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Abstract� When solving a dynamic decision problem under uncertainty it is
essential to choose or to build a suitable model taking into account the nature
of the real�life problem� the character and availability of the input data�
etc� There exist hints when to use stochastic dynamic programming models
or multiperiod and multistage stochastic programs� Still� it is di�cult to
provide a general recipe� We refer to recent papers ��� ��	 which characterize
the main features and basic requirements of these models and indicate the
cases which allow for multimodeling and comparisons or for exploitation of
di
erent approaches within one decision problem�

For both approaches� solution procedures are mostly based on an approx�
imation scheme and it is important to relate the optimal value and optimal
solutions of an approximating problem and the underlying one� It is inter�
esting to recognize that methods of output analysis for stochastic dynamic
programs were developed already in the eighties� cf� ���	 and references ibi�
dem� Regarding the solution method � the backward recursion connected
with the principle of optimality � special emphasis was put on properties of
discretization of state and control spaces�

We shall focus on multistage stochastic linear programs with recourse
and with already given horizon and stages� that result by approximation of
the underlying probability distribution� It turns out that generalization of
various results well�known for two�stage stochastic linear programs to the
multistage problems is not straightforward and it requires various additional
assumptions� e�g�� the interstage independence� We shall discuss possible gen�
eralizations of output analysis methods as delineated in ��	�

� Preliminaries

Let us consider a frequent framework for stochastic programs with recourse

minimize F �x� P � �� EP f��x� �� on a set X ���

where P is a known probability distribution on ���B�� � � Rm which does
not depend on x� EP is the corresponding expectation operator� X � Rn is a
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nonempty closed set which does not depend on P and the random objective
f� is a �usually quite complicated� function f� � X �� � R�� For instance�
the values f��x� �� in two�stage stochastic programs are obtained as optimal
values of certain second�stage mathematical programs whereas for T �stage
stochastic program� f��x� �� is an optimal value of a T � ��stage stochastic
program�

We refer to the objective function in ��� as the expectation functional
and to ��� as the expectation�type stochastic program� its objective function
F �x� P � is linear in P� We will assume for simplicity that all in�ma are
attained� and can be thus replaced by minima� and that all expectations exist�
We denote

� ��P � the optimal value of ����
� X ��P � the set of optimal solutions of ���� not necessarily a singleton�
� x��P � the unique optimal solution of ��� in case X ��P � is a singleton�

Because of incomplete information and also for the sake of numerical
tractability one mostly solves an approximating� scenario�based stochastic
program instead of the underlying �true� decision problem� However� the
obtained output �the optimal value and optimal solutions of the approximat�
ing stochastic program� should be used to replace the sought solution of the
�true� problem only after a careful analysis� An expert may create sensible
scenarios and scenario trees relying on his�her experience and belief� how�
ever� methods of output analysis have to be tailored to the structure of the
problem and they should also re�ect the source� character and precision of
the input data� We may compare scenario�generation to estimation and the
output analysis to hypotheses testing� Methods of output analysis� cf� ��	�
will be surveyed from the point of view of their applicability to multistage
stochastic linear programs with recourse�

� Multistage stochastic linear programs with recourse

In the general T �stage stochastic program we think of a stochastic data process

� � ���� � � � � �T��� or � � ���� � � � � �T �

whose realizations are �multidimensional� data trajectories and of a vector
decision process

x � �x�� � � �xT ��

a measurable function of �� The sequence of decisions and observations is

x�� ���x��x�� ���� ��� � � � �xT �x�� ��� � � � � �T���� ���

Realizations of �T � i�e�� those behind the horizon� do not a
ect the deci�
sion process� they may however contribute to the overall costs� Thus� the



Output analysis for multistage stochastic programs �

decision process may be a
ected by the probability distribution of �T � The
decision process is nonanticipative in that sense that a sequence of decisions
is built along each of the considered data trajectories in such a way that
decisions based on the same part of trajectory� on the same history� are iden�
tical� It means that decisions taken at any stage of the process do neither
depend on future realizations of random elements nor on future decisions�
whereas the past information as well as the knowledge of the probability dis�
tribution P of � are exploited� We denote by �t���� �� ���� � � � � �t��� the
part of the stochastic data process that precedes the stage t and� similarly�
by xt���� � �x�� � � � �xt��� the sequence of decisions at stages �� � � � � t � ��
Thus the decision at stage t is xt � xt�x

t����� �t������ or more precisely�
xt � xt�x

t����� �t����� P �� We denote Pt � P ��t�� t � �� � � � � T � �� the
marginal probability distributions� St� t � �� � � � � T � �� their supports and
Pt��

t����� � P ��tj�t������ t � �� � � � � T � �� the conditional probability dis�
tributions� with supports St��t������

