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K Y B E R N E T I K A - VOLUME 27 (1991), N U M B E R 1 

ON NON-NORMAL ASYMPTOTIC BEHAVIOR 
OF OPTIMAL SOLUTIONS FOR STOCHASTIC 
PROGRAMMING PROBLEMS AND ON RELATED 
PROBLEMS OF MATHEMATICAL STATISTICS* 

JITKA DUPAČOVÁ 

Non-normal asymptotic behavior of estimated optimal solutions for stochastic programming 
problems can appear if the true optimal solution belongs to the boundary of the set of feasible 
solutions. The type of the non-normal asymptotic distribution is described and the existing 
conditions under which asymptotic normality is retained are discussed and compared. The 
results are related to asymptotic properties of restricted estimates and illustrated for Li and L 2 

estimates of parameters in restricted linear regression models. 

1. I N T R O D U C T I O N 

We shall consider the stochastic programming problem: 
find x(P 0 ) that minimizes f(x, P0) on a given nonempty closed set M c U", 
where 

f(x,P0) = $Qh(x,co)P0(dco) (1) 
where 

P0 is a given probability measure on (Q, $), 
h: U" x Q -> R 1 is a given function such that h(x, •) is continuous on Q 
and h(-, co) is locally Lipschitz for all co e Q with a P0-integrable Lipschitz 
modulus. 

In many practical situations, the probability measure P0 is not known completely 
and we use its estimate, say P^, based on the observed data. Accordingly, we solve 
the problem 

minimize f(x, PN) on the set M (2) 

instead of the original one and we use its optimal solution x(PN) at the place of the 
true optimal solution x(P 0 ) . 

* Presented at the "Kolloquium iiber Mathematische Statistik im Rahmen der Wissen-
schaftlichen Kolloquien der Universitat Hamburg und der Karls-Universitat Prag", Hamburg, 
June 1989. 
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Except for the constraints, the approximate problem (2) has the form familiar 
from M-estimation: with P^ — the empirical probability measure concentrated at 
the points cot, ...,<JON, the problem (2) reads 

1 A' 
minimize — V h(x, C0j) on the set M . (3) 

N i=\ 

Asymptotic behavior of the optimal value of (3) was studied in connection with 
hypotheses testing (see e.g. [3], [14], [28]), asymptotic behavior of optimal solu
tions of (3) is connected with properties of restricted estimators; for examples see 

[10]-
To get statistical properties of the optimal solution x(P,v) of (2) and of the optimal 

value 
<p(PN) = f(x(PN), PN) = mmf(x, PN) (4) 

XEM 

of the estimated objective function we shall imbed (2) into a family of parametric 
optimization problems 

minimize f(x, P) on the set M. (5) 

The parameter P in (5) is supposed to belong to a subset 0* of probability measures 
on (Q, $) such that the true probability measure P0ESP and & is metrized in a suit
able way. We shall assume that there are some persistence and stability results 
available (see e.g. Theorem 4.2 of [25] or Theorem 3.9 of [10]) and we shall con
centrate on local sensitivity analysis of program (5) with respect to the parameter — 
the underlying probability measure. Sensitivity analysis of program (5) and asympto
tic behavior of the estimated optimal solutions and of the estimated optimal value 
are closely connected with differentiability properties of the optimal solutions and 
of the optimal value function q> at the true parameter value P = P0, respectively. 
The weakest concept of differentiability uses Gateaux derivates or directional deriv
atives (in the case that SP is a parametric family of probability measures indexed 
by a real vector parameter y); for results connected with other types of directional 
derivatives and their application see [30]. 

For to obtain results on differentiability of the optimal solution x(P) of (5) at 
P = P0 we shall assume that x(P0) is locally unique minimizer of (l) on the set M. 
We shall also assume that the optimal solutions x(P) of (5) are P0-almost surely 
unique for all P belonging to a neighborhood of P0. 

