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When using the minimax approach one tries to hedge against the worst possible distribu-
tion belonging to a specified class P. A suitable stability analysis of results with respect to
the choice of this class is an important issue. It has to be tailored to the type of the mi-
nimax problem, to the considered class of probability distributions and to the anticipated
input perturbations. We shall be mainly concerned with the class of probability distributions
whose supports belong to a given set and which fulfil certain moment conditions. We shall
utilize results of parametric programming and of asymptotic statistics to analyze the effect of
changes in input information. Among others, consistency of minimax solutions obtained for
consistently estimated moments will be proved.
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1. Introduction

50 years ago, stochastic programming was introduced to deal with uncertain values
of coefficients which were observed in applications of linear programming. These
uncertainties were modeled as random and the assumption of complete knowledge
of the probability distribution P of random parameters became a standard. In
practice however, complete knowledge of the probability distribution is rare. Using
a hypothetical, ad hoc probability distribution P may lead to bad, costly decisions.
It pays to include the existing, possibly limited information into the model. The
incomplete knowledge of P is modeled by assuming that P belongs to a specified
class P of probability distributions, the ambiguity set, and the minimax approach
with respect to distributions belonging to the class P is applied.

The minimax approach has been developed for special types of stochastic pro-
grams and special choices of the ambiguity set P. To illustrate the basic ideas let
us consider stochastic programs of the form

minimize F (x, P ) := EP f(x, ω) for x ∈ X (1)

where X ⊆ IRn and P is the probability distribution of the m-dimensional random
vector ω. The minimax approach is applied when the probability distribution P of
ω is only known to belong to a specified class P of probability distributions while
X is assumed to be a fixed set, independent of P. To use the minimax approach
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means to hedge against the worst possible distribution belonging to the class P by
solving the minimax problem

min
x∈X

max
P∈P

F (x, P ). (2)

The optimal value of (2) called the (upper) minimax bound together with the lower
bound minx∈X minP∈P F (x, P ) have been employed in approximation schemes
used in algorithmic procedures for solving (1). See [13, 17, 25] for an introduction
and for a survey of various results. Optimal solutions of (2), called minimax solu-
tions, serve as a basis for decision making. They reflect the risk aversion inherent
in specific applied problems. In the energy sector, for example, social and finan-
cial consequences of blackouts are hardly tolerated and it is important to know
at least the character of decisions designed to hedge against the worst possible
circumstances.

Minimax solutions and minimax bounds depend on specification of the class
P. Hence, we face an additional level of uncertainty which influences the results.
Their robustness with respect to (small) changes of P is welcome and an output
analysis is important. It has to be tailored to the type of P, to the structure of
the solved minimax problem and to the considered input perturbations, see e.g.
[26, 33]. Refinement of minimax bounds by using additional information has been
studied from the very beginning, e.g. [2, 9, 10]. Stability and sensitivity analysis
of the minimax solutions with respect to perturbations of P is a more demanding
task.

To construct the class P one often compromises between the wish to exploit exis-
ting, available information and the need to keep the minimax problem numerically
tractable. One may rely on sample information to get sample moments or the empi-
rical distribution, may use experience to get expert scenarios and some information
about their probabilities, or to select a finite number of relevant probability distri-
butions. Using both sample information and experience one can make a qualified
guess about the “carrier” set which contains supports of all considered probability
distributions. One also can incorporate qualitative information, like symmetry or
unimodality. Compact and convex classes P play a key role and mathematical rea-
soning (& experience) may lead to a minimax problem of a manageable form, e.g.
introducing bounds on probability distributions [32].

Let us mention some popular classes P from [13] and complete the list by intro-
ducing selected recent quotations.

• P consists of probability distributions supported on set Ω ⊆ Rm which fulfill
certain generalized moment conditions, e.g.,

P = {P : EP gk(ω) = yk, k = 1, . . . ,K} (3)

for given functions g1, . . . , gK and prescribed values yk ∀k. Mostly the first and
second order moments appear in (3); for a brief exposition see Section 2.

• P defined as above with some or all equalities replaced by inequalities. An in-
teresting idea [6] is to identify P by bounds on expectations (µ) and bounds on
the covariance matrix, such as

EP [(ω − µ)(ω − µ)>] � γΣ0 for all P ∈ P, (4)

and to apply approaches of semi-definite programming.



October 10, 2010 14:1 Optimization minimaxOPTr5

Uncertain minimax stochastic programs 3

• P is defined as above with additional information, such as unimodality or sym-
metry of P taken into account [9, 11, 24, 31];

• P consists of probability distributions P supported on a fixed finite set Ω, i.e.,
to specify elements P ∈ P means to fix the probabilities of the considered atoms
(scenarios) taking into account prior knowledge about their partial ordering [4]
or their pertinence to an uncertainty set [34], etc.;

• P is a neighborhood of a (hypothetical, nominal or empirical) probability distri-
bution P0. This means that

P := {P : d(P, P0) ≤ ε} (5)

where ε > 0 and d is a suitable distance of probability measures. Naturally,
its choice influences substantially the results. See [5] for the Kullback-Leibler
distance, [23, 36] for the Kantorovich distance.

