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Abstract To solve a decision problem under uncertainty via stochastic programming means

to choose or to build a suitable stochastic programming model taking into account the na-

ture of the real-life problem, character of input data, availability of software and computer

technology. In applications of multistage stochastic programs additional rather complicated

modeling issues come to the fore. They concern the choice of the horizon, stages, methods

for generating scenario trees, etc. We shall discuss briefly the ways of selecting horizon and

stages in financial applications. In our numerical studies, we focus on alternative choices

of stages and their impact on optimal first-stage solutions of bond portfolio optimization

problems.

Keywords Stochastic dynamic optimization . Horizon . Stages . Bond portfolio

management

AMS Subject classification 90C15 . 92B28

1. Introduction

In applications of stochastic programming for portfolio optimization one can exploit the stan-

dardized types of stochastic programming models (e.g., two-stage and multistage stochastic

programs with recourse, models with individual and joint probabilistic constraints, integer

stochastic programs) and the relevant software systems available or in progress; we refer to
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recent textbooks and monographs on stochastic programming (Birge and Louveaux, 1997;

Kall and Wallace, 1994; Prékopa, 1995) (see also Preface of (Wets and Ziemba, 1999) for

a list of books and collections of papers on stochastic programming and its applications),

to introductory surveys on applications of stochastic programming in finance, e.g., (Mulvey,

Rosenbaum, and Shetty, 1997; Mulvey and Ziemba, 1995) and to Part II of Dupačová, Hurt,

and Štěpán (2002).

An important task is an adequate reflection of uncertainty and of the dynamic aspects,

including further development of tractable numerical approaches. The probability distribution

P is rarely known completely and/or it has to be approximated so that one mostly solves an

approximate stochastic program instead of the underlying “true” decision problem. The task

is to generate the required input, i.e., to approximate P bearing in mind the chosen type of the

model; see e.g. (Dupačová, Consigli, and Wallace, 2000). The dynamic features are partly

reflected by multiperiod stochastic programs, e.g. (Brodt, 1984; Dupačová and Bertocchi,

2001; Dupačová, Bertocchi, and Moriggia, 1998; Golub et al., 1995; Kusy and Ziemba, 1986;

Nielsen and Zenios, 1996). Multistage models try to capture an additional important feature

of the decision processes: One is allowed to use only the available (past) information and

updates the decision when an additional information gets revealed. This nonanticipativity

condition brings along further complexity, cf. (Dupačová, 2002): Besides the formulation

of goals and constraints and identification of the driving random process ω = (ω1, ω2, . . .),

building a scenario-based multistage stochastic program requires specification of the horizon,

stages and generation of the input in the form of scenario tree. In a majority of cases, the

horizon and the stages are declared as given.

In financial models, the horizon may be often determined by the nature of the decision

problem. It may be tied to a fixed date, e.g., to the end of the fiscal year, to a date related

with the annual Board of Directors’ meeting, or to the deadline for repayment of the debt

(Dempster, and Ireland, 1988). Another possibility is to consider the horizon connected with

a time interval of a fixed (possibly even infinite) length, given for instance by the periodicity

of the underlying random process, such as the yearly cycle of a pension plan. We refer to the

discussion in Mulvey and Ziemba (1995).

The problem may be solved repeatedly, with new horizons, taking into account just the

already achieved state of the system, e.g. (Bradley and Crane, 1980; Cariño, Myers, and

Ziemba, 1998). To guarantee the possibility of such continuation, the models are usually

extended for additional constraints and/or terms in the objective function to reduce the end

effects, with or without reference to an additional, auxiliary stage.

Rolling forward after the T -stage problem has been solved, a first-stage decision accepted

and a new information obtained means to solve a subsequent T − 1-stage stochastic program

with a reduced number of stages or another T -stage problem with the initial state of the

system determined by the applied first-stage decision and by an observation of ω1, and using

process ω shifted in time.

Also selection of stages results sometimes from the problem formulation (e.g., the dates

of maturity of bonds (Frauendorfer and Marohn, 1998) or expiration dates of options) but

more frequently, stages are fixed ad hoc, by application of heuristic rules and/or experience

and regarding software and computer facilities.