The �rst�stage decisions consist of all decisions that have to be selected
before further information is revealed whereas the second�stage decisions are
allowed to adapt to this information� etc� In each of the stages� the decision
is limited by constraints that may depend on the previous decisions and
observations� Stages do not necessarily refer to time periods� they correspond
to steps in the decision process�

Consider now the following T �stage stochastic linear program
Minimize

c
�
� x� �EP� f���x�� ���g ���

subject to
A�x� � b�

l� � x� � u��

where the functions �t��� t � �� � � � � T� are de�ned recursively as
�t���x

t����� �t����� �

inf
xt

�
ct��

t������xt �EPt��t�����

�
�t�x

t�����xt� �
t����� �t�

��
���

subject to

t��X
���

Bt� ��
t�����x� �At��

t�����xt � bt��
t������

lt��
t����� � xt � ut��

t�����

and �T �  or it is an explicitly given function of x�� � � � �xT � ��� � � � � �T
if contribution of �T is taken into account� Constraints involving random
elements hold almost surely�

We assume that At are �mt� nt� matrices and that the remaining vectors
and matrices are of consistent dimensions� To simplify the exposition we
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shall work with problems ��� which have the staircase structure� i�e�� with
Bt� �  for � � t � � and we put Bt�t�� � Bt� the generalization to
the general case is straightforward� For the �rst stage� known values of all
elements of b�� c��A�� l��u� are assumed� According to our assumption� an
optimal solution of ��� exists for all t and all considered histories xt����� �t����

� the case of the relatively complete recourse� In the case of the �xed relatively
complete recourse� matrices At �t do not have any random elements�

The main decision variable is x� that corresponds to the �rst stage and
the �rst�stage problem ��� may be related to the general expectation �type
stochastic program ����

Many early papers on multistage stochastic linear programming with re�
course were devoted to description and analysis of the corresponding expecta�
tion�type problem ���� The motivation came from the already known results
for two�stage stochastic linear programs summarized� e�g� in ��	� The key ques�
tions were the description of the set X on which the expectation functional
F �x� P � is �nite� properties of the random objective f��x� �� and properties
of its expectation F �x� P �� such as convexity� This was done under various
assumptions about the structure of the problem and properties of �� For in�
stance� convexity of the resulting deterministic program was proved already
in ���	 for problems involving only interstage independent random right�hand
sides� ���	 extends these convexity results to �xed recourse problems and ���	
allows for interstage dependence of right�hand sides and coe�cients of the ob�
jective function� Of course� under our simplifying assumption that all expecta�
tions exist and all minima are attained� such results are quite straightforward�
A special result applies to discrete probability distributions P concentrated
on a �nite number of atoms� In this case� the set X is convex polyhedral and
the expectation functional F �x� P � is convex piecewise linear� cf� ���	� These
results for multistage stochastic linear programs with recourse and further
references may be found in survey papers� e�g� ��	 and books ��� ��	�

For purposes of applications one mostly approximates the true probability
distribution P of � by a discrete probability distribution concentrated on a ��
nite number of atoms ��� � � � � �S � which may be done� e�g�� by sampling or by
discretization� Accordingly� the supports of conditional probability distribu�
tions of �t conditioned by past realizations of ��� � � � �t�� and the supports of
marginal probability distributions of the components �t �t are �nite sets� For
disjoint sets of indices Kt� t � �� � � � � T � let us list as ��kt � kt � Kt all possible
realizations of �t���� and denote by the same subscripts the corresponding
values of the t�stage coe�cients� The total number of scenarios S equals the
number of elements of KT � Each scenario �s � f�s�� � � � � �

s
T��g thus generates

a sequence of coe�cients fck� � � � � � ckT g� fAk� � � � � �AkT g� fBk� � � � � �BkT g�
fbk� � � � � � bkT g� flk� � � � � � lkT g� fuk� � � � � �ukT g� A speci�c organization of data
in the form of the scenario tree means that each value ��kt�� of �t� has a
unique ancestor ��kt �the value of the corresponding �t������ we denote it by