We shall mostly consider the set M c R" of feasible solutions defined by explicit 
constraints, say 

M = {xe R": gt(x) = 0, i = 1 , . . . . m, gt(x) _ 0, i = m + 1, ..., m + p} 

(6) 
with C1 functions gt, i = 1, ..., m + p, so that the Lagrangian approach can be 
applied. There are different assumptions that guarantee the existence of unique 
local minimizers of (1) on the set (6); see e.g. [11], some of them will be formulated 
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later. If the corresponding Lagrange multipliers are unique, too, one can get their 
derivatives as a byproduct. Moreover, under quite general assumptions, the Gateaux 
or directional derivative of the optimal solution x(P) at P = P0 equals the optimal 
solution of a convex linear program being linear if and only if the strict complemen
tarity conditions (see Assumption A3 in Section 2) are fulfilled. The form of the 
quadratic program can be obtained from [16]. In spite of the fact, that [16] considers 
(nonstochastic) nonlinear programs dependent on a real vector parameters the 
results can be applied in the context of stochastic programming to obtain Gateaux 
derivatives of optimal solutions (cf. [5], [6], [31]). 

If M c U" is a general closed nonempty set, an alternative approach can be used. 
The necessary condition for x(P) to be a local minimizer of (5) reads 

Oedsf(x(P),P) + NM(x(P)) (7) 

where NM(x) denotes the normal cone to M at the point x e M, e.g., for M convex 
polyhedral 

NM(x) = {UEW: (X' - x)T u ^ 0 Vx' £ M} , 

and oJ(x, P) is subdifferential o f / ( • , P) at x as defined by Clarke [4] for locally 
Lipschitz functions. It means that there should exist 

v0(P)edj(x(P),P) and vM(P) e NM(x(P)) 

such that 

0 = v0(P) + vM(P). 

I f / ( - , P) is differentiate at x(P) we get a simple necessary condition 

-Wx(f(x(P),P)eNM(x(P)). 

In this case, the necessary condition for differentiability of x(P) at P = P0 (in the 
sense of an affine approximation of its graph at P = P0) reads 

- V,/(x(P0), Po) E int NM(x(P0)) (8) 

(cf. [24]). Moreover, for the set M explicitly defined as (6) with C1 functions giy 

i = 1, ..., m + p such that gradients of constraints active at x(P0) are linearly 
independent, condition (8) is equivalent to the mentioned strict complementaiity 
conditions. If (8) is not fulfilled, one can still obtain Gateaux or directional derivatives 
of the optimal solution and arrives again at a quadratic program [24]. 

Also the assumed form of the set & of the considered probability measures in
fluences the solution technique that has to be adapted to the properties of the corre
sponding parameter space. 

If 3? is a parametric family of probability measures indexed by a real vector 
yeYcz U\ 

& = {Py,yeY}, (9) 

the deterministic sensitivity analysis of (5) reduces evidently to the mentioned analysis 
for nonlinear parametric programs with respect to a real parameter vector. As the 
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true parameter vector, say r\, need not be known its estimate is used to obtain an 
estimate of the probability measure P0: =P„ and an approximate stochastic program 
is solved. Statistical properties of the estimate of the optimal value and of the optimal 
solution depend on the continuity and differentiability properties of the optimal 
value and of the optimal solution of the parametric program at the true parameter 
value t]. 

Quite different methods have been used in the statistical approach in which a se
quence of problems (2) is considered for an increasing sample size N. Consistency 
of the optimal solutions x(PN) can be obtained under relatively mild assumptions 
(cf. Theorem 3.9 of [10]). In comparison with the unconstrained case as done in [15] 
there is a limiting assumption for asymptotic normality of x(PN), namely 

X/(N) ^v(P0) - vJxPN)) -» 0 in probability (1.0) 

(cf. [10], assumption 4.7 (iii)). However, this assumption is not necessary and we 
shall see that it can be omitted if the strict complementarity conditions or condition 
(8) hold true. The reason is simple: Under strict complementarity or under (8), 
the problem 

minimize f(x, P0) on the set M (11) 

reduces locally to minimization on an affine subspace. 
If none of the mentioned sufficient conditions is fulfilled one can try to approximate 

the difference f(x, PN) — f(x(P0), PN) by a quadratic function whose coefficients 
of the linear term are asymptotically normal and to minimize it on a conical set that 
approximates locally the set M on a neighborhood of x(P0). The properties of the 
optimal solution of the resulting quadratic program give again a key to results 
on asymptotic distribution of x(PN), cf. [29]. 