Hence, for an already chosen horizon, the crucial step is to relate the time instants and

stages. To use multiperiod two-stage model or to assign one stage to each of discretization

points are two extreme cases. There are only a few papers which compare the optimal

first-stage decisions in dependence on the number of stages. We refer to Kusy and Ziemba

(1986) for a comparison of the two-stage model results with those for parallel three stage

one, to Nielsen and Zenios (1996) comparing results for 1–5 stages formulation and to the
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recent paper (Nielsen and Poulsen, 2004). Some recommendations are common for financial

applications (Cariño, Myers, and Ziemba, 1998; Mulvey and Ziemba, 1995): Accept unequal

lengths of time periods between subsequent stages, starting with a short first period. Together

with repeated rolling of the model over time, this may replace well the full dynamics of the

decision process even for problems with a few stages. Another, general suggestion (Grinold,

1986) is to break the problem with a long (possibly infinite) horizon into three phases: To

use the scenario tree structure for 1 ≤ t ≤ T1, to design just one descendant from each node

for T1 + 1 ≤ t ≤ T (i.e., the horse-tail structure) and to aggregate the rest of the process into

one additional stationary stage.

Starting with a given initial structure of the problem, one generates the input accordingly.

This includes designing the branching scheme of the scenario tree, cf. (Dupačová, Consigli,

and Wallace, 2000) and references ibidem. Evidently, one has to accept compromises between

the size of the resulting problem and the desired precision of the results. A detailed analysis

of the origin and of the initial structure of the solved problem may be exploited to aggregate

the stages, may help to prune the tree or to extend it for other out-of-sample scenarios or

branches. It is even possible to test the influence of including additional stages, e.g., using

the contamination approach. We refer to Dupačová (1995, 1999); Dupačová, Bertocchi, and

Moriggia (1998), to further papers in Ziemba and Mulvey (1999) and to various numerical

studies.

The basic information on modeling horizon and stages in financial applications is sum-

marized in Table 1, in the last column, R1 is used for rolling forward with a fixed horizon,

R2 with a shorter horizon, YFF for end effect treatment according to Grinold (1986).

Before formulating further guidelines, more experience about influence of the chosen hori-

zon and/or of its discretization into stages has to be collected using simulations, comparisons

Table 1 Survey of multistage models applied in finance

Paper Problem T Stages–steplength Comparisons End effect

(Ainassari, Kallio,

and Ranne, 1998)

Pension company 30Y 2Y, 3Y, 5Y, 2×10Y Various rules

(Bradley and Crane,

1980)

Bond portfolio 3Y yearly Ladder, barbell R1

(Cariño, Myers, and

Ziemba, 1998)

ALM - insurance 5Y 1Q, 3×1Q, 1Y, 3Y Markowitz YFF, R1

(Carino and Turner,

1998)

ALM 5Y 1Y, 2Y, 2Y Fixed-mix Bounds

(Consigli and

Dempster, 1998)

Pension plan 10Y Yearly

(Dempster, and

Ireland, 1988)

Debt financing 5Y 4× 1Q, 4× 1Y

(Dert, 1998) Pension plan 10Y Yearly Static, myopic Bounds

(Fleten, Høyland, and

Wallace, 2002)

ALM-insurance 3Y Yearly Fixed-mix

(Kouwenberg, 1998) Pension fund 5Y Yearly Fixed-mix R2

(Nielsen and Poulsen,

2004)

Mortgagor’s plan 30Y Various, 3-8 stages

(Zenios et al., 1998) Financial product 3Y 18M, 18M One-stage
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and validation of the obtained results. In this paper we focus on alternative choices of stages

and their impact on optimal first-stage solutions of the bond portfolio problem we analyzed

in our earlier papers such as (Bertocchi, Dupačová, and Moriggia, 2000; Dupačová and

Bertocchi, 2001; Dupačová, Bertocchi, and Moriggia, 1998). The problem will be briefly

introduced in the next Section and selected numerical results presented in Section 3.

2. The bond portfolio management model

Consider a bond portfolio of a risk neutral or risk averse institutional investor who wants

to maximize the expected performance of the portfolio over time. In this paper, neither

liabilities nor external cashflows are taken into account and the interest rate evolution is

assumed to be the only factor which drives the prices of the considered default free bonds.