Output analysis for multistage stochastic programs �

subscript a�kt���� This allows to rewrite the T �stage stochastic linear program
with recourse in the following arborescent form�

Minimize

c
�
� x� �

X
k��K�

pk�c
�
k�
xk� �

X
k��K�

pk�c
�
k�
xk� � � � ��

X
kT�KT

pkT c
�
kT
xkT ���

subject to

A�x� � b�

Bk�x� � Ak�xk� � bk� � k� � K�

Bk�xa�k�� �Ak�xk� � bk� � k� � K�

� � �
� � �

���
BkTxa�kT � �AkTxkT � bkT � kT � KT

l� � x� � u�� lkt � xkt � ukt � kt � Kt� t � �� � � � � T� ���

We adopt the natural choice Kt � fKt�� � �� � � � �Ktg� t � �� � � � T� with
K� � �� The problem is thus based on S � KT �KT�� scenarios �s which
generate sequences �ckt �Akt �Bkt � bkt � lkt �ukt � t � �� � � � T � of realizations of
coe�cients for all stages� and on path probabilities pkt � �kt�

P
kt�Kt

pkt �
�� t � �� � � � T� of partial sequences of these coe�cients� hence� probabilities of
realizations of �t���� �t� The path probabilities pkt for t � � may be obtained
by stepwise multiplication of the marginal probabilities pk� by the conditional
arc �transition� probabilities� say� �k���k� � � � �� � � � � t� Probabilities ps of
individual scenarios �s are equal to the corresponding path probabilities pkT �

The nonanticipativity constraints are included in an implicit form� De�
composition of ������� along scenarios is possible but it requires that the
nonanticipativity constraints are spelled out in an explicit way� Given sce�
nario �s denote by c��s� the vector composed of all corresponding coe��
cients� say� c�� ckt � t � �� � � � � T� in the objective function ���� by A��s� the
matrix of all coe�cients of system of constraints ��� for scenario �s� and� sim�
ilarly� by b��s�� l��s�� u��s� the vectors composed of right�hand sides in ���
and bounds of the box constraints for scenario �s� Disregarding the nonan�
ticipativity constraints we replace the multistage stochastic linear program
������� by

minimize

SX
s��

psc��s��x��s� ���

subject to
A��s�x��s� � b��s�� s � �� � � � S

and the box constraints

l��s� � x��s� � u��s�� s � �� � � � � S�
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This is already an ordinary large linear program� The components of its op�
timal solutions� say� x���s�� s � �� � � � � S� depend on the underlying scenarios
�s� they are not nonanticipative� To recover nonanticipativity� we must add
constraints x���s� � x���s

�

��s� s� to get scenario independent �rst�stage
decisions and� moreover� similar constraints to guarantee that the t�stage
decisions based on the same history are equal�

Besides the formulation of goals and constraints and identi�cation of the
driving random process �� building a scenario�based multistage stochastic
program requires speci�cation of the horizon and stages� cf� ��� ��	 and gen�
eration of the input in the form of scenario tree� see ���	 and references ibi�
dem� such as ��� ��� ��� �	� Contrary to stochastic dynamic programs with
discrete time� the number of stages is relatively small� On the other hand� for�
mulations of the scenario�based multistage stochastic programming problems
are not connected with any prescribed solution technique and it is possible
to avoid special requirements such as the Markov structure of the problem�
However� possibilities of drawing conclusions about the optimal value ��P �
and the optimal solutions of the �true� stochastic program ��� using the re�
sults of the approximating scenario�based program depend essentially on the
structure of the solved problem as well as on the origin of scenarios� Generally
speaking� the output can hardly be more precise than the input and it is eas�
ier to answer questions concerning precision of the obtained optimal values
than those concerning the sets of optimal solutions� There are results valid
for two�stage stochastic programs that do not carry over to the multistage
models� and we shall try to detect some of them� As we shall see� interstage
independence or Markov property of the process � play an important role in
generalizations of output analysis results�

