denote by f) : ~" x y ~ R ~ the function for which 

f , ( x ;  y)  =- f ( ; ;  y) ,  

where ; i - x i  for j ~Y, and _i:~ =0  for j~ J .  Let/~i: ~' x ll~ x y _ ,  ~a, ~ : W  x ~ '  x 1"~ 
N1 be defined by 

�9 "" ~ ,_. Pkdrk, j 
Oxi k=~ 

/'k(Xs, w',y) = ~ p~jx~-pa,  l ~ k  ~ r .  
j ~ l  

In view of (13)-(16), the system of equations 

/7,(x,,Tr;y)=O, ~cA (17) 

[k(x,, ~ ;  y) = 0, l < ~ k ~ r , "  (18) 

has a solution, namely, .~,(r/)>0, ~'(r/), rl. Functions gj, j e J ,  lk, l ~ k ~ r ,  are 
continuously differentiable with respect to x t, j s J and rrk, 1 ~< k ~ r. The matrix 

( Cj, y P ~ )  w h e r e C . t v = ( O 2 f s ( s  , 
e ,  " , Jl.,o, 

of their derivatives with respect to x i, j ~ J and r is nonsingular. According to the 
implicit functions theorem, there is a neighborhood O~(rt) such that for arbitrary 
y~O~(rt) ,  the system (17), (18) has a unique solution .f,(y), #(y),  y and the 
components of )?s(y), ~'(y) are continuously difterentiable functions of y. Their 
derivatives are given by 

~ . ,  

~' (iV ,' 

with 

8,, =(0 y!) 
' \ Ox i Oyl / e ~  �9 

Assumption (iv) together with the continuity of both .i ~, (y) and ~ (y) implies that 
there is an open neighborhood O2(rt)c Ol(r/) such that, for arbitrary y ~ O=(r/), 
the inequalities 

; i ( y ) >  O, / ~ J ,  (2(/I 

)+ �9 0 f , ( ; , ( y ) ; y l  v ~ �9 .,~ pk:crk(y)<O, . i f ;J,  (21~ 
OX i k ~ i 

hold true. 
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For y �9 O2(r/), the local Kuhn-Tucker  conditions (9)-(12) are evidently satisfied 
by the vector s consisting of components ~j(y), [c  J, and zeros for ] ~ J  and by 
the vector ~-(y). The index set J of nonzero components of the optimal solution 
s remains thus fixed for all y c 02(0). The matrix of the first order derivatives 
(a;/0y) contains the submatrix (0~s/~y) defined by (19) and zero elements for 

] ~J, l <-i ~m.  
(b) According to (ii) and [12, p. 388], 

") 
\ Oy / \ 0y / 

where the explicit form of (O,fj (r~)/0y) follows from (19) by formula 

/ - '  I C ,pT.......,-,,.,'r C - , p T  p ,p'r..-,. C.s P ~  [ I -  ,s strjc.s rs ) - 'Ps]CJ '  s , (  sCs jJ "~ 
=[ p 1p'r)-lp -1 . ,p ,c-Ipr,  l ]. P~ O] ( ~Cj j xC~ - t  # s  J; 

The assertion of Theorem 1 follows from these arguments and from the form of 
(0s obtained in the part (a) of the proof. 

Remark 1. All elements of (Os are continuous on a neighborhood of r/, so 
that the asymptotical distribution (6) can be substituted by 

\ 3y ] \ ~ ~ - ~ y  / / 

(see [12, p. 388]). 

Remark 2. Let's denote by ~(y) the optimal solution of the problem 

maximize f(x; y) on the set {xcW': Px=p}. (23) 

Condition (5) means that for y =r/  the optimal solution of (23) does not belong 
to the boundary of the nonnegative orthant R~-. 

To simplify the matter we shall discuss condition (5) under assumptions that, in 
addition to (i)-(iv), yN is a strongly consistent estimate of rt and f ( . ;  y) is strictly 
concave on ~" for all y belonging to a neighborhood O(rt). 