It means that given a sequence of equilibrium future short rates rt valid for the time interval

(t, t + 1], t = 0, . . . , τ − 1, the fair price of the j th bond at time t just after the coupon was

paid equals the value at t of the cashflows f jl generated at l = t + 1, . . . , τ :

Pjt (r ) =
τ∑

l=1

f jl

l−1∏
h=t

(1 + rh)−1, (2.1)

where τ is greater or equal to the time to maturity. As the future interest rates are not known

with certainty, we accept that they are random. We assume that their probability distribution

is well approximated by a discrete probability distribution carried by a finite number of

scenarios r s, s = 1, . . . , S. We denote

j = 1, . . . , J indices of the bonds and Tj the dates of their maturities; τ = max j Tj .

t = 0, . . . , T the discretization of the planning horizon;

b j ≥ 0 the initial holdings of bond j ;

b0 the initial holding in riskless asset;

f s
j t cashflow generated under scenario s from the unit quantity of bond j at time t ;

ξ s
j t and ζ s

j t are the selling and purchasing prices of bond j at time t for scenario s obtained

from the corresponding fair prices (2.1) adding the accrued interest As
jt and subtracting or

adding scenario independent transaction costs and spread; the initial prices ξ j0 and ζ j0 are

known constants, i.e., scenario independent;

x j/y j are face values of bond j purchased/sold at the beginning of the planning period,

i.e., at t = 0;

z j0 is the quantity of bond j held in portfolio after the initial decisions x j , y j have been

made;

xs
jt , ys

jt , zs
j t are the corresponding values for period t under scenario s.

The first-stage decision variables x j , y j , z j0 are nonnegative,

y j + z j0 = b j + x j ∀ j (2.2)

y+
0 +

∑
j

ζ j0x j = b0 +
∑

j

ξ j0 y j (2.3)

where the nonnegative variable y+
0 denotes the surplus. We assume a positive market value of

the initial portfolio, b0 + ∑
j ξ j0b j > 0 which implies that the set of the feasible first-stage

solutions is nonempty and bounded.
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The second-stage decisions on rebalancing the portfolio and reinvestment depend on

individual scenarios. They have to fulfil constraints on conservation of holdings in each bond

at each time period and for each of scenarios

zs
jt + ys

jt = zs
j,t−1 + xs

jt ∀ j, s, t ≥ 1 (2.4)∑
j

ξ s
j t ys

j t +
∑

j

f s
j t z

s
j,t−1 + (

1 − δ + r s
t−1

)
y+s

t−1 =
∑

j

ζ s
j t x

s
j t + y+s

t ∀s, t (2.5)

with y+s
0 = y+

0 , zs
j0 = z j0 ∀ j, s. Positive values of δ account for the difference between the

returns for bonds and cash (y+s
t ).

The problem is maximizing the expected utility of the final wealth at the planning horizon

T∑
s

psU
(
W s

T

)
(2.6)

subject to (2.2)–(2.5) and nonnegativity constraints on all variables and with

W s
T :=

∑
j

ξ s
jT zs

jT + ys+
T . (2.7)

Provided that an initial trading strategy determined by feasible, scenario independent first-

stage decisions x j , y j , ∀ j has been accepted, the second-stage scenario dependent decisions

must be made in an optimal way regarding the goal of the model – to maximize the final wealth

subject to constraints on conservation of holdings, with possible rebalancing the portfolio:

maximize W s
T :=

∑
j

ξ s
jT zs

jT + ys+
T (2.8)

subject to (2.4), (2.5) and nonnegativity constraints. Because of the possibility of reinvest-

ments, the second-stage problem has always a feasible solution. Hence, this basic model

is a multiperiod two-stage stochastic programming model with random relatively complete
recourse. The main outcome is the optimal value of the objective function and the optimal

values of the first-stage variables x j , y j (and y+
0 , z j0) for all j . The optimal values of the

second stage variables contribute to evaluation of the objective function (2.6). In a dynamic

setting, the first-stage decision is applied at the beginning of the first period, and at the be-

ginning of the next period, the model is solved again for the changed input information on

holdings and on scenarios of interest rates; this is the rolling forward approach in the context

of two-stage stochastic programming models, see (Kusy and Ziemba, 1986) for a detailed

explanation of this idea.