� Output analysis

We accept that the true probability distribution P has been replaced by an�
other probability distribution  P obtained by using a simpli�ed theoretical
model and�or by sampling� discretization and simulation techniques� Both
for interpretation of results and for designing numerical methods one should
answer questions about the di
erence of the optimal values ��P �� ��  P � and
about the distance of the sets of optimal solutions X ��P � and X ��  P �� Regard�
ing the origin of the approximating probability distribution one may rely on
results of asymptotic statistics or exploit techniques known from parametric
optimization�

��� Asymptotic Inference

Assume that the true probability distribution P in ��� can be well approx�
imated by an in�nite sequence of probability distributions based on an in�
creasing level of information about P � This can be modeled in the following
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way� Consider a sample space �Z�F � 	� with an increasing sequence of 
��elds
�F������ contained in F � A sample � leads to a sequence of F� �measurable
probability distributions fP ���� ��� � � �� �� � � �g on ���B� that are based on
the information collected up to �� The optimal value ��P �� and the optimal
solutions of the approximating stochastic program

min
x�X

F �x� P �� � min
x�X

EP�f��x� �� ���

based on P ���� �� depend on the used sample path � and the best one can get
are results valid for almost all sample paths �� i�e�� 	�a�s� The probability dis�
tributions P � will be called the wide�sense empirical probability distributions
and the same designation will be used also for the approximating stochastic
programs ���� their optimal values and optimal solutions� This helps to dis�
tinguish among general asymptotic results and those valid for the empirical
probability distributions� In the latter case� the sample path � � f��� ��� � � �g
is obtained by simple random sampling from ���B� P �� 	 � P� and the
empirical stochastic program� called also the sample average approximation
problem is

min
x�X

F �x� P �� � min
x�X

�

�

�X
j��

f��x� �
j�� ���

Consistency Results� Under the assumption that P � � P weakly �	�a�s��
and that f��x� �� is a continuous bounded function of � for every x � X �
the pointwise convergence of the expected value objectives F �x� P �� �
F �x� P �	�a�s� �x � X follows directly from the de�nition of weak conver�
gence� If X is compact and the convergence of the expectations is uniform on
X we get immediately �	�a�s�� convergence of the optimal values

��P ��� ��P ��

If� moreover� X is convex and f���� �� is strictly convex on X it is easy
to get �	�a�s�� convergence of the �unique� optimal solutions x��P �� of
minx�X F �x� P �� to the unique optimal solution x

��P � of the underlying
problem ��� and some rates of the convergence� Notice that merely the point�
wise convergence of the empirical expectations does not imply consistency of
the optimal values�

A more general approach is via epi�convergence of lower semicontinuous
�lsc� functions� cf� ���	� The main step is to prove that the approximating
objective functions F �x� P �� epi�converge to the true objective function in
���� which in turn implies the following consistency result �cf� Theorem ���
of ���	��

Proposition �� Assume that F �x� P � is the 	�a�s� epi�limit of F �x� P �� for
� �	� Then 	�a�s�

lim sup
���

��P �� � ��P �
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and any cluster point  x of any sequence fx� � � � �� �� � � �g with x� � X ��P ��
belongs 	�a�s� to X ��P ��

In particular� if there is a compact set D � Rn such that 	�a�s�� X ��P ��

D �� � for � � �� �� � � � and x� � X ��P � 
 D then there exists a measurable
selection x� of X ��P �� such that x� � lim��� x� for 	�almost all � and
also ��P � � lim��� ��P ��	�a�s�

In the convex case� i�e� for convex function f���� ��� convex set X � and
for empirical probability distributions P � � epi�convergence of F �x� P �� to
F �x� P � follows from the Strong Law of Large Numbers for sums of random
closed sets� see e�g� ���	� and F �x� P �� is an unbiased estimator of F �x� P �
for any �xed x � X � Moreover� for a discrete probability distribution P and
for approximation of ��� by the empirical stochastic program ��� we have the
following corollary�

Corollary �� Let ��� � � � � �N be the atoms of P and �j � �j�
PN

j�� �j � �
their probabilities� let X be a nonempty bounded convex polyhedron and
f��x� �� a piece�wise linear convex function of x on X � Let P � be empiri�
cal distributions based on �nite random samples of sizes � from P � Assume
in addition that there is a unique optimal solution x��P � of the true problem
��� and x� � X ��P ��� Then 	�a�s�

x
� � x

��P �

for � large enough�

This means that the empirical problem provides 	�a�s� the exact optimal
solution of the true problem for � large enough� This result can be extended
to the case of multiple true optimal solutions� cf� ���	� where it is also proved
that for � �	 the probability of the event x� � x