If -~(~7 ) is not a boundary point of R~- then with probability 1 for N large enough 
~(yU) is not a boundary point of 1~7_ and vice versa (due to continuity of Y(y) on 
0(3/) and to strong consistency of yN). The fact that the strict complementarity 
condition holds true for s thus indicates that the condition (5) is fulfilled. 

Let us study the error of approximation in (6). Introducing higher-order moment 
assumptions, the Berry-Ess4en theorem can be made use of: 

In addition to assumptions (i)-(iv) of Theorem 1, let y ~, 1 ~< u ; N, be a sequence 
of i.i.d, m-dimensional random vectors such that 

Eyl=r~ ,  v a r y l = E ,  E[y)13<oo, l<~i<<_m. (24) 
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The arithmetical mean 

f f  1 N 

fulfils evidently assumption (ii) of Theorem 1. 
Let the function f have bounded and continuous derivatives 

Cf o'f o3r 
Oxi Oxt OXh ' Oxi Ox~ Oyk ' OX/ Oy~ Oy~ ' (25) 

l ~ L l ,  h<~n,l<~i,k<~m 

in some neighborhood U of [.~(rt), rt]. Then we have (see e.g. [2]) 

sup [ P{4N(.r  - s <- ui, / �9 J} 
I 

- f u ~ . ~  Cvi(Z) dx (26) 

where 4~v~ is the probability density function of (22), 

[ z ] } 

and d depends only on the moments of y~ or orders three and less and on the first 
order derivatives (~ /Oy)  on U. 

3. Special eases 

The general result of Section 2 will be applied now to the simple recourse problem 
with random right-hand sides only, under special assumptions on the underlying 
family of distributions. 

(i) 

with. 

Theorem 2. Assume 

f ( x ; y ) = c T x - E o ~  ~ lq i (Xi-bi )+ 

pl 

Xl = .v aqxi ' 1 <~i <~ m,. . 
f 1 

A = (a~j), l<_i<_m,l<_j<~n, of the full column rank, 

qr l<~i<.m. 
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(ii) &, 1 ~ i ~ m, are random variables with given continuous marginal distributions 
that depend on location parameters ~7., 1 <~ i <~ m, respect&ely. 77~e corresponding 

densities are denoted by &(.; ~ ,  1 <-i ~ m, and the mean values IS&, 1 ~< i ~ m, are 

supposed to exist. 
(iii) y r,~ is an asymptotically normally distributed estimate of the true parameter 

uector 1"}, t.e., 

(iv The set Y? of admissible solutions satisfies assumptions (iii), (iv) of Theorem l. 
(v) For the optimal solution x('o) ~ arg max,~e/"(x ; rt) corresponding to the true 

parameter vector ~7, g; is continuous in a neighborhood of the point 

and 

(~" a,>{i(r~); n) >O, l ~ i < ~ m .  

Then asymptotically 

V~(~j(y ~') -.i~,(n), 1 ~ j  ~< n ) -N(O,  V2) 

where, for the variance matrix 

we substitute 

C =  A T O A ,  

with. 

B =ATQ 

(2) 

Q = dlag(qig, Q.Vl a,~.f,(rl); rh), 1~<i 

in (2.4), (2.7). 

Proof. The proof follows from Theorem 1 by direct computation of matrices 

(a>x; % c =(a2tc iz),) B=  g G  7 
\ 8xj 3x~ / 

For computation of B, the assumption (ii) is taken into account: The marginal 
distribution function Gi(X~; yi) can be written as (~(Xi-yi)  where G~, again, is a 
distribution function. 
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An analogical result for bi ~N(/x;, cr,), t ~ i ~ m, with estimated location para- 
meters ~, is given in [6] under more limiting assumptions than those considered here. 