If h(', co) for all OJ e Q and gh i = 1, ..., m + p, are continuously differentiate, 
stability and sensitivity analysis for stochastic program (l), (6) can be studied in 
the Banach space of C° or C1 functions defined on a compact subset U of W (cf. 
[18], [19], [30]). This approach uses central limit theorem for random variables, 

N N 

such as N~l Y, h(x, w;) or N~ 1 £ Vxh(x, cot), from this Banach space. 
; = i / = i 

Similar problems have been recognized and partly treated in statistics in connection 
with hypotheses testing and later with restricted M-estimation, isotonic regression, 
etc. One of the first papers in this direction [3] studies asymptotic properties of the 
maximum likelihood test statistics in case that the true parameter value belongs to 
the boundary of the set corresponding to the considered hypothesis and/or to the 
alternative. In this paper, the idea of quadratic approximation of the fitting function 
and of conical approximation of the set was initiated. One recognizes immediately 
that the strict complementarity conditions are not fulfilled if the true (unconstrained) 
parameter lies on the boundary of the set of the considered parameter values. The 
asymptotic distribution of the test statistics is connected with that of the optimal 
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value of the quadratic program and with the chi-squared-bar statistics (cf. e.g., [1], 
[14], [23], [28]). Similar quadratic program appears also in nonparametric statistics, 
cf. [2]. 

In this paper we shall concentrate on the sensitivity analysis for optimal solutions 
with implications about asymptotic properties of restricted estimators. We shall 
mostly consider the case of the set M defined by explicit constraints as in (6); the 
parallel results for an abstract set M can be found in [8], [9]. 

2. SENSITIVITY ANALYSIS AND ASYMPTOTIC BEHAVIOR 
OF OPTIMAL SOLUTIONS 

As our starting point, we shall review results on stability for the parametric program 

minimize f(x, y) on the set M (12) 

where M is given by (6) and y is a parameter that belongs to a given set Y c Uq. 
We shall thus obtain a basis for statistical sensitivity analysis and for comparison 
of strict complementarity conditions with condition (10). We shall denote by r\ the 
true (or reference) parameter value. 

As we already know, program (12) can be directly related to sensitivity analysis 
for a parametric family SP of probability measures (9). Moreover, it appears in 
connection with computing Gateaux derivatives of optimal solution x(P) at P = P 0 : 
The Gateaux derivative x'(P0; P — P0) of the optimal solution x(P) at P0 in the 
direction of P — P0 is defined as 

x'(P0; P-P0) = Hm *(P*) " *(Po) 
• o . 

where Pt = (l — t) P0 + tP, 0 <. t < 1 is the probability measure P0 contaminated 
by P. If a suitable result on persistence holds true then 

{x(Pt)} = arg min [(1 - *)/(*, P0) + tf(x, P)] . 
jceAf 

The corresponding parametric program (12) depends on the scalar parameter t 
and its objective function 

f(x,t):=(l -t)f(x,P0) + tf(x,P) 

is linear in t. In this case, the reference parameter value is t = 0. 

It would be possible to present the results for the set M depending on the parameter 
y, too; see e.g. [6]. However, we want to concentrate on the basic ideas and to keep 
the presentation as simple as possible. 