• P consists of a finite number of probability distributions P1, . . . , Pk and the
problem is

min
x∈X

max
i=1,...,k

F (x, Pi); (6)

see e.g. [33].

The listed classes are not strictly separated. For example, some moment pro-
blems lead to extremal distributions supported on a finite fixed set of scenarios
which does not depend on the objective function. Thus they can be linked with the
class of distributions supported on finitely many prescribed scenarios; see Example
2.2. Also the ε-neighborhood classes (5) in [5, 23] assume discrete probability dis-
tributions concentrated at finitely many a priori fixed scenarios, or at finitely many
plausible scenarios to be constructed [36]. Moreover, depending on the choice of
distance d in (5), d(P, P0) ≤ ε can be treated as a generalized moment constraint.
Moment conditions (3) are one of the ingredients for solving minimax problems
under the unimodality assumption or, in general, for dealing with transformed
moment problems, see Section 2.2.3.

We shall mainly deal with the class P of probability distributions identified
by (generalized) moment conditions (3) and a given set Ω. In output analysis
one may then apply results of parametric programming as done in Section 2.2
and some of asymptotic statistics; see e.g. [7, 12, 18] for early attempts in this
direction. In Section 3 we shall study properties of minimax solutions based on
estimated moment values and prove a consistency result. A different approach to
output analysis is needed for nonparametric types of P such as (5) with empirical
distribution function P0 or for analysis of the sample counterpart of (6): Using
asymptotic statistics, it is possible to construct nonparametric confidence sets [23]
and to prove consistency of results under mild assumptions [33].

2. P defined by moment conditions

Theoretically the so called moment problems, e.g. [1], provide bounds for the ex-
pectation function EP f(x, ω) under rather general assumptions about the function
f(x, •) and about the considered set P of probability distributions on Ω defined
by generalized moment conditions, such as (3). For a convex compact (in the weak
topology) set P (continuous) expectation functions attain their maximal and mi-
nimal value at extremal points of P. The corresponding extremal distributions
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have finite supports, however, extremal distributions independent of the form of f
appear only exceptionally.

In the case of incomplete knowledge of the probability distribution P in (1)
the primal interest is in estimating the difference between the maximal and mini-
mal expectation and in evaluation of bounds L = minx∈X infP∈P EP f(x, ω) and
U = minx∈X supP∈P EP f(x, ω) for the optimal value of (1) that can be used in
approximations. The thorough worst case analysis means computing minimax so-
lutions as well.

There is a host of papers devoted to application of moment bounds in the context
of stochastic programing, e.g. [3, 17], to their refinement [2] and to inclusion of
qualitative information such as unimodality and/or symmetry of P by solving
transformed moment problems, cf. [9–11, 24, 31].

2.1. Basic assumptions and selected results

Let X ⊆ IRn, Ω ⊆ IRm be (Borel) measurable sets, gk : Ω → IR, k = 1 . . . , K, and
f : X × Ω → IR be given measurable functions. Define g(•) = (g1(•), . . . , gK(•)),
denote Y := conv {g(Ω)} and assume that intY 6= ∅.

For y ∈ Y let Py denote the class of probability distributions P of random vector
ω supported on Ω such that for all P ∈ Py, functions gk, k = 1, . . . ,K, and f(x, •)
for all x ∈ X are integrable and the moment conditions (3)

EP gk(ω) = yk, k = 1, . . . ,K

are fulfilled. The class Py is convex and the problem is to find

U(x,y) = sup
P∈Py

EP f(x, ω) and L(x,y) = inf
P∈Py

EP f(x, ω), (7)

the bounds for the optimal value of (1)

U(y) = inf
x∈X

sup
P∈Py

EP f(x, ω) and L(y) = inf
x∈X

inf
P∈Py

EP f(x, ω) (8)

and to compute the minimax solutions, elements of X ∗(y) := argminx∈X U(x,y).
An important case is when Ω is compact, g1, . . . , gK continuous with intY 6= ∅

and f(x, •) upper semicontinuous. Then the class Py, for y ∈ Y, is nonempty,
compact (in weak topology) and the supremum in (7) is achieved; see e.g. [19]. It
is expedient to analyze the dual program to the upper bound in (7) which reads

minimize d0 +
K∑

k=1

dkyk

subject to

d ∈ D := {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(z) ≥ f(x,z)∀z ∈ Ω}.