In case of unknown scale parameters we have 

Theorem 3, L e t  the assumptions (i), (iii), (iv), (v) o f  Theorem 2 be fulfilled. Le t  &, 

I ~ i ~ m, be random variables with k n o w n  continuous marginal  distributions that  

depend on scale parameters 7t~ >0,  respectively, and  let the mean values  E&, 1 <~ i <~ m, 

exist. Then asymptot ical ly  

4N{~Ay N) - xs(n), 1 -<i <n} ~N(0,  Vs 

where, for tl, e variance matrix  V3, 

[ 1 ~" aqs  c = - A  T Q A ,  B = A TO diag i-% 

with 0 given by (2) is subst#uted in (2.4), (2.7). 

Proof. The proof again follows by direct computation of matrices C, B. The 
marginal distribution function G~(XI; y;) depending on a scale parameter y~ can be 
written as G e ( X J y O ,  where G~ is a distribution function. 

As the last application, the case of minimax solution will be studied. The set of 
distributions under consideration will be specified through prescribed mean values 
and variances: 

.5~.,,z = {F: Evbr = rh, varFbi -= o'2 > 0, I ~ i ~< m}, 

The objective function 111.5) has the form (see [5, 4, 10]) 

f ( x ;  rt, cr2) = rain EF[cT~ ~ ~ qdXi -b i )  +} 
F~.~n.~ 2 ( i~= l 

) = C X -- ~tI,, a~vr r _ ~ v _ _ " _ zq. ~r + 71, V aqxi 
I = I  r = l  , - i  I - I  

Provided that the true mean values r~,, l ~ < i ~ m ,  have been estimated and that 
their (vector.) estimate y'4" is asymptotically normally distributed, the asymptotica] 
normality of the optimal solution s of the substitute program 

max f(.r ; yN) 
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( -, .  ,~qi c r i+  .Y"- 

again follows directly from Theorem 1. 
To summarize,  we. have 

Theorem 4. Assume  

with 

(i) 

n ~ 

a~ix j 
i=1 

f ( x ; y ) = m i n E , e l c r x  - ~ q i ( X r  +} 
F ,a_ .~%. !. ~ ~-1 

n 

Xi = V, . a~jxj, l <~ i <. m, 
i = l  

A = (a/j), l<~i<~m, l<~j<.n ,  of the ful l  column rank, 

q , > 0 ,  l ~ i < ~ m ,  

.~, = (F:  EFb~ = y~, varF bl = ~r/2 > 0, 1 ~< i ~< m }. 

(ii) y N is an asymptotically normally distributed estimate of  the true parameter 
vector rl, i.e., 

x/N(y ~ - hi, 1 <~ i <~ m)  ~ N ( O ,  X).  

(iii) The set ?~ satisfies assumptions (iii), (iv) of Theorem 1. 
Then asymptotically 

l , ^  N ,  ~'N(x,.(y ) - x j ( r l ) ,  l <-]' < - n ) - N ( O ,  Va) 

where, /or the variance matrix V4, we substitute 

c = - A ~ r K A ,  B = A T K  

with 
2 - 3 / 2  

K = diag~2qio-i + 77i - aikxk 
k ~ l  

in (2.4), (2.7). 

Remark 3. Instead of O given by (2) or K given by (4), matrices 

O r e = d i a g  q~g~ aqxi(y ) ;y  , l <~i <~m 
j t 

(3) 

.(4) 
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or  

2 -3/2 } 
= a t a g ~ q , o ' ~  [ t r ,  4- N _  ~ a ik~k(yN)  , l ~ i < ~ m  

can be used in T h e o r e m s  2, 3 o r  in T h e o r e m  4, respect ive ly .  The  reason ing  is 

s imi lar  to tha t  used in R e m a r k  1. 

R e m a r k  4, In  this case,  a s sumpt ions  (2.25) a re  fulfilled. Assuming  the ex is tence  

of  the  tJaird abso lu te  m o m e n t s  of b~, 1 ~ i ~< m, we have the  ra te  of conve rgence  

O(/N "-t/2) in (3) for the case that  the  t rue  p a r a m e t e r  vec to r  "0 has  been  e s t ima ted  

by  the  a r i thmet ica l  m e a n  ~ v  (see (2.26)). 
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