Denote 
m + p 

L(x,W,y)=f(x,y) + Yjwigi(x) (13) 
;= I 
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the Lagrange function corresponding to program (12). Accordingly, L(*, ',y) is 
defined on W x Um x Up

+. For a given y e Y we shall denote by x(y) the isolated 
local minimizer of (12) and we shall consider the whole set W(y) of Lagrange multi
pliers that together with x(y) fulfil the Kuhn-Tucker conditions. For C1 functions 
/ ( ' * y)> 9i> i = 1* ••*« m + p it means that w(y) e W(y) if and only if the Kuhn-
Tucker conditions 

V,L(x(v), w(y), y) = 0 (14) 

x(y)eM, wt(y) _ 0 , i = m + 1, ..., m + p (15) 

WiW • fifj(x(y)) = 0 , i = m + 1, ..., m + p , (16) 

are fulfilled; the conditions (16) are so called complementarity conditions. We shall 
denote 

I(y) = {i: gt(x(y)) = 0} n {m + 1, ..., m + p} 

the set of indices of the inequality constraints that are active at x(y). 

Let us list some of frequently used assumptions, they are related to the program 

minimize f(x, n) on the set M 

that corresponds to the true parameter vector n. 

Al. Differentiability. For all y belonging to a neighborhood of n, the functions 
f(',y), gh i = 1, ..., m + p are C2-functions on a neighborhood of x(y). 
Furthermore, continuous derivatives Vxyf exist on a neighborhood of \_x(n), rf\. 

A2. Linear independence condition. The gradients 

Vx9i(x(tl))» iel(ri)\j {!,..., m} 

are linearly independent. 

A3. Strict complementarity conditions. For i e (m + 1, ..., m + p}, 

WiW = 0 o i ^ r ^ ) . 

A4. T/ze second order sufficient condition. The inequality 

zrVxxL(x(ti),w(ti),rj)z>0 (18) 

holds true for each z + 0 such that 

zr'vxgt(x(n)) = 0, i = 1, . . . ,m, (19) 

- T Vx9i(x(ri)) = 0 . ie/(i7) such that *>•(>/) > 0 (20) 

2T V.vq((x(f/)) = 0 , iel(n) such that w,^) = 0 . (21) 

A5. The strong second order sufficient condition. The inequality (18) holds true for 
each z + 0 such that 

^ Vx9i(x(n)) = 0« i = 1, . . . , m , 
z T Vxq;(x(^)) = 0 , i e/(?y) such that w^rj) > 0 . 
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The assumptions Al —A4 imply uniqueness and continuous differentiability of 
x(y) and w(y) for y e Oty) with the optimal value function 

(p(y) = f(x(y), y) 

twice continuously differentiable on O(^). This situation changes essentially if the 
strict complementarity conditions A3 are not fulfilled. 

Theorem 1 [16]. Let assumptions Al, A2, A5 hold true for the Kuhn-Tucker 
point [xfa), w(?/)] of (17). Then for all y e O(^), there are Lipschitz continuous vector 
functions x: 0(rf) -> U" w: O(^) -> Um x Up

+ such that [x(y), w(y)~\ is Kuhn-Tucker 
point for (12) for which assumptions A2 and A5 are fulfilled. Moreover, x(y) and 
w(y) are directionally differentiable in any direction s =f= 0. The directional derivative 
x'fy; s) is the unique optimal solution of the quadratic program 

minimize [|zT VxxL(x(t]), w^), ^ z + zT VxyL(xty), w(tj), ti) s] (22) 

subject to constraints (19) —(21). 
The components w't(rj; s) of the directional derivative w'(r]; s) are equal for ie 

eI(?7)u {1, ...,m] to the corresponding Lagrange multipliers of the quadratic program 
(19) —(22) and w't(r\; s) = 0 otherwise. 

This result has been further generalized in different ways, e.g., the assumption 
A2 has been replaced by the Mangasarian-Fromowitz constraint qualification and 
by the constant rank condition: 

A6. Mangasarian-Fromowitz constraint qualification holds at x(rt), i.e. 
a) V'xgi(x(tf)), i = 1. ..., m are linearly independent; 
b) there is z such that 

^ x9 i(x(n))T z = 0 , i=\,...,m, 

Vxgi(x(n))
Tz < 0 , iel(rj). 

A7. The constant rank condition holds at x(/y), i.e., for any subset K <= l(rj) the 
family of gradients 

-7x9i(x(y)), / G K u { l , . . . , m } 

remains of constant rank for all y belonging to a neighborhood of ^. 