The model may be extended for further constraints, such as allocation group restrictions

(box constraints on holdings in specified assets categories – cash, medium term bonds, long

bonds, etc.) or benchmark targets concerning wealth and/or rate of return (Carino and Turner,

1998). Another suggestion, see (Messina and Mitra, 1996), is to limit the gain or loss from

intertemporal rebalancing by constraints∑
j

∣∣ξ s
j,t−1 − ξ s

j t

∣∣ ys
jt ≤ Vt , ∀s, t (2.9)
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or to limit the portfolio duration, e.g., by

D∗ − � · D∗ ≤
J∑

j=1

z0 j D j ≤ D∗ + � · D∗ (2.10)

where

D j =
T∑

t=1

t f j t

(1 + r̂ j )t+1
, j = 1, . . . J (2.11)

is the dollar duration of bond j , r̂ j its yield to maturity,

D∗ =
J∑

j=1

b0 j D j , (2.12)

is the initial portfolio duration and � is the chosen tolerance parameter.

Another possibility is to design a multistage model. This means that another true rebal-

ancing based on a newly revealed information is allowed in one or more latter periods. Such

information can be the recognition of increasing or decreasing interest rates, the outcome

concerning an exercise of option, etc. Then it is necessary to design also the input in the form

of a scenario tree along with the path and arc probabilities and to incorporate the nonantici-

pativity constraints. With reference to Dupačová (2000) we shall discuss now one of relevant

multistage reformulations.

Example . Assume that r0 is the known interest rate for the first period (0, 1], r s
1, 1 ≤ s ≤ S,

the considered realizations of the interest rate valid for the period (1, 2], with probabili-

ties ps > 0,
∑

s ps = 1 and denote D(s) the set of descendants of scenario s – the set of

rates for the subsequent time periods r sσ
t with conditional (arc) probabilities πσ > 0, σ ∈

D(s),
∑

σ∈D(s) πσ = 1. The expected optimal outcome of the second rebalancing strategy

xs
1, ys

1 (zs
1, y+s

1 ) (in its dependence on a feasible first-stage decision x, y) is evaluated along

the branch of scenarios r sσ
t , 2 ≤ t ≤ T − 1, σ ∈ D(s) emanating from r s

1 and equals the op-
timal value W s

T (x, y, z0, y+
0 ) of the following two-stage stochastic linear program (compare

with (2.2)–(2.7)):

W s
T

(
x, y, z0, y+

0

)
:= max

∑
σ∈D(s)

πσ

[∑
j

ξ sσ
jT zsσ

jT + ysσ
T

]
(2.13)

subject to

ys
j1 + zs

j1 = z j0 + xs
j1 ∀ j (2.14)

y+s
1 +

∑
j

ζ s
j1xs

j1 = (1 − δ + r0)y+
0 +

∑
j

ξ s
j1 ys

j1 +
∑

j

f j1z j0 (2.15)

zsσ
j t + ysσ

j t = zsσ
j,t−1 + xsσ

j t ∀ j, 2 ≤ t ≤ T, σ ∈ D(s), (2.16)∑
j

ξ sσ
j t ysσ

j t +
∑

j

f j t z
sσ
j,t−1 + (

1 − δ + r sσ
t−1

)
y+sσ

t−1

=
∑

j

ζ sσ
j t x sσ

j t + y+s
t , 2 ≤ t ≤ T, σ ∈ D(s), (2.17)
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with r sσ
1 = r s

1, y+sσ
1 = y+s

1 , zsσ
j1 = zs

j1 ∀ j, σ ∈ D(s) and under nonnegativity of all

variables.

The full stochastic program can be written in the form

maximize
∑

s

psU
(
W s

T

(
x, y, z0, y+

0

))
(2.18)

subject to (2.2), (2.3) and nonnegativity constraints.