If y ∈ intY, there is no duality gap between problem (7) and its dual problem, and
the dual problem has an optimal solution; see e.g. [20]. It means that there exists
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a probability distribution P ∗ ∈ Py and a vector d∗ ∈ D such that

U(x,y) = EP ∗f(x, ω) = d∗0 +
K∑

k=1

d∗kyk. (9)

Hence, for the given y ∈ intY, the bound can be obtained as the optimal value of
the corresponding semiinfinite program

U(x,y) = inf
d
{d0 +

K∑
k=1

dkyk : d0 +
K∑

k=1

dkgk(z) ≥ f(x,z)∀z ∈ Ω}. (10)

Evidently, as a function of the parameter y, U(x,y) is concave.

From the point of view of computation it is important that P ∗ in (9) is in fact
a discrete distribution. For these and other related results see e.g. [1, 17, 20, 25].
Similar statements hold true also for the case of inequality constraints in (3), see
[3, 25].

Under additional assumptions, e.g. for Ω a bounded polyhedron and

h(x,z) := f(x,z)−
K∑

k=1

dkgk(z)

a piecewise convex or quasi-convex function on Ω for an arbitrary x ∈ X , (10) can
be reduced to a finite-dimensional linear program; cf. Theorem 2 of [8] or Theorem
8.1.1 of [25]. For example, if h(x,z) is convex in z and Ω = conv

{
z(1), . . . ,z(H)

}
,

we get the set of feasible solutions of (10) in the form

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(z(h)) ≥ f(x,z(h)), h = 1, . . . ,H}. (11)

2.1.1. Special convex case

Assumption 2.1 Assume that for all x ∈ X , f(x, •) is convex, gk(z) = zk, k =
1, . . . ,m, Ω is a bounded polyhedron conv

{
z(1), . . . ,z(H)

}
and y ∈ intY(= intΩ).

This is the favorite class Py defined by prescribed values of the first moments.
The upper bound U(x,y) reduces to the Edmundson–Madansky bound [22] and
U(x,y) is the optimal value of the linear program dual to (10):

U(x,y) = max
p
{

H∑
h=1

phf(x,z(h)) :
H∑

h=1

phz(h) = y,

H∑
h=1

ph = 1, ph ≥ 0∀h}. (12)

According to Jensen’s inequality L(x,y) = f(x,y). For an extension to piecewise
linear functions gk and an unbounded convex closed set Ω see [3].

In a similar way, it is possible to formulate the moment problem for proba-
bility distributions supported on a known finite set of scenarios, i.e. for Ω =
{ω1, . . . , ωI}. The probability distributions are then fully identified by probabi-
lities pi, i = 1, . . . , I, of these scenarios and by moment conditions. The problem to
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solve is

U(x,y) = max
p
{

I∑
i=1

pif(x, ωi) :
I∑

i=1

pigk(ωi) = yk ∀k,
I∑

i=1

pi = 1, pi ≥ 0∀i}. (13)

This situation may occur for problems with an ad hoc given finite support of ω or
may result from identification of discrete extremal distributions as in (11) or (12),
may be obtained by sampling or relying on past data and on experts’ suggestions.
Additional polyhedral constraints on probabilities pi, cf. [4, 34], can be included.

Further simplifications are possible when f(x, ω) is convex separable with respect
to individual components of ω, or Ω is a rectangle and the components of ω are
independent, or when Ω is a simplex. Then we may even get explicit formulas
for U(x,y), cf. [9, 10], or obtain extremal probability distributions which do not
depend on the choice of the convex random objective function f(•, ω).

Example 2.2 Assume that f(x,z) =
∑m

j=1 fj(x, zj) where for a fixed x, fj ∀j
are convex functions of zj and that Py is defined by the following conditions:
The marginal distributions of ωj are supported on given nondegenerate compact
intervals [aj , bj ] with Ω their Cartesian product, EP ωj = yj , with given values
yj ∈ (aj , bj)∀j.

Then

U(x,y) = max
P∈Py

EP f(x, ω) =
m∑

j=1

λjfj(x, aj) +
m∑

j=1

(1− λj)fj(x, bj) (14)

with λj = (bj − yj)/(bj − aj)∀j.

Moreover, for arbitrary values yj ∈ (aj , bj), j = 1, . . . ,m, the minimax solution is
an efficient solution of a multicriteria problem with objective functions f(x,z), z ∈
Z∗ where Z∗ is the set of vertices of Ω, cf. [11]. Specifying the expectation y we get
one of these efficient solutions.

Example 2.3 Consider Example 2.2 with m = n = 1, and f(x, z) = (x−z)+. Such
terms (with z replaced by ω) appear as the random part of objective functions of
various popular stochastic programs, for example of the simple recourse problem
whose well known classroom example is the newsboy problem, or of the risk measure
CVaR — Conditional Value at Risk often used in financial mathematics; see e.g.
[25]. Let us modify conditions identifying the class of probability distributions and
consider P = Pµ,V defined as follows:

There is a known upper bound V for the range of variation of ω and a prescribed
expectation EP ω = µ,∀P ∈ Pµ,V .