Under assumption A6, the Lagrange multipliers wty) corresponding to x(tj) 
need not be unique but the set W(^) is a nonempty bounded polyhedral set [12]. 
It can be proved (cf. [20]) that assumptions Al, A6 together with existence of Kuhn-
Tucker point and with assumption A5 fulfilled at x(?/) for all w e W(^) are the weakest 
ones under which the optimal solution x(y) of (12) is locally unique. There also 
exist results on directional differentiability of x(y) at y = tj, see e.g. [21], [27], the 
first of them will be formulated below. 

Theorem 2 [21] Let assumptions Al, A6, A7 hold true at x(^) and let assumption 
A5 be fulfilled at x(^) for each w e W(n). Then for all y in a neighborhood of ^, 
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there exists a locally unique continuous local minimizer x(y) of (12). Moreover 
x(y) is directionally differentiable at rj in any direction s 4= 0 and its directional 
derivative x'(rj\ s) uniquely solves the following quadratic program for an extremal 
point w e W(rj): 

minimize \\zr VxxL(x(rj), w, rj) z + zr VxyL(x(rj), w, rj) s] 

subject to 

Vxgi(x(n))r z = 0 , i = l , . . . , m , „ 

Vx9i(x(tl)Y - = 0 , ieK(w;n), 

Vxgi(x(n))
rz^0, iel(rj)-K(w\rj), 

where K(vv; rj) — {k e l(rj): wk > 0} . 

If we solve the parametric program (12) for an estimate yN of the true parameter rj 
that is asymptotically normal, 

(N)(yN-n)~JT(0,Z) (23) 
V 

then under assumptions of Theorem 1, the distribution of >J(N) (x(yN) — x(y)) is 
asymptotically equivalent to that of x'(rj; >J(N) (yN — rj)), i.e. to the unique solution 
of the quadratic program (19) —(22) with asymptotically normal parameter vector 
s = yJ(N)(yN — *?). Optimal solutions of strictly convex parametric quadratic 
programs such as (1.9) — (22) are known to be piece-wise linear, polyhedral, Lipschitz 
continuous vector function on the whole parameter space !R̂ . It means that the 
parameter space can be decomposed into finitely many convex polyhedral sets, say, 
Sh, h = 1, ..., H, the stability sets of the quadratic program (1.9) —(22) with respect 
to the parameter s. For each h, x'(rj; s) is linear on cl Sh, differentiable on int Sh; 
it can be represented in more than one way on the boundary of Sh. 

This decomposition implies the decomposition of the probability space in our 
case and we can compute, e.g., the distribution function 

?{x'(n; v/(/V) (yN - $) £ a} = £ P{x'(rj; J(N) (yN - rj)) ̂  
/!=! 

^ a | V'(N) ( » - n) e Sh} . P{V(N) (Yv - tl) e Sh] . (24) 

We shall briefly call asymptotic distributions of the type (24) with x'(rj; sJ(N) (yN — ^)) 
linear in >/(N) (yN — rj) on Sh (a convex polyhedral set) and with ^(N) (yN — rj) 
asymptotically normal a "mixture of asymptotically normal distributions conditioned 
by convex polyhedral sets". The results can be summarized now. 

Theorem 3 [8]. Under assumptions of Theorem 1 and for asymptotically normal 
V (N) (yN ~ *7)> \/(^0 WYiv) — X W) ^s asymptotically distributed as a mixture 
of asymptotically normal distributions conditioned by convex polyhedral sets. 

Moreover, thanks to similar continuity properties of the Lagrange multipliers 
of the parametric quadratic program (19) —(22), convergence in distribution holds 
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also for the Lagrange multipliers corresponding to s = >/(N) (yN — n) a n d , conse
quently, for y/(N)(w(yN) - w(rj)). It means, inter alia, that under assumptions of 
Theorem 1 and for asymptotically normal s = >/(N) (yN — tl)> we have 
•sJ(N) (w(yN) — w(rj)) bounded in probability (cf. [26]), 

w(yN)-w(r1)=Op(N-^2). (25) 

Under assumptions of Theorem 1, the necessary and sufficient conditions for 
differentiability of the Kuhn-Tucker point [x(y), w(y)~\ of (12) at y = rj and thus 
for asymptotic normality of both x(yN) and w(yN) are the strict complementarity 
conditions A3 (cf. [24]). Let's compare this result with the condition (10) specified 
to the case of parametric family 0* = {Py, y e Y} in which the true probability 
measure P0 : = Pn is estimated by PN : = PyN, the set M is given by (6) and assump
tions of Theorem 1 are fulfilled. 

