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Charles University, Faculty of Mathematics and Physics, Dept. of Probability and
Mathematical Statistics, Prague, Czech Republic

Abstract. When working with stochastic financial models, one exploits various
simplifying assumptions concerning the model, its stochastic specification, parame-
ter values, etc. In addition, approximations are used to get a solution in an efficient
way. The obtained results, recommendations for the risk and portfolio manager,
should be then carefully analyzed. This is done partly under the heading “stress
testing”, which is a term used in financial practice without any generally accepted
definition. In this paper we suggest to exploit the contamination technique to give
the “stress test” a more precise meaning. Using examples from portfolio and risk
management we shall point out the directly applicable cases and will discuss also
limitations of the proposed method.
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1 Introduction

In stochastic programming problems one aims at selection of the “best” de-
cision or action which fulfills given “hard” constraints, say x ∈ X , accepting
that the outcome of this decision may be influenced by a realization of a ran-
dom event ω. The realization of ω is not known at the time of decision making
and to get the decision one uses the knowledge of the probability distribution
P of ω. The random outcome of a decision x ∈ X is quantified as f(x, ω).
Moreover, also “soft” constraints on x may be considered and their violation
if ω occurs may be included into the random objective function f or treated
separately in the form of probability constraints, such as P{g(x, ω) ≥ 0} ≥ p
with p a given probability.

In the sequel we shall focus mainly on stochastic programs which may be
written (after a suitable reformulation) in the following form: Given

X 6= ∅, closed, X ⊂ Rn,
ω ∈ Ω ⊂ Rm random with probability distribution P known, independent

of decision x ∈ X ,
f : X ×Ω → R1 measurable, with finite EP f(x, ω)∀x ∈ X

minimize F (x, P ) := EP f(x, ω) =

∫

Ω

f(x, ω)dP (ω) on the set X . (1)

The optimal value of (1) will be denoted ϕ(P ), the set of its optimal solutions
X ∗(P ).
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With P known the main stumbling block for an algorithmic solution of
such stochastic programs is the necessity to compute repeatedly at least the
values of the multidimensional integrals in (1) of functions which themselves
need not be defined explicitly. Various approximation schemes were designed.
The prevailing approach is to solve a scenario-based form of (1) with P a dis-
crete probability distribution which is carried by a finite number of points,
say ω1, . . . , ωS with probabilities p1, . . . , pS . The atoms of this discrete distri-
bution are called scenarios and the scenario-based formulation of (1) reads:

minimize

S
∑

s=1

psf(x, ωs) on the set X . (2)

There is an extensive evidence of successful applications of scenario-based
stochastic programs in financial modeling, pricing and designing decision
strategies, cf. [29], [30], and in other areas, cf. [28]. The origin of scenar-
ios can be very diverse. They can be atoms of a known genuine discrete
probability distribution, can be obtained in the course of a discretization or
approximation scheme, by simulation or by a limited sample information.
They can result from recognized regulations or from a preliminary analysis
of the problem and probabilities of their occurrence may reflect an ad hoc
belief or a subjective opinion of an expert; see Chapter II.5 in [14]. Under
“scenario” one may also understand a single deterministic realization of all
uncertainties and parameters up to the horizon; this setting covers not only
a certain realization of ω or a choice of various input parameters but it may
be also related to a specific macroeconomic or demographic situation.

Already the early applications of stochastic programming were aware of
the fact that the obtained solution or policy can be influenced by the choice
and an approximation of the probability distribution P . To analyze the re-
sults, the main tool has been sensitivity analysis via repeated runs of the
optimization problem with a changed input, see e.g. [21].

Also possible simplifications of the model, e.g. using multiperiod two-stage
program instead of a multistage one or relaxation of integrality constraints,
misspecification of the approximated “true” probability distribution P or er-
rors in estimating various input parameters may influence substantially the
results; see e.g. [2], [3], [4], [19]. These are additional reasons for designing
suitable validation techniques and tests. One may exploit parametric pro-
gramming results, statistical methods, various sampling and simulation tech-
niques, multimodeling, etc. The choice of the approach depends essentially
on the structure of the solved problem, on the origin of scenarios and reflects
sources of possible errors and misspecifications.

To validate results of financial applications, one uses mostly historical and
empirical backtesting, stress testing and out-of-sample analysis. We suggest
to complement these numerical techniques by the contamination approach
which provides bounds to the errors. We shall explain the basic ideas of
contamination technique and illustrate its application on a bond portfolio
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management problem and on CVaR criterion risk management. Finally, pos-
sible extensions and limitations of the proposed approach approach will be
discussed.

2 Motivation: Stochastic dedicated bond

portfolio management

Assuming known future short-term reinvestment interest rates it for period
(t, t+ 1), the dynamic dedicated bond portfolio model can be formulated as
follows:

minimize

N
∑

n=1

cnxn + y+
0

subject to

N
∑

n=1

fntxn + (1 + it−1)y
+
t−1 − y+

t = lt, t = 1, . . . , T, x ≥ 0, y+ ≥ 0.