Then we evidently have ω ∈ [µ− V, µ + V ]∀P ∈ Pµ,V with probability 1 and

U(x, µ, V ) := max
P∈Pµ,V

EP (x− ω)+ = 0 for x < µ− V

= x− µ for x > µ + V

= 1
4V (V + x− µ)2 for µ− V ≤ x ≤ µ + V. (15)

The last formula in (15) follows by application of (14): For an arbitrary x ∈ [µ −
V, µ + V ] there exists P ∈ Pµ,V such that x belongs to its support. We shall prove
first that Ũ(x) := 1

4V (V +x−µ)2 ≥ EP (x−ω)+ for P ∈ Pµ,V and µ−V ≤ x ≤ µ+V.
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The support of an arbitrary P ∈ Pµ,V can be enlarged to [a, b] so that µ ∈ [a, b]
and b− a = V. If x ∈ [a, a + V ] then according to (14)

EP (x− ω)+ ≤ (x− a)
V + a− µ

V
,

maxa{(x − a)V +a−µ
V : a ∈ [µ − V, µ]} is attained for a∗ = 1

2(x + µ − V ) and the
maximal value equals Ũ(x). If µ − V ≤ x < a, EP (x − ω)+ = 0 ≤ Ũ(x). Finally,
by a simple algebra we get for b = a + V < x ≤ µ + V the sought inequality
EP (x− ω)+ = x− µ ≤ Ũ(x). Hence,

Ũ(x) =
1

4V
(V + x− µ)2 ≥ sup

P∈Pµ,V

EP (x− ω)+ for x ∈ [µ− V, µ + V ].

The supremum is attained for the extremal discrete distribution P ∗ ∈ Pµ,V which
is supported by a∗ and a∗ + V with probabilities p∗ = V−µ+x

2V and 1− p∗.

Without compactness of Ω, existence of the optimal solution in the inner op-
timization problem (10) depends much on the properties of the functions f(x, •)
and gk ∀k. An example is Ω = IRm, f(x, •) positive conical (i.e. f(x,z) > 0∀z 6= 0
and epif(x, •) a convex polyhedral cone in IRm+1 pointed at the origin) with mo-
ment constraints on expectations and on the second order moments; see [17, 25].
A special instance (cf. [9, 10]) is obtained by a direct solution of (10):

Example 2.4 Assume again that f(x, z) = (x − z)+ and define P := Pµ,σ2 by
moment conditions EP ω = µ, varP ω = σ2 for all P ∈ Pµ,σ2 .

Then

max
P∈Pµ,σ2

EP (x− ω)+ =
1
2

(
x− µ +

√
σ2 + (x− µ)2

)
:= U(x, µ, σ2). (16)

For a generalization of Example 2.4 to piecewise linear convex functions f(x, •)
and/or gk see [17].

Convexity properties of f(x, •) play an essential role. For example, in the two-
stage stochastic linear program

f(x, ω) = c>x + min
u
{q(ω)>u : W (ω)u = h(ω)− T (ω)x, u ≥ 0}.

Convexity of f(x, •) is achieved by a restriction to a fixed recourse matrix W ,
fixed coefficients q in the second-stage objective function and to right-hand sides
h and technological matrix T linear in ω. There are also parallel results for saddle
functions f(x, •) that allow inclusion of random coefficients q, e.g. [14].

2.2. Stability with respect to input information

The prescribed values of moments used in definition of Py play the role of input
information which influences the resulting minimax bounds and minimax solutions.
However, this input information is not always completely known, it can be based
on sample or past information, on expert opinion, etc. In the sequel, we shall deal
with stability of minimax bounds and minimax decisions under rather simplifying
assumptions postponing possible generalizations.

Assumption 2.5 Assume that
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• X ⊂ IRn is a nonempty convex compact set,
• Ω ⊂ IRm is a nonempty compact set,
• g1, . . . , gK are given continuous functions on Ω,

• f : X × Ω → IR is a continuous function on Ω for any fixed x ∈ X and it is a
lower semicontinuous convex function of x for every ω ∈ Ω,

• the interior of the moment space Y := conv {g(Ω)} is nonempty and y ∈ intY.

Remark 1 : Observe that lower semicontinuity and convexity of f(•, ω) implies
lower semicontinuity and convexity of the expected value functions EP f(•, ω) (see
[35]), as well as of the upper bounds U(•,y) = supP∈Py EP f(•, ω).

In this section, we shall present selected applications of parametric programming
to stability and sensitivity of moment bounds (7)–(8) and of minimax decisions with
respect to the prescribed values of moments and/or to the choice of set Ω.