The prices ξ sσ
j t , ζ sσ

j t are obtained from the fair prices Pjt (r sσ ) computed according to (2.1)

for t ≥ 2 and σ ∈ D(s). The fair prices Pj1 follow by the expectation hypothesis: They are

equal to the discounted expected value of the sum of cashflows f j2 due at t = 2 and fair

prices Pj2(r sσ ):

Ps
j1 = (1 + r s

1)−1
∑

σ∈D(s)

πσ ( f j2 + Pj2(r sσ )). (2.19)

Notice, that this is the way how to get the required tree structure of the model coefficients.

In comparison with the initial two-stage problem (2.2)–(2.3), (2.6) with W s
T defined by (2.7)

using the above arborescent form of the three stage problem results in a decrease of the size

of the problem as to the number of variables. Based on the tree structure of coefficients,

the three stage problem (2.2)–(2.3), (2.18) with W s
T defined by (2.13)–(2.17) can be also

written in the split variable form which formally corresponds to the two-stage formulation

complemented for explicit nonanticipativity constraints. This formulation evidently means

an extension of the size of the deterministic problem to be solved.

Similar formulas for prices apply also for other instances of scenario tree structures.

However if the branchings appear after several time periods one has to apply specific rules

for the interstage portfolio management. This is mostly the buy-and-hold strategy with ac-

cumulation of cash and coupons according to interest rates. In our case, no bond matures

within the time horizon, so only coupons are transfered to cash account. Hence, the buy-

and-hold strategy applied between stages, say, between t = t1 and t = t2 means that for all

scenarios xs
jt = 0, ys

jt = 0, t1 ≤ t ≤ t2 ∀ j, so that the holdings are fixed, zs
jt = zs

j1 ∀s, j and

t1 ≤ t ≤ t2 and prices ξ s
j t , ζ

s
j t , t1 ≤ t ≤ t2 are irrelevant. Another possibility would be to

allow for reinvesting coupons into the security which provided them.

3. Input data and numerical experiments

In this section, numerical experiments are reported. The model is implemented in GAMS

v. 19.4, using CPLEX as the linear programming solver on a Pentium 400 MHz machine

with 128 Mbytes of RAM running under Windows NT 4.0 SP6. In our experiments we start

with an initial portfolio designed by experts, see Table 2, and we use the planning horizon

of 1 year. Initial portfolio market value is equal to 10484.55 and the initial portfolio dollar

duration is 36407.7.

The presented results exploit the Black, Derman, and Toy (1990) method for generation

interest rate scenarios; this means that the interest rates r s
t valid in the interval (t, t + 1], t > 0

are expressed as

r s
t = rt0kit (s)

t (3.1)
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Table 2 Portfolio Composition on October 3rd 1994. Initial portfolio market value:
10484.55, Initial portfolio dollar duration: 36407.7

Bonds Qt Coupon Payment dates Exercise Redemp Maturity

BTP36658 10 3.9375 01Apr & 01Oct 100.187 01Oct96

BTP36631 20 5.0312 01Mar & 01Sep 99.531 01Mar98

BTP12687 15 5.2500 01Jan & 01Jul 99.231 01Jan02

BTP36693 10 3.7187 01Aug & 01Feb 99.387 01Aug04

BTP36665 5 3.9375 01May & 01Nov 99.218 01Nov23

CTO13212 20 5.2500 20Jan & 20Jul 20Jan95 100.000 20Jan98

CTO36608 20 5.2500 19May & 19Nov 19May95 99.950 19May98

where it (s) = ∑t
τ=1 ws

τ is the scenario dependent position on the lattice (see Figure 1) that

equals the number of up moves, coded by ws
τ = 1, for the given scenario s which occur at

time points τ = 1, . . . , t .
The scenario independent quantities rt0, the lowest short rate that may occur for period

(t, t + 1], and the lattice volatilities kt are obtained by calibration of the Black-Derman-Toy

(BDT) model by the (estimated) market structure of October 3, 1994. All these steps lead to

the fitted binomial lattice which provides different 2T scenario of interest rates where T is

the longest bond maturity in the portfolio. A smaller, manageable number of scenarios have

to be selected or sampled from this large set.