Here x = (x1, . . . , xn)
⊤ is composition of the portfolio, c = (c1, . . . , cn)

⊤ is
the vector of acquisition prices and the T -vectors fn, n = 1, . . . , N, l and y+

stand for the cash flows, liabilities and surpluses.
In reality, the future short-term reinvestment rates are hardly known. We

assume instead that ι = (i0, . . . , iT−1) are random and that their probability
distribution has been approximated by a discrete probability distribution P
carried by a finite number of scenarios ιs, s = 1, . . . , S with probabilities
ps. In addition, we allow for short-term shortfalls; this means that for some
scenarios and time periods (except for the last one) nonzero discrepancies

y−st =

(

lt −
∑

n

fntxn − (1 + ist−1)y
+s
t−1 + y+s

t

)+

may occur. In such case, the investor borrows this amount and is obliged to
repay it including the interest rate (higher than ist for a positive spread δ
between the short-term reinvestment and borrowing rates) in the next pe-
riod. For each s, t we consider now the cash flow constraints which include
scenario dependent surpluses y+s

t and shortfalls y−st . In addition, there is a
penalty

∑

s psq
s⊤y−s for borrowing included into the objective function. The

resulting problem is

minimize c⊤x + y+
0 +

∑

s

psq
s⊤y−s

subject to

N
∑

n=1

ftnxn+(1+ist−1)y
+s
t−1−y

+s
t −(1+ist−1+δ)y

−s
t−1+y

−s
t = lt, ∀s, t = 1, . . . , T−1
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T
∑

n=1

fTnxn + (1 + isT−1)y
+s
T−1 − y+s

T − (1 + isT−1 + δ)y−sT−1 = lT ∀s

with y+s
0 = y+

0 , y
−s
0 = 0∀s and nonnegativity of all variables x,y+s,y−s, s =

1, . . . , S. Evidently, the optimal solution and the minimal cost depend on
scenarios ιs, on their probabilities and on spread δ.

This problem can be further generalized to accommodate random (sce-
nario dependent) cash flows, liabilities and spread, to include trading possi-
bilities and additional decision stages. To solve it, one has to generate sensible
scenarios and provide other model parameters. To rewrite it in the form (2),
with a fixed set of feasible first-stage decisions, we define the minimum cost
for covering the discrepancies when the first-stage decision x, y+

0 is selected
and scenario ιs occurs:

us(x, y+
0 ) = min qs⊤y−s

subject to

N
∑

n=1

ftnxn+(1+ ist−1)y
+s
t−1−y

+s
t − (1+ ist−1 + δ)y−st−1 +y−st = lt, 1 ≤ t ≤ T −1

T
∑

n=1

fTnxn + (1 + isT−1)y
+s
T−1 − y+s

T − (1 + isT−1 + δ)y−sT−1 = lT

with y+s
0 = y+

0 , y
−s
0 = 0 and y+s

t ≥ 0, y−st ≥ 0∀t.
The full scenario-based problem reads now

minimize c⊤x + y+
0 +

∑

s

psu
s(x, y+

0 ) (3)

with respect to x ≥ 0, y+
0 ≥ 0.

In the general case of a T -stage problem a sequence of decisions is built
along each of considered data trajectories in such a way that decisions based
on the same partial trajectory, on the same history, are identical (nonantic-
ipativity) and the expected outcome (e.g., the expected gain or cost) of the
decision process at time T is the best possible.

3 Contamination and stress testing

3.1 Basic ideas

“Stress testing” is a term used in financial practice without any generally
accepted definition. It appears in the context of quantification of losses or
risks that may appear under special, mostly extremal circumstances. Such
circumstances are frequently described by certain scenarios which may come
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from historical experience or may be judged possible in future given changes
of macroeconomic, socioeconomic or political factors. The performance of
the obtained optimal decision is then evaluated along these scenarios or the
model is solved with an alternative input. We shall indicate now how it is
possible to quantify such “stress testing” results.

Assume that the stochastic programming model for ALM, such as the
stochastic dedicated bond portfolio management introduced in Section 2,
was solved for a fixed set of scenarios ωs, s = 1, . . . , S, and that the influence
of including other out-of-sample or stress scenarios should be considered.
One could rewrite the program for the extended set of scenarios (and also
constraints) and solve it. Another way is to think of this program put into
the form

min
x∈X

∑

s

psu
s(x)

with a fixed set X of scenario-independent (first-stage) feasible solutions (the
initial investments) and with performance measures u dependent on scenarios,
compare with (3).