2.2.1. Prescribed moment values

Being concave with respect to y ∈ Y the optimal value function U(x, •) of the
semiinfinite program (10) has directional derivatives on intY in all directions, see
e.g. [28]. For the special problems (12) and (13), stability analysis with respect
to y reduces to the standard stability analysis for linear programs with respect to
right-hand sides and the optimal value function U(x, •) is concave, piecewise linear
on intY.

Concerning the optimal value U(y) = minx∈X U(x,y) and the minimax soluti-
ons, one can apply results on stability for nonlinear parametric programs as in [11]
to obtain:

Theorem 2.6 : Under Assumption 2.5, U(y) := minx∈X U(x,y) is concave on
Y and the point-to-set mapping y 7→ X ∗(y) is upper semicontinuous on Y.

This implies again that U(y) has directional derivatives on intY in all directions.
Gradients of U(y) exist almost everywhere on intY, nevertheless, differentiability of
U(y) holds true only under additional smoothness assumptions, e.g. second order
differentiability of U(x,y), second order sufficient conditions, and suitable regu-
larity conditions, see e.g. [16]. Under such conditions, there is a unique minimax
solution, say x(y), and ∇U(y) = ∇yU(x(y),y). However, the assumption of se-
cond order differentiability of U(x,y) is not always realistic. (For an example when
it is fulfilled see [7] and Example 2.4.) Therefore, in postoptimality analysis of the
moment bounds one can rely mainly on the results on directional differentiability,
cf. [12].

2.2.2. Choice of the set Ω

The direct analysis of explicit formulas such as (14) shows that due to a change
of Ω the upper bound function U(x,y) may change significantly; see also Theo-
rem 3.1.1 of [1]. The relaxation of the assumption of a known set Ω as done in
Example 2.3 leads to a rather different upper moment bound as well.

The situation is relatively simple in the special case of probability distributi-
ons supported on a given finite set of scenarios but with not precisely known
probabilities of their occurrence, cf. (13), or for the class Py determined by pre-
scribed expectations y with a convex polyhedral set Ω and convex f(x, •), cf. (12)
in Section 2.1.1. For each fixed x ∈ X the worst case probabilities can be then
obtained as optimal solutions of a linear program with a compact set of feasible so-
lutions. Changes of scenarios or of the extremal points of Ω influence the objective
function and the matrix of coefficients of the linear program. Nevertheless, these
linear programs are stable (small changes of the data cause only small changes of
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the optimal solutions, cf. [27]) under the nonemptiness and boundedness condition
on the sets of optimal solutions of the corresponding dual programs

inf
d∈D

d0 +
K∑

k=1

dkyk (17)

with D given by

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkgk(ωi) ≥ f(x, ωi), i = 1, . . . , I}

or

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkz
(h)
k ≥ f(x,z(h)), h = 1, . . . ,H}. (18)

For y ∈ intY this condition is fulfilled, cf. [20]. The optimal value function U is then
a continuous function of all coefficients on a neighborhood of the initial data x,y
and z(h), 1 ≤ h ≤ H, or g(ωi)∀i. A unique and nondegenerate optimal solution
of the primal LP (12) or (13) is a special well known example. The size of the
neighborhood is limited e.g. by the condition that the perturbed vector y remains
an interior point of the convex hull of the perturbed moment space.

Another possibility is to analyze the dual linear programs (17)–(18) allowing
some uncertainty in selection of ωi or z(h). Inspired by [15] consider problem (12)
with extremal points zh which belong to an ellipsoid around z(h), say

zh = z(h) + Ehδh, ‖δh‖2 ≤ %, (19)

and ask for the best solution of program (17)–(18) which is feasible for all choices
of z obtained by the special structure of perturbations (19). In the simplest case
of Eh = I the h-th constraint of (18) is fulfilled if

d0 + d>z(h) + d>δh − f(x,z(h) + δh) ≥ 0 ∀ ‖δh‖2 ≤ %. (20)

The Lipschitz property of f(x, •) on the neighborhood (19) implies that there is a
constant l such that

|f(x,zh)− f(x,z(h))| ≤ l‖δh‖2 ≤ l%.

By an adaptation of results in section 5.3 of [15], to satisfy constraint (20) it is
sufficient that

d0 + d>z(h) − f(x,z(h))− %
√
‖d‖2

2 + l2 ≥ 0. (21)

Again, when the optimal solution of the unperturbed linear program (17)–(18) is
unique and nondegenerate, then there exists %max > 0 such that for all problems
with perturbed constraints (21) with 0 < % < %max the optimal solutions are
unique and nondegenerate, too. A similar analysis applies to (13) under suitable
assumptions about the mapping g.
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Even for classes P which do not explicitly assume a fixed known carrier set Ω,
such as (4) or (5), various assumptions about Ω are exploited in output analysis,
e.g. the set Ω is supposed to be compact convex. As a special case, existence of a
ball of radius R that contains the support of the unknown probability distribution
is frequently assumed where the magnitude of R may follow from “an educated
and conservative guess”; cf. [6, 23].