The sampling strategy was chosen between different alternatives:

– use of Zenios and Shtilman (1993) non random sampling strategy with different length

in covering fully the beginning of the lattice, and proceeding with alternative up-down

movements; the acronyms are ZS (No. of scenarios);

– use of 8 particular scenarios along the planning horizon–12 months as reported in

Figure 2 and proceed with alternative up-down movements; the acronym is Part (8).

Except for the initial market price of the bonds, which is observable, the fair price of

the j th bond at time t just after the coupon was paid and under scenario s follows for each

scenario according formula (2.1).

Several papers were devoted to the model performance wrt. transaction costs, spread, etc.,

to sensitivity of results on selection of representative scenarios of interest rates and out-of-

sample behavior, influence of errors due to input data and robustness of the first-stage decision

wrt. to perturbations of the estimated term structure, (see e.g. Bertocchi, Dupačová, and

Moriggia, 2000; Dupačová, 2000; Dupačová and Bertocchi, 2001; Dupačová, Bertocchi, and

Moriggia, 1998). In this paper we focus on comparisons of the two-stage and the multistage

version of the model introduced in Section 2.

Fig. 1 Full Lattice
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Fig. 2 Part (8) sampling strategy

3.1. Selected results for multiperiod two-stage formulation with monthly step

The first numerical experiments are related to monthly discretization on a 12 months horizon.

We observe that for BDT lattice with monthly step the full problem is based on 212 = 4096

scenarios (not counting additional scenarios used for evaluation of fair prices (2.1) at the

horizon).This gives more than one million of variables and almost 400 000 equations in

(2.2)–(2.5). The optimal value for linear utility function is 11436.56, the optimal first-stage

solution is to keep the shortest (BTP36658) and the medium bonds (BTP12687) and to invest

in CTO 13212 (76.66). The computing time is more than 3 days.

We solved several problems of reduced size using different strategies for choosing subsets
of scenarios.

a) Using sample Part(8) of 8 scenarios leads to the optimal value 11531 and the optimal

first-stage decision is to invest all (100.9) in the puttable bond CTO 13212. Moreover, this

portfolio persists up to the 4th period under all considered scenarios.

b) Using sample ZS(8) of 8 scenarios leads to the optimal value 11512 and the optimal first-

stage decision is to invest all (101.25) in to BTP12687. Moreover, this portfolio persists

for t = 1, 2 under all considered scenarios. The reason of such difference between the

cases a) and b) comes from the fact that for ZS(8) the embedded put option of the puttable

bond, CTO 13212, is exercised only for one scenario while for PART(8) this happens for

four scenarios.

c) Using sample ZS(16) of 16 scenarios leads to the optimal value 11437 and the optimal

first-stage decision keeps BTP36658, BTP12687, CTO 13212 and cash 5884 which is

similar to results for the full problem. For the second period there are differences in

strategies between the up scenario and the down scenario groups. See the difference

between scenarios 2 and 6 (down scenarios), 11 and 13 (up scenarios) in Figure 3.

The expected values of perfect information (EVPI) and the value of stochastic solution

(VSS) for the different cases of sampling are illustrated in Table 3.
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Fig. 3 Different strategies within up/down scenarios

The results suggest, as already pointed out in Bertocchi, Dupačová, and Moriggia

(2000), that Part(8) sampling strategy seems to represent better the uncertainty in com-

parison with the remaining two sampling strategies.

d) Having in mind the results of Shapiro, Homem-de-Mello, and Kim (2002), we explored

also the possibility of solving empirical stochastic programs based on randomly sampled

scenarios from the full binomial lattice. According to Example 2 in Dupačová (1999)

or Application 1 in Dupačová (2001), if the (true) first-stage optimal solution based on

the full BDT lattice is unique and the sample size N is large enough, the obtained first-

stage empirical optimal solutions are equal with probability 1 to the true optimal solution.

Moreover, with increasing N , the convergence is exponentially fast and the required

sample size is related to the condition number of the stochastic program in question, cf.