Notice that condition (10) was used in [10] under more general circumstances, 
with essentially weakened differentiability assumptions and that for an abstract 
set M, no constraint qualification such as A2, was needed. Accordingly, existence 
and uniqueness of Lagrange multipliers were not used. We shall thus relate condition 
(10) and strict complementarity conditions, both of which have been found connected 
with results on asymptotic normality of optimal solutions x(yN), only in a special 
case. 

First of all notice that under Al and A2, there is a one-to-one relationship between 
the vectors vM and the Lagrange multipliers: 

m + p 

vM(y) = i:Vgi(x(y))wi(y). (26) 

1 = 1 

Together with 

v0(y) = UMy)>y) (27> 
it means that 

vM(y)= -V/(x(y),y) (28) 

is uniquely defined. Furthermore, under Al, A2, A4, necessary conditions for x(y) 
to be an isolated local minimizer of (12) are the Kuhn-Tucker conditions (14) —(16). 
With (23) and Al, A2, A4, the additional assumption A3 — the strict complementarity 
conditions — implies asymptotic normality of Lagrange multipliers w(yN) and, 
according to (26), of the vectors vM(yN) as well. We obtain (cf. [26]) 

vM(yN) - vM(ti) - OP(N-1/2) 

in distinction to (10). 
Let's have a look at the crucial part of Theorem 4.8 of [10] about asymptotic 

normality of optimal solutions. In our present notation, asymptotic equivalence of 

V(N) (Vxf(x(yN), tj) - V\J(xO/), rj)) 
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and 
y/(N) (vjtj) - vM(yN)) - y/(N) (VJ(x(n), yN) + vM(rj)) (29) 

is used and asymptotic normality of (29) obtained by means of (10). Now, under 
Al, A2 and strict complementarity conditions A3, both terms in (29) are not only 
asymptotically normal, but they are asymptotically distributed as linear transforma
tions of yJ(N) (yN — r\). In this case, the result on asymptotic normality of 
yJ(N)(x(yN) — x(rj)) can be obtained without assuming (10). 

3. ASYMPTOTIC PROPERTIES OF ESTIMATES IN RESTRICTED 
LINEAR MODELS 

We shall discuss asymptotic properties of the least squares and Lt estimates 
of the p-dimensional parameter vector /? in the linear model 

y = XfS + e (30) 

in the case that the true parameter vector /? is supposed to fulfil linear constraints, 
say, 

jffeM := {b:Ab = d] (31) 

with a given matrix A(m, p) and a vector d e Um. These restrictions correspond 
to the prior knowledge, they may arrise in connection with formulation of hypothesis 
or alternative, etc. 

The same ideas can be used to obtain asymptotic properties of other types of 
restricted estimates even in the case that the estimated parameter vector belongs to 
the boundary of the considered set M. They apply, e.g., to the restricted maximum 
likelihood estimates used for misspecified models [32] to estimate the minimizer 
of the Kullback-Leibler Information Criterion. 

The notation used in this section conforms to that established in statistics. 

3.1. Restricted ordinary least squares regression 

Assume that X = (xtJ) is a given (N, p) matrix of full column rank, e is an N-
dimensional random vector of errors with 

Ee = 0 , var e = a2I, a2 > 0 an unknown parameter , (32) 

y = Xp + e 

is an N-dimensional random vector of observations and /i is a ^-dimensional unknown 
vector of parameters to be estimated. The restricted ordinary least squares estimate 
b2,N of /i is the optimal solution of the quadratic program 

mimmize l ^ - ^ l k i v : = I ( y k - I ^ A ) 2 (33) 
k=í j=l 

47 



on the set 

M = {beUp: Ab = d} , (34) 

see e.g. [17], [22]. This problem can be also understood as projection of y on the 
convex polyhedral set M(X) = {u: u = Xb, b e M}. 