Convergence properties have been studied for finite supports which are consecu-
tively improved to approximate the uncountable support; cf. [26] and the next
example.

Example 2.7 Assume that Py is the class of probability distributions on Ω ⊂ IRm,
which fulfill the moment conditions (3) and Assumption 2.5 is satisfied.

Let {Ων}ν≥1 be a sequence of finite sets in IRm such that Ων ⊆ Ων+1 ⊆ Ω
and

⋃
ν Ων is dense in Ω. Choose ν0 such that y ∈ int conv{g(Ων0)}. For ν ≥ ν0

consider classes Pν
y of probability distributions supported on Ων for which moment

conditions (3) are fulfilled. The following statement can be viewed as a special case
of Proposition 2.1 and Example 2.1 of [26]:

If for every P ∈ Py there is a sequence {P ν}ν≥ν0 , P ν ∈ Pν
y which for ν → ∞

converges weakly to P, then for ν →∞

min
x∈X

max
P∈Pν

y
EP f(x, ω) → min

x∈X
max
P∈Py

EP f(x, ω).

Indeed, for all P ∈ Py, lower semicontinuity and convexity of the expected value
EP f(x, ω) follows from the assumed lower semicontinuity and convexity of f(•, ω).
Joint continuity of EP f(x, ω) with respect to x and P follows from its convexity
with respect to x and continuity with respect to P (apply Theorem 10.7 of [28]
under Assumption 2.5 and Remark 1).

Moreover, also upper semicontinuity of sets of minimax solutions with respect to
the considered convergence of classes Pν

y to Py can be proved.

2.2.3. Additional input information

If the class of probability distributions is defined not only by the set Ω and
the moment conditions (3) but also by other conditions such as unimodality then
it is often possible to remove these conditions by a suitable transformation of
probability distributions and functions and to reduce the problem to the basic
moment problem. With reference to [24, 31] for more general situations, we shall
delineate here only the approach for univariate unimodal probability distributions
which was motivated by [21] and detailed in [9–11].

Let PM
y be the class of unimodal probability distributions on a compact interval

Ω ⊂ IR with the given mode M such that the moment conditions (3) are fulfilled.
All distributions in PM

y are mixtures of uniform distributions over intervals (u, M)
and (M,u′), u, u′ ∈ Ω complemented by the degenerated distribution concentrated
at M.

For a continuous function h : Ω → IR consider its transform h∗ defined as follows:

h∗(z) =
1

z −M

∫ z

M
h(u)du for z ∈ Ω, z 6= M and h∗(z) = h(z) for z = M. (22)

According to [21] and in view of Assumption 2.5, the moment bound for unimodal
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distributions can be obtained as follows:

max
P∈PM

y

EP f(x, ω) = max
P
{EP f∗(x, ω) : EP g∗k(ω) = yj , k = 1, . . . ,K}. (23)

Moreover, the transform h∗ of a convex function h is convex. The next simple
example details a possible application.

Example 2.8 As in Example 2.2 with m = 1 let f(x, z) be a convex function of
z. Let PM

y be the class of unimodal probability distributions with the given mode
M, supported on a compact interval [a, b] and such that for all P ∈ PM

y , EP ω = y.

For g(u) = u the transform (22) gives g∗(z) = 1
2(z + M) and equation (23) then

reads

maxP∈PM
y

EP f(x, ω) =

max
P
{EP f∗(x, ω) : EP g∗(ω) = y, P (ω ∈ [a, b]) = 1} := Ũ(x, y,M). (24)

Define µ = 2y −M ; then (24) is nothing else but the usual moment problem with
the class Pµ = {P : EP ω = µ, P (ω ∈ [a, b]) = 1}; moreover, if the expectation
y and the mode M coincide, then µ = y. The transformed objective f∗(x, z) is
convex in z. This means that the maximal expectation EP f∗(x, ω) over the class
Pµ is

U(x, µ) = λf∗(x, a) + (1− λ)f∗(x, b) = Ũ(x, y,M)

with λ = b−2y+M
b−a = b−µ

b−a . Substituting for f∗(x, z) according to (22) we get

Ũ(x, y,M) =
b− 2y + M

(b− a)(M − a)

∫ M

a
f(x, u)du +

2y −M − a

(b− a)(b−M)

∫ b

M
f(x, u)du.

It is easy to recognize two densities of uniform distributions on [a,M ] and [M, b]
weighted by λ and (1− λ), respectively.

If the mode is not known, additional maximization with respect to M ∈ [a, b]
is possible. As a result, the worst case probability distribution is uniform on [a, b]
if y = 1

2(a + b) or is a mixture of the uniform distribution over [a, b] and the
degenerated one concentrated at a or at b if y > 1

2(a+b) or y < 1
2(a+b), respectively.

3. Stability with respect to estimated moment values

Assume now that sample information was used to estimate the moment values
which identify the class Py. Assume that these parameters were consistently es-
timated using e.g. a sequence of i.i.d. observations of ω. Let yν be based on the
first ν observations. Using continuity of function U(x, •) on intY and theorems
about convergence of transformed random variables, cf. [30], we get for (strongly)
consistent estimates yν of the true parameter y the pointwise convergence

uν(x) := U(x,yν) → U(x,y) a.s. (25)

valid at an arbitrary element x ∈ X . The same conclusion, based on Theorem 2.6,
holds true for minimax bounds:
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Theorem 3.1 : Under Assumption 2.5 and for strongly consistent estimates yν

of y,

min
x∈X

U(x,yν) → min
x∈X

U(x,y) a.s.

In general the pointwise convergence (25) does not imply consistency of minimax
solutions. To get the consistency result one may employ epi-convergence of the
approximate objectives uν(x) := U(x,yν); for epi-convergence consult e.g. Chapter
7 of [29].

Definition 3.2: A sequence of functions {uν : IRn → ĪR, ν = 1, . . . } is said to
epi-converge to u : IRn → ĪR if for all x ∈ IRn the two following properties hold:

lim inf
ν→∞

uν(xν) ≥ u(x) for all {xν} → x (26)

and for some {xν} converging to x

lim sup
ν→∞

uν(xν) ≤ u(x). (27)

Whereas the pointwise convergence implies condition (27), additional assumpti-
ons are needed to get validity of condition (26). Fortunately, pointwise convergence
of lower semicontinuous convex functions uν , u with int(dom u) 6= ∅ implies epi-
convergence; see e.g. Theorem 7.17 of [29]. In such case, lim sup{argmin uν} ⊂
argmin u.

Theorem 3.3 : Under Assumption 2.5 and for strongly consistent estimates yν of
y, the approximate objectives uν(x) epi-converge almost surely to U(x,y) as ν →
∞. This implies that with probability 1 all cluster points of sequence of minimizers
xν of uν(x) on X are minimizers of U(x,y) on X .

Proof : Let us examine epi-convergence of the sequence of uν(x) := U(x,yν), ν =
1, . . . , to u(x) := U(x,y). According to Remark 1, uν(x), u(x) are lower semicon-
tinuous convex functions on X and for each x ∈ X , uν(x) → u(x) a.s. according to
(25). It implies that there is a countable set C dense in X and a probability 1 set Y0

in the sample space such that uν(x) → u(x) for all x ∈ C and for all sample paths
{yν}∞1 ∈ Y0. Hence, see Theorem 10.8 of [28], with probability 1, uν(x) → u(x)
uniformly on any compact set K ⊂ intX which is equivalent to epi-convergence of
{uν} to u; cf. Theorem 7.17 of [29]. The sought consistency of the corresponding
minimax solutions xν follows by an application of Theorem 7.33 of [29]. �

A similar consistency result can be obtained also for the special convex problem
treated in Section 2.2.2 with perturbed both y and Ω.

Example 3.4 Assume that parameters a, b, µ identifying the class of one-
dimensional probability distributions on the interval [a, b] with mean value µ are
known to belong to the interior of a compact set in IR3. Assume further that their
values can be obtained by an estimation procedure based on a sample path of
i.i.d. observations of ω from the true probability distribution P. Their consistent
estimates based on a sample size ν are the minimal/maximal sample values and
the arithmetic mean, i.e. ων:1, ων:ν and µν = 1

ν

∑ν
i=1 ωi. In this case, we know the

explicit form of all approximate objective functions

uν(x) := λνf(x, ων:1) + (1− λν)f(x, ων:ν)
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with λν = (ων:ν−µν)/(ων:ν−ων:1); see Example 2.2 for m = 1. This is a continuous
function of parameters provided that ων:1 < ων:ν . For f(•, ω) convex, uν(x) are
convex in x. For compact set X , existence of the true minimax solution x follows
from lower semicontinuity of f(•, a) and f(•, b). Hence, the consistency statements
of Theorems 3.1 and 3.3 hold true. An extension to the corresponding “data-driven”
version of Example 2.2 is obvious.

Additional asymptotic results can be proved when the function U(x, •) is diffe-
rentiable. This is the case of the “data-driven” version of Example 2.4.

Example 3.5 Assume that σ is known and µ is replaced by arithmetic mean
µν = 1

ν

∑
i ω

i of i.i.d. realizations of ω, which is an asymptotically normal estimate.
Using differentiability of the function U(x, µ, σ2) in (16) with respect to x, µ and

theorems about distributions of transformed sequences of random variables, here
of U(x, µν , σ2), we get an asymptotically normal distribution of function values
of the approximate minimax objectives. Second order differentiability of function
U(x, µ, σ2) is used to obtain the rate of convergence O(ν−1/2) in probability, based
on the Berry-Esséen inequality; see [7].