(Shapiro, Homem-de-Mello, and Kim, 2002). To estimate it for our problem we applied

the two-stage procedure of Shapiro, Homem-de-Mello, and Kim (2002) as follows: By

solving the problem for randomly sampled N0 = 64 scenarios among 4096 for R = 100

times, the most frequent optimal first-stage solution (the candidate true solution)–to invest

all in BTP12687–was obtained in R0 = 79 cases. This provides an estimate α0 = 1 −
R0/R = 0.21 of the probability that the optimal empirical solution differs from the true

solution. With z∗, the solution of z + log z = log 1
2πα0

2 , we get an estimate of the condition

number of our problem as k̂ = N0

z∗ = 90.45. This implies that, if we want a confidence

level of 1 − α = 99% that the true solution is obtained by solving an empirical problem,

it is necessary to use (in the worst case) the number of randomly sampled scenarios

Table 3 EVPI and VSS values
for the two-stage problem;
monthly discretization

Uncertainty measures Part(8) ZS(8) ZS(16)

EVPI 529 47 79

VSS 2290 1706 2753
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N ≥ z∗
1 · k̂ = 249 where z∗

1 is the solution of z1 + log z1 = log 1
2πα2 . This number is quite

far away from 4096 which may be considered as a good sign that our problem is not

ill-conditioned.

3.2. Selected results for multiperiod two-stage problem with quarterly steps

Another possibility to reduce the problem dimension is by using time aggregation. It looks

reasonable to use quarterly steps such that the BDT lattice is based now only on 24 scenarios

(i.e., a substantial time aggregation ) and the size of the problem allows for various exper-

iments with the full problem: linear versus nonlinear utility function, additional constraints

on cash holdings and on duration.

We mainly check our model behavior in the following five cases.

1. For the linear case with no additional constraint, the optimal value is 11440 and the optimal

first-stage solution is to sell all bonds and to keep cash 10474. This changes by the second

period decision in a different way for different scenarios, namely investments are in the

puttable bond CTO 13212 or in BTP36631.

For the subsequent periods, we observed multiple optimal solutions. The number of

variables is 1257 and the number of constraints is 867, computing time is .51 secs under

GAMS-MINOS solver. Notice that with this small dimension it is absolutely indifferent

using MINOS or CPLEX solver.

2. For the linear case with the additional bound 1000 on maximal cash holdings the optimal

value decreases to 11397 and the optimal first-stage decision keeps BTP36658 at the initial

level, increases holding of CTO 13212 to 81.95, sells other bonds to reach the limit 1000

for cash holdings. The optimal decisions for the subsequent periods depend on scenarios.

3. For the linear case we also introduced additional constraint on portfolio dollar duration

for the first-stage decision variables following formulas (2.10)–(2.12). Considering our

portfolio, we had to take into account that computing the duration of a puttable bond

implies two questions: which yield to maturity and which cashflows have to be used? It

seems to be reasonable to restrict to the worst case that the holder of puttable bond has

to deal with, i.e., to use the yield to maturity as if the option would be exercised at the

exercise time and to use the cashflows as if the option would never be exercised.

The results with � = 5% lead to an optimal value of 11378.09; the first-stage optimal

decisions are to invest in CTO 13212 (98.7) and in the longest BTP36665 (2.87). Increasing

� to 10%, the optimal value changes to 11393 and the optimal-first stage decisions stay

in CTO 13212 (99.63) and in cash 132.35.

4. Several experiments with various utility functions were done; the results differ from those

of the linear case and depend on the choice of the utility function, of course. However,

there are still many questions to be investigated, such as the choice of the initial starting

point, or possibility of unfeasible solutions and local maxima.

5. We adopt two approaches for rolling forward technique with duration constraints.

(a) Having a horizon of 12 months corresponding to 4 quarters, we solved a two-stage

quarterly model on October 3, 1994 over the whole planning horizon (meaning 16

scenarios). Then we solved a two-stage quarterly model over 9 months periods (mean-

ing 8 scenarios) starting with the new rebalanced portfolio and for interest rates from

the BDT lattice fitted to the market data of January 3, 1995. The optimal value of the

portfolio at the planning horizon 11398 was achieved for everything invested in CTO

13212 (100.72).
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(b) We also solved on October 3, 1994 a two-stage quarterly model on 9 months period

(meaning 8 scenarios). With the new rebalanced portfolio and for interest rates from

the BDT lattice fitted to the market data of January 3, 1995 we run again the model

with 9 months horizon. The optimal value of the portfolio at the planning horizon

11375 came again for everything invested in CTO 13212 (100.53).