Denote by P the probability distribution concentrated on ωs, s = 1, . . . , S
with probabilities ps > 0,

∑

s ps = 1, by ϕ(P ) the optimal value of the prob-
lem and assume that the set of optimal solutions is nonempty and bounded;
let x∗(P ) be one of optimal solutions. Inclusion of additional scenarios means
to consider another discrete probability distribution, say Q, carried by the
out-of-sample or stress scenarios indexed by σ = 1, . . . , S′, with probabilities
qσ > 0,

∑

σ qσ = 1. Degenerated probability distribution Q carried only by
one “stress” scenario is a special case. To quantify the consequences, one may
construct the contaminated distribution

Pλ = (1 − λ)P + λQ (4)

with a parameter 0 ≤ λ ≤ 1. The contaminated probability distribution
Pλ is carried by the pooled sample of the S + S′ scenarios that occur with
probabilities (1 − λ)p1, . . . , (1 − λ)pS , λq1, . . . , λqS′ .

The optimal value ϕ(λ) = ϕ(Pλ) for the pooled sample is a finite concave
function of λ on [0, 1], it equals the initial value ϕ(P ) for λ = 0, and ϕ(Q) for
λ = 1. Moreover, under mild assumptions, see e.g. [8], one gets its continuity
at λ = 0. An upper bound on its directional derivative at λ = 0+ equals the
difference between the value of the objective function

∑

σ qσu
σ(x∗(P )) for

the out-of-sample or stress scenarios evaluated at the optimal solution x∗(P )
of the initial problem and ϕ(P ).

The bounds for the optimal value ϕ(Pλ) of the problem based on the
pooled sample follow from concavity of ϕ(λ) :

ϕ(P ) + λϕ′(0+) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q), 0 ≤ λ ≤ 1. (5)

Their final form results by substituting for ϕ′(0+) :

(1 − λ)ϕ(P ) + λ
∑

σ

qσu
σ(x∗(P )) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q) (6)



6 Jitka Dupačová

and is valid for all λ ∈ [0, 1].

The additional numerical effort consists of

• Solving the problem

min
x∈X

∑

σ

qσu
σ(x) (7)

for the probability distribution Q carried by the out-of-sample, stress
scenarios, the optimal decision is denoted x∗(Q).

In some papers stress testing is cut down to this procedure, i.e. to obtain-
ing the optimal value ϕ(Q) and comparing it with ϕ(P ). Such compari-
son may be a cause of misleading conclusions. Assume for example that
ϕ(P ) = ϕ(Q). With exception of the constant contaminated objective
function ϕ(Pλ) = ϕ(P )∀λ ∈ [0, 1], the concavity arguments imply that
there exist values of λ for which ϕ(Pλ) > ϕ(P ).

• Evaluation and averaging the S′ function values uσ(x∗(P )) for the new
stress scenarios at the already obtained optimal solution.

This appears under the heading “stress testing” as well: one evaluates
only the average performance of the obtained optimal solutions under
the stress scenarios.

The assumption of discrete probability distributions P and/orQ is not im-
portant for derivation of contamination bounds. For example, for the general
form (1), the average performance

∑

σ qσu
σ(x∗(P )) of the optimal solution

x∗(Q) in (6) is replaced by the expectation
∫

Ω
f(x∗(P ), ω)dQ(ω).

Provided that the set of optimal solutions of (7) is nonempty and bounded,
similar bounds on the optimal value ϕ(Pλ) may be also created by starting
from the newly considered probability distribution Q and contaminating it
by the initial one:

λϕ(Q) + (1 − λ)
∑

s

psu
s(x∗(Q)) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q) (8)

for all λ ∈ [0, 1]. Together with the original bounds (6) one gets a tighter
upper bound

min{(1 − λ)ϕ(P ) + λ
∑

σ

qσu
σ(x∗(P )), λϕ(Q) + (1 − λ)

∑

s

psu
s(x∗(Q))}

for ϕ(Pλ). The cost is to evaluate also the performance of the optimal solution
x∗(Q) of (7) along the initial S scenarios and averaging the results. See Figure
1 for illustration of these bounds.

Details can be found in [8], [10], for an application in ALM and in bond
portfolio management see [12], [13], [15] and Chapter II.6 of [14].

Example 1. In the context of the stochastic bond portfolio management
problem assume that the initial scenarios ιs, s = 1, . . . , S are equiprobable,
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Fig. 1. Contamination bounds

i.e. ps = 1/S ∀s and that experts agreed on one additional interest rate
scenario ι∗ capturing an extremal event. This scenario is the only atom of
the degenerated contaminating probability distribution Q and its probability
q = 1. The contaminated distribution is carried then by the initial scenarios
ιs, s = 1, . . . , S and by the new scenario ι∗. Their probabilities are now 1−λ

S

for s = 1, . . . , S and λ, respectively.

The best investment strategy x∗(Q) under contaminating scenario ι∗ re-
quired in (8) can be found as an optimal solution of the corresponding de-
terministic program, which is