��P � approaches � expo�
nentially fast� Nevertheless� to determine the su�cient sample size remains a
crucial problem�

For empirical stochastic programs ��� it is easy to prove that the obtained
optimal values ��P �� have a one�directional bias in the sense that

E��P �� � ��P �� ���

see� e�g� ���� ��	 and this result extends to multistage stochastic programs� cf�
��	� An empirical point estimate of E��P �� follows by the Law of Large Num�
bers and an asymptotic ��� � �! con�dence interval� say �L����� U

�
���	�

for E��P �� can be obtained from the Central Limit Theorem� For an ar�
bitrary x � X � F �x� P � is an upper bound for the true optimal value and
the empirical expectation F �x� P �� is an unbiased consistent point estimator
of F �x� P �� Again� one may construct an interval estimate or an asymptotic
con�dence interval covering this upper bound with a given probability� Ex�
ploitation of these properties of the optimal value ��P �� of the empirical
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problem and of the upper bounds turned out to be very useful for numeri�
cal solution and valuation of results of empirical two�stage stochastic linear
programs�

Theoretically� these consistency results apply also to multistage stochas�
tic programs� However� the assumption of an in�nitely increasing sample size
means that at every node of the scenario tree� the number of branches grows
to in�nity� hence� the number of descending nodes grows to in�nity� too� and
the sample based problems become very quickly intractable� In addition� ran�
dom sampling from a continuous probability distribution P provides almost
surely di
erent scenarios so that the empirical problem will not re�ect the as�
sumed tree structure� It means that the sample�based problem approximates
the true stochastic program ��� with relaxed nonanticipativity constraints
�except for the constraint on the scenario independent �rst�stage solutions��
The theoretical optimal value of this relaxed program� say� �R�P � is thus
approximated by the biased estimator �R�P �� and inequalities

E�R�P �� � �R�P � � ��P �

may be used to construct an asymptotic lower bound for ��P � � the lower
bound of the con�dence interval for E�R�P ��� However� �R�P �� is not a
consistent estimate of the true value ��P �� One can again think of an upper
bound for ��P � obtained as the value of the objective function ��� at an
arbitrary feasible �rst�stage solution� this means to evaluate or to estimate
the expected value EP����x�� ���� For T � �� function ���x�� ��� in ��� is the
optimal value of a T � ��stage stochastic program� its empirical expectation
is biased below and ��� with the empirical expectation need not provide an
upper bound for ��P �� see ���	 for a detailed discussion� Hence� one should
be cautious when using stopping rules based on objective function values for
empirical multistage stochastic programs�

These are the reasons for using conditional sampling schemes which take
into account the assumed dynamics of the problem� the given horizon and
stages�

� Under interstage independence and for a given tree structure one may
construct the tree by simple random sampling from marginal distributions
of components �t of ��

� The next step is Markov dependence� modeled for instance by

�t�� � Gt�t � �t ����

with nonrandom transition matrices Gt and interstage independent ran�
dom �t �t�

� The �nal choice is sampling from the conditional probability distributions
Pt��

t����� of �t given the history �t����� see e�g� ��� �	�
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Under mild additional assumptions� consistency of ��P �� can be proved
again� For example ���	 applies the Law of Large Numbers for the case of a
bounded set X ��P � of optimal solutions and under further assumptions which
guarantee uniform convergence of the empirical objective functions whereas
��	 assumes strictly convex objective functions and exploits the discretization
scheme of ���	�

The related asymptotic distributions and rates of convergence require that
the corresponding consistency results hold true� Under suitable assumptions
�e�g�� Theorem ��� of ���	� it is possible to extend the asymptotic normality
results valid for the empirical optimal value ��P �� to the multistage case�
see also ��	� Their extension to rates of convergence for optimal �rst�stage
solutions of multistage stochastic programs has not yet been satisfactorily
explored�

��� Qualitative and Quantitative Stability Results

For various reasons� empirical estimates of the probability distribution P are
not always available and� moreover� they need not provide the best approxi�
mation technique� They focus solely on the probability distribution� which is
not the only ingredient of the stochastic programming models� they do not
take into account any expert knowledge or foresight and for technical reasons�
they cannot be based on very large samples� Moreover� the goal is to get a
sensible approximation of the optimal solution and of the optimal value� not
an approximation of the probability distribution�

We shall look now into stability analysis of ��� with respect to the param�
eter P under the additional assumption that the set X in ��� is convex and
that for all � � �� f��x� �� is a convex lower semicontinuous function of x
on X � This implies that the objective function in ����

F �x� P � � EP f��x� �� �

Z
�

f��x� ��P �d�� ����

is convex in x on Rn for any probability measure P �on ���B�� such that
the expectation ���� is �nite�

For multistage stochastic linear programs with complete recourse a qual�
itative stability result can be obtained if the set X is convex polyhedral� the
set X ��P � of optimal solutions of the true problem is bounded and certain
growth assumptions are ful�lled� see Corollary ��� in ���	� Namely� the persis�
tence property X ��  P � �� � holds true on a neighborhood of P � the mapping
X � is weakly upper semicontinuous in P and the optimal value satis�es the
Lipschitz condition

j��P � � ��  P �j � L�d�P�  P � ����

for all  P belonging to a neighborhood of P �
Under suitable continuity assumptions as to the random objectives and

constraints� a quantitative stability result akin to ���� can be proved also
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for nonlinear multistage stochastic programs with interstage Markov depen�
dence when a special discretization scheme is applied to approximate the
true absolutely continuous probability distribution P carried by a compact
support� cf� ���	�

The success and applicability of the quantitative stability results depend
essentially on an appropriate choice of the distance d used to measure the
perturbations in the model input� The structure of the convex program ���
suggests to consider a probability distance of the form

dF �P�  P � �� supfj

Z
�

f����P �d���  P �d���j � f � Fg ����

where F is the class of all measurable functions from� to R� that may appear
as integrands in ����� The probability distance dF �P�  P � is �nite whenever P
and  P belong to the set

PF ��� �� fQ � sup
f�F

j

Z
�

f���Q�d��j �	g

of probability distributions �on ���B�� satisfying a uniform moment condi�
tion with respect to F � Now� ��� is regarded as a convex parametric program
with parameter P belonging to the space �PF ���� dF ��

An important example is the Fortet�Mourier metric �p of order p de�ned
by

�p�P�  P � �� sup
f�Fp���

j

Z
�

f����P �d���  P �d���j

on the set of probability distributions which satisfy the moment conditionR
�
k� kpQ�d�� �	 and for the set of integrands

Fp��� ��
�
f � jf���� f����j � max

�
�� k�kp��� k��kp��

�
k� � ��k��� �� � �

�
�

Whereas �� turns out to be suitable for two�stage stochastic programs with
complete recourse� for T �stage stochastic programs with �xed recourse it is
necessary to use the �T metric� An exception are multistage stochastic linear
programs with only right�hand sides random� these behave stable with respect
to the �� metric� cf� ���	�

The following stability result is a consequence of a more general pertur�
bation theorem in ���	�

Proposition �� Assume in addition that X ��P � is nonempty and bounded�
P � PF ��� and the function F �x� P � is locally Lipschitzian on X � Then
the optimal solution set mapping X � is �Berge� upper semicontinuous at P
and there exist constants L � � � �  such that X ��Q� is nonempty and
j��P �� ��Q�j � LdF�P�Q� whenever Q � PF��� and dF �P�Q� � ��
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For discrete probability distributions� these stability results form a basis
for scenario reduction techniques� cf� ���	 for the two�stage problems� In the
case of interstage independence� these scenario reduction techniques may be
exploited for multistage stochastic programs in a straightforward way �re�
duction applies separately to the marginal probability distributions� and an
extension under Markov dependence ���� is possible as well� Further gener�
alizations are under way�

Also the contamination method may be included under quantitative sta�
bility approaches� In the convex case considered in this Section� results of ��	
apply to stability and sensitivity of the optimal value with respect to contam�
ination of the probability distribution P by another probability distribution
Q also for multistage stochastic programs� cf� ��	� Without any speci�c re�
quirements on the structure of the problem ��� or on the properties of the
probability distributions P�Q� contamination allows to test the robustness of
the optimal value with respect to an additional� richer branching for a given
topology of stages or to inclusion of an additional branching point�

��� Moment Bounds and Worst Case Analysis

In the context of ��� with F �x� P � �� EP f��x� ��� one can try to construct
minmin and minmax bounds

min
x�X

inf
P�P

F �x� P � � ��P � � min
x�X

sup
P�P

F �x� P � �P � P ����

on the optimal value of the true program to get information about robustness
of the optimal value within the considered family of probability distributions�

The objective functions EP f��x� �� of the inner minimization and maxi�
mization problems

inf
P�P

EP f��x� �� and sup
P�P

EP f��x� ��

are linear in P � which means that for a convex� compact set P � both the
in�mum and supremum are attained and the optimal best case and worst
case probability distributions P �� P �� � P are extremal points of P �

In the framework of the moment problem� these extremal points are well
described for P de�ned by a given support and by known values of certain
generalized moments� For admissible moment values� the extremal distribu�
tions are discrete ones� concentrated in a modest number of points� hence�
the bounds ���� follow by solution of a scenario�based program� However�
extremal distributions independent of the decisions x appear only exception�
ally� under special assumptions �e�g�� convexity� concavity or saddle property�
about the integrand f��x� �� and about the families of distribution functions�
e�g�� for those with given support and expectations� see ��	 for details and
references�



Output analysis for multistage stochastic programs ��

A related� though less ambitious problem is to get bounds on the perfor�
mance of an optimal solution x�P � obtained for a probability distribution
P � P using the corresponding worst case and best case probability dis�
tributions from P � This leads to bounds which are then exploited in various
computational schemes for two�stage stochastic programs� as initiated in ���	�
Also here a tractable procedure for the �repeated� evaluation of bounds re�
quires certain convexity properties of the function f��x� �� with respect to �
and a special type of family P �

For multistage stochastic programs� convexity or saddle property of
f��x� �� depends not only on the structure of the stochastic program in
question �recall the assumption of the �xed recourse needed for two�stage
programs� but also upon special additional assumptions about the probabil�
ity distribution of the stochastic data process� It can be generalized to �xed
recourse and interstage independence� see e�g� Section ���� of ��	 or ��	� In
presence of interstage dependences� even with randomness entering just the
right�hand sides� convexity of f��x� �� holds true only under special assump�
tions about their probability distributions�

Example� To illustrate the problem� consider the following three stage
stochastic linear program with a staircase structure� relatively complete �xed
recourse and random right�hand sides� written according to the scheme ����
����

Minimize
c
�
� x� �EP� f���x�� ���g ����

subject to
A�x� � b�

l� � x� � u��

with function �� de�ned by

���x�� ��� � min
x�

�
c
�
� x� �EP��������x�� ���

�
����

subject to
B�x� �A�x� � b�����

l� � x� � u�

and
���x�� ��� � inf

x�

c
�
� x� ����

subject to
B�x� �A�x� � b�����

l� � x� � u�

We assume that the right�hand sides are linear in �� and in ��� We want
to construct bounds for the optimal value ��P � using just the �rst order
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moment information about � � ���� ��� whose marginal probability distri�
butions P�� P� do not depend on x� have known �xed supports and expecta�
tions� For simplicity� we list the assumptions and delineate the problems for
the case of one�dimensional ��� ���

Assumptions�

� Marginal probability distributions P�� P� have known �xed supports ��� ��	�
��� ��	 and expectations ��� ���

� For each �xed realization ��� of ��� the conditional probability distribution
P������ is carried by interval ������� ������	 and the conditional expectation
������� �� EP�������� is its interior point�

Lower bound� Using the evident convexity of the function ���x�� ���
with respect to �� and the conditional Jensen inequality� one gets a lower
bound� say� ����x�� ��� for ���x�� ��� replacing EP��������x�� ��� in ���� by
���x�� �������� One more application of the same idea provides the lower
bound as the optimal value of the deterministic expected value program�
Hence� it turns out that dependence of random right�hand sides is no obsta�
cle for generalization of the Jensen lower bound for the optimal value of a
multistage stochastic linear program with random right�hand sides �

Upper bound� Concerning the upper bound� the situation is di
erent�
see ��	� The upper bound for EP���������x�� ��� follows via the Edmundson�
Madansky inequality� hence�

���x�� ���� � ���� �x�� ����

where

���� �x�� ��� � min
x�

�
c
�
� x� � �������c

�
� x�� � ��� ��������c

�
� x��

�
����

subject to
B� x� �A� x� � ����

B� x� �A� x�� � ������

B� x� �A� x�� � �������

l� � x� � u�� l� � x�i � u�� i � �� �

and with

������ �
������� �������

������� �����
� ���

To proceed further to get the upper bound for EP��
���x�� ����� convexity

of ����x�� ���� with respect to ��� is essential� Denote U��x�� ���� the objec�
tive function in ����� To get convexity of the optimal value of ���� in ���
for the sake of subsequent use of the Edmundson�Madansky upper bound
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on its expectation� one needs U��x�� ���� jointly convex in x�� ���� To this
purpose� it is not enough to assume linearity of  and � in ��� �recall the
form of � in ����� A sensible additional assumption concerning the class
of conditional probability distributions P������ is the Markov property �����
which in our simple example reduces to �� � g�� � � where �� and �

are independent and g � R is �xed� Under this assumption� ������ is in�
dependent of ���� hence� �

��
� �x�� ���� is convex in �� and one more appli�

cation of the Edmundson�Madansky inequality provides the upper bound
for the optimal value ��P � for all probability distributions of the consid�
ered properties� In our simple example� the upper bound is equal to the
optimal value of the approximating stochastic program based on four scenar�
ios� namely� ��� ����	� ��� �����	� ���� �����	� ���� ������	 with probabili�
ties ����� ����� ���� ��� ������ ��� ������ ����

Of course� interstage independence is a special case of the Markov prop�
erty ���� and the Markov property is ful�lled� e�g� for multidimensional nor�
mal distribution of � � ���� ���� however� this probability distribution is
not carried by a compact support� This means that the important convexity
�or saddle� property needed for construction of upper bounds for multistage
stochastic programs via Edmundson�Madansky inequality is rarely ful�lled
and the applied upper bounds are not exact � Some properties of these upper
bounds are discussed in ���	�

Let us summarize� In general� the upperbounding techniques based on
the �rst order moment information carry over to multistage stochastic linear
programs with relatively complete �xed recourse and with random right�hand
sides� linear in random parameters �� only in special cases� e�g�� when one of
the following conditions holds true�

�� The right�hand sides are interstage independent�
�� For all stages� the right�hand sides can be expressed in the form of a sum

of interstage independent random vectors related to preceding stages and
to the given stage� compare with �����

�� For all stages� the conditional distributions of random parameters �t
are carried by simplices whose extreme points are linear in past values
��� � � � � �t�� whereas the barycentric coordinates of the conditional mean
values are �xed� independent of this history�

Example � continuation� Let us detail Case �� Generalization to T �stage
problem means to assume a �xed position of the conditional mean values
�t��

t����� �described by �xed values �t � �� ��� within intervals �t��
t������

�t��
t�����	 whose endpoints are linear in ��� � � � � �t��� This type of assump�

tions can be used to model an increasing uncertainty by a growing range of
the variables around some trend described by the conditional mean values�
The upperbounding scenarios are sequences

��� ������� � � � � �t���� ������� � � ��� �T������ ������� � � ��
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with t or �t substituted for �t� compare with ���	�

An extension to random vectors �t whose distributions are carried by
simplices is also possible� Assumption of �xed values of �t independent of
past observations translates to �xed barycentric coordinates of the condi�
tional mean values �t��

t������ The general bounding technique based on
barycentric scenarios� see ���	� follows� inter alia� from the assumed convexity
or saddle property of the objective functions for all stages� e�g�� convexity of
the function ��x�� ��� de�ned by ����� The same assumption is needed also
for the multistage extension of the upperbounding technique in ���	� Our dis�
cussions imply that the convexity assumptions refer� besides the interstage
independence of random right�hand sides� to a rather special form of inter�
stage dependent right�hand sides so that the conditional distributions ful�l
the special moment properties of Case � discussed above or possess a Markov
property � e�g� ����� In such case� the random elements �t in stage t may be
represented as a sum of interstage independent random summands related
only to individual stages �� � � � � t� see ��	 for an application�
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