Additional assumptions are needed to prove asymptotic normality of the appro-
ximate minimax bounds and minimax decisions.

4. Extensions

Up to now we have assumed that the set of feasible solutions does not depend on
the probability distribution P . Let us remove this assumption and consider the
stochastic program

minimize F (x, P ) := EP f(x, ω) on the set X ∩ X (P ) (28)

where X does not depend on P and X (P ) = {x ∈ X : Gi(x, P ) ≤ 0, i = 1, . . . , k}.
Stochastic programs with probabilistic constraints are a special type of (28). The-
oretically, it is enough to deal just with one constraint G(x, P ) ≤ 0.

When the probability distribution P of ω in (28) is only known to belong to a spe-
cified class P of probability distributions, [23, 36] suggest to solve the “robustified”
version of (28):

min
x∈X

max{F (x, P ) : P ∈ P} (29)

subject to G(x, P ) ≤ 0∀P ∈ P or equivalently, subject to

max
P∈P

G(x, P ) ≤ 0. (30)

Assume that G(x, P ) is convex in x on X and linear (in the sense that it is both
convex and concave) in P on P. Then for convex, compact classes P and for a
fixed x, the maxima in (29), (30) are attained at extremal points of P. Hence
for the class Py identified by moment conditions (3) it is possible to pass in (29)
and in (30) to discrete distributions P ∈ Py provided that the correspondingly
extended basic assumptions are fulfilled. This convenient property carries over also
to G(x, P ) in (30) and/or F (x, P ) in (29) convex in P.

Stochastic programs (28) whose constraints depend on the probability distribu-
tion have been applied frequently in portfolio optimization under risk constraints.
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Whereas expected disutility functions or CVaR(x, P ) are linear in P, other popular
portfolio characteristics are not even convex in P : the variance is concave in P ,
the mean absolute deviation is neither convex nor concave in P. This means that
extensions of the minimax approach to risk functionals nonlinear in P are carried
through only under special circumstances delineated in the next example.

Example 4.1 Denote by ω the random vector of unit returns of assets included to
the portfolio and let f(x, ω) = −ω>x quantify the random loss of the investment x.
The probability distribution P of ω is known to belong to a class Pµ of distributions
for which, inter alia, the expectation EP ω = µ is fixed (independent of P ). Then
for a fixed x, varP f(x, ω) = EP (ω>x)2− (µ>x)2 is linear in P ∈ Pµ and the mean
absolute deviation MADP f(x, ω) = EP |ω>x− µ>x| is linear in P ∈ Pµ as well.

5. Conclusions

The presented approach to the stability analysis of minimax stochastic programs
with respect to input information was elaborated for the class P defined by gene-
ralized moment conditions (3) and a given set Ω. It is suitable also for other “pa-
rametric” classes P whereas stability for “nonparametric” classes, e.g. (5), would
require different techniques. We did not aim at the most general statements and
results on stability and sensitivity of minimax bounds and minimax decisions with
respect to the model input. Specifically, various convexity assumptions were explo-
ited: convexity and compactness of the class Py, convexity of the random objective
function f(x, ω) with respect to the decision variable x on a compact convex set
of feasible decisions, convexity of functionals F (x, P ), G(x, P ) with respect to the
probability distribution P .

Convexity of the random objective with respect to x can be replaced by a saddle
property and under suitable conditions, also unbounded sets X can be treated. An
open question is under what general assumptions the presented approach can be
applied to minimax problems with functionals nonconvex in P.

Acknowledgments

This research is supported by the project “Methods of modern mathematics and
their applications” – MSM 0021620839 and by the Czech Science Foundation
(grants 402/08/0107 and 201/09/0133).

References

[1] G. A. Anastassiou, Moments in Probability and Approximation Theory. Longman Sci. & Tech, Harlow,
UK, 1993.

[2] A. Ben-Tal and E. Hochman, More bounds on the expectation of a convex function of a random
variable, J. Appl. Prob. 9 (1972), pp. 803–812.

[3] J. R. Birge and R. J.-B. Wets, Computing bounds for stochastic programming problems by means of
a generalized moment problem, Math. Oper. Res. 12 (1987), pp. 149–162.

[4] W. Bühler, Characterization of the extreme points of a class of special polyhedra, Zeitschrift für
Operations Research 19 (1975), pp. 131–137.

[5] G. C. Calafiore, Ambiguous risk measures and optimal robust portfolios, SIAM J. Optim. 18 (2007),
pp. 853–877.

[6] E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application
to data-driven problems, Operations Research 58 (2010), pp. 596–612.
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[18] V. Kaňková, On an ε-solution of minimax problem in stochastic programming, in: Distributions

with given Marginals and Moment Problems, V. Beneš and J. Štěpán, eds., Kluwer Academic Publ.,
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