If N is fixed and e is multinormal JV(0, a2I), the exact distribution of b2N is that 
of the (unique) optimal solution of the quadratic program (33), (34) or, equivalently, of 

minimize [bTXTXb - 2yTXb\ on the set M 

with normally distributed vector of coefficients (2XTy) in the linear term of the 
objective function. The same quadratic program or projection problem appears 
in maximum likelihood estimation and testing, cf. [14]. Notice that the objective 
function (33) can be written as 

(b - j3)T XTX(b - fi) - 2eTX(b - p) + eTe (35) 

and its minimal value appears in the test statistics. 
Asymptotic properties of b2N for N -* oo can be studied under suitable assumption 

about errors ek, such that ek are i.i.d. with ~ek = 0, var ek = a2 > 0 and finite and 
about behavior of the matrix XTX for N -> oo, e.g., 

N_1 XTX -> C with C a positive definite matrix , 

xk = (xkl, ..., xkp) , k = I, 2, ..., are of uniformly bounded norm . 

Under these assumptions, the true parameter vector /} solves the (unconstrained) 
minimization problem 

minimize (b — P)T C(b — /?) 

(compare with (35)). If /J e int M, y](N)(b2jN — P) is asymptotically normal 
JV(Q, a2C~x). If P e bnd M, strict complementarity conditions are not fulfilled for 

minimize (b — P)T C(b — ft) on the set M 

and the asymptotic distribution of b2 tN is a mixture of asymptotically normal distribu
tions conditioned by convex polyhedral sets, the stability sets of the quadratic 
program 

minimize (b - p)T C(b - P) - pr (b - 0) on the set M (36) 

with respect to the parameter p. Out of all stability sets, only those containing the 
parameter value p = 0 enter the formulas for asymptotic distribution; see [7], [9] and 
the discussion in Section 2. 

The result can be used for hypothesis testing: Assume that a2 is known, 
{b: Ab = d) =j= 0 and consider the test of hypothesis 

H0: peM0:= {b:Ab = d} 

against alternative 

H-: 0 e M , := {b: A,b ^ dv} 
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where At is a. (q, p) submatrix of A and d1 is the corresponding subvector of d. 
The likelihood ratio test rejects H0 for large values of 

min \\y — Xb\\2>N — min \\y — Xfe|2,jv 
beMo beMi 

distributed as y2. As the f statistics is defined as 

f = y
TV~1y - min (y - uf V~l(y - u) 

weK 

with y normal, JV(0, V), V positive definite and K — a convex cone it is essential 
that M0 is an affine linear space, M0c= Mt and M t is convex polyhedral; for details 
consult [27]. 

As the last possibility, consider the case of ft <£ M, i.e., of misspecified model, 
and put 

{ft} = arg min (b - ft)r C(b - ft) . (37) 
beM 

It means that ft =1= ft and, necessarily, ft e bnd M. According to [10], b2N-*ft a.s. 
It is interesting that is this case, asymptotic normality of y/(N)(b2N — ft) can be 
obtained provided that for quadratic program (36) strict complementarity holds 
true or, equivalently, if parameter p = 0 belongs to the interior of a stability set for 
the perturbed quadratic program (36). In the opposite case, we again arrive at the 
mixture of asymptotically normal distributions conditioned by convex polyhedral 
sets. 

3.2. Restricted Li-regression 

The restricted Lx estimate b1N of coefficients in linear regression model solves the 
program 

A' p 

minimize \\y — Xb\\1>N :— £ \yk — ]£ xkJbj\ on the set M . (38) 
t = l j=X 

We shall treat the case of random regressors as done, e.g., in [7] or in [13] for the 
unconstrained case. To this purpose assume that yk, xk are i.i.d. observations of ran
dom variable r\ and random vector £, respectively. For the true parameter vector ft, 
the random vector £ and e = r\ — /?T£ are supposed to be independent with densities 
h^ and hs, respectively. Moreover, the following assumptions (or similar assumptions 
of [7]) have to be satisfied: 

(i) The density hE is positive and bounded on a neighborhood of 0. 