We observe that in both cases new information obtained after the first quarter influenced

the optimal rebalancing of portfolio in a similar way in spite of the fact that a different

number of scenarios (16 in case a), 8 in case b)) was used.

Let us consider the solution of the problem with 4096 scenarios as the “true” solution

and compare the other results. None of the sampling strategies gives a solution sufficiently

close to the true solution. However, aggregation in time, i.e., the quarterly step, gives an

optimal function value sufficiently close to the true optimal value. Introducing additional

ad hoc constraints also creates some dynamics in the portfolio choice.

3.3. Numerical results for three stage model

In the case of the BDT lattice, there is a natural branching of the interest rate process in

the first period, namely to the “up” scenarios and to the “down” scenarios, (see Figure 4).

With one month step it suggests to consider rebalancing after the 1st month, whereas with

3 months step rebalancing would take place only after 3 months. If further rebalancings

take place after the same step length, the lattice is acceptable. If rebalancings occur only

at some multiples of the step length, it is necessary to include a trading strategy (buy-and-

hold, or fix-mix) for the intermediate time steps. The last part of the tree is the “horse tail”,

i.e., after the last branching up to the horizon a (possibly multiperiod) two-stage problem

remains.

Even in this case, the whole input of all coefficients has to be adjusted to the chosen tree

structure. This means that at branching points, expectation hypothesis is used to get uniquelly

defined selling and purchasing prices by averaging the prices obtained by discounting along

scenarios belonging into the given set of descendants, recall (2.19).

Notice, that with interest rate scenarios for the two-stage stochastic program simulated

from a continuous time model, for instance (Cox, Ingersoll, and Ross, 1985), the choice of

the first branching point cannot be based only on the input scenarios.

Fig. 4 Scenarios of three-stage
model

Springer



Ann Oper Res (2006) 142: 63–78 75

3.4. Full lattice with monthly steps and branching after the first month

Comparing the results with those obtained for the multiperiod two-stage formulation with

monthly step, we observe that number of variables is decreased below one million: 995395 and

also the number of equations decreases to 364569. Consequently, the CPU time decreased to

approximately two days. The optimal value and the first-stage optimal decisions are the same

as in the case of the full two-stage problem with monthly step. Hence, there is a robustness

Fig. 5 Second stage decisions variables
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of trading decisions for these two different stage models, the optimal final wealth remains

stable, the optimal first-stage decisions are identical.

3.5. Full lattice with quarterly steps and branching after the first 3 months period

The optimal value decreases to 11440, the optimal first-stage solution does not change with

respect to the multiperiod two-stage model with quarterly steps, but the subsequent trading

strategy is robust, grouping in a natural way, with all investments going to the BTP36631

(different holdings for the two groups of scenarios). This was not the case for the two-stage

model, (see Figure 5).

In presence of the cash constraint, both the optimal value and the optimal first-stage

decision are kept, and the character of the subsequent decisions does not change either.

4. Conclusions

There is a natural aspect of dynamics in many real-life problems (see Table 1). To reflect it

means to fix not only the horizon but also the rebalancing points (branching points) and to

create the scenario tree for all scenario dependent coefficients accordingly. Moreover, when

using the arborescent form of the multistage problem, the number of variables and constraints

gets reduced. Nevertheless, to set an appropriate SP model for financial applications, it is

necessary to analyze carefully the output for differently chosen horizons and/or different

discretizations into stages and to investigate the use of non linear utility functions.

In our problem, the three stage model seems to reduce volatility of trading strategies–close

(identical) partial scenarios of interest rates (prices) result in similar trading strategies. This is

not the case for variants of the two-stage model ZS(16) with monthly step or of the two-stage

model with quarterly step. Additional constraints force more realistic, diversified decisions

for a small decrease of portfolio value; moreover, the duration criterion is in agreement with

the common techniques of risk management.

The illustrative application of the two rolling forward techniques shows the impact of

new information and of number of scenarios; the technique captures dynamic aspects for a

reduced computational effort.
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