(ii) med e = 0 

(iii) max |x*| = op(N
1/2), EPo££T = 2, a positive definite matrix. 

Notice that the assumption med e = 0 can be replaced by 

{ft} = arg min EPo|^ - bT£\ . (39) 
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We shall again relate P to the solution /i of the constrained optimization problem 

minimize EPo|̂ / — bT%\ on the set M . (40) 

There are three possibilities: 

a) / J e i n t M ; i n this case fi = ft and asymptotic normality of y/(N)(b1>N — ft) 
follows (see e.g. [7], [13]). 

b) p e bnd M; in this case /? = p and bUN -> 0 a.s. (cf. [7]). 

As the strict complementarity conditions are not fulfilled for (40) at b = ft, 
y/(N){bltN — ft) is not asymptotically normal. To obtain a result on asymptotic 
behavior of b1 N we shall use an approximating quadratic program. 

c) P $M, i.e., the case of misspecified model with ft =}= p in which b1 N -» ft a.s. 
(cf. [7]). • 

If strict complementarity conditions are fulfilled for (40) at b = ft asymptotic 
normality of s/(N)(b1>N — ft) can be proved, cf. [7]. For the opposite case, the 
asymptotic distribution of bt<N has not yet been specified; the quadratic approxima
tion of the objective function (38) obtained in [13] holds true only under assumption 
med s = 0 that is not fulfilled in this case. 

We shall concentrate on the case b). In [13], we can find the desired quadratic 
approximation 

Z\yk-(P + N-^2z)Txk\-i\yk-p
Txk\ = 

iis=i fc= I 

= 2zTsN + zTIz he(0) + oPo(l) (41) 

that is valid under assumptions (i)-(iii) uniformly for all ||z|| ^ K, with sN asymp
totically normal JV(0,^I). We want to use consistent estimates bltN that belong 
to the convex polyhedral set M and we assume that int M + 0. The optimal choice 
of bt N based on the approximation (41) corresponds to an optimal choice of z, 
i.e., to the solution of quadratic program 

minimize zTsN + 2ZT2z hE(0) 

subject to ||zJ <; K and /i + N~1/2zeM. 

On a neighborhood of /?, M can be approximated by its tangent cone TM(fi) and we 
obtain quadratic program 

minimize [zTsN + 2zT^z he(0)~] subject to z e TM(0) (42) 

in which sN is asymptotically normal and does not depend on z and whose optimal 
solutions zN provide a local approximation of X/(N) (bi)N — ft). The optimal solutions 
zN can be asymptotically normal if and only if TM(fi) is a subspace what was explicitly 
excluded in the considered case b. The asymptotic behavior of zN and thus of 
y/(N)(b1N — P), can be again obtained via the mentioned analysis of the perturbed 
quadratic program (42) as summarized in the following theorem: 
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Theorem 4 . Let for the true parameter vector /? defined by (39), the random vectors 

£ and s = r\ — /?T£ be independent with densities h^ and hs, respectively. Let assump

tions (i) — (hi) be fulfilled and let /? e bnd M. Then there is a consistent sequence of 

estimates blN obtained as 

N 

fej^eargmin £ \yk - brxk\ 
beM k=l 

and ^(N)(b1N — /?) is asymptotically equivalent to zN, the unique solution of the 
quadratic program (42). Accordingly, ^J(N)(b1>N — /3) is asymptotically distributed 
as a mixture of asymptotically normal distributions conditioned by convex polyhedral 
sets. 

A similar result can be found in [29] under different assumptions needed for 
uniqueness of Lagrange multipliers and the statistical assumptions strengthened 
to continuity of the density hE on a neighborhood of 0. 

(Received December 8, 1989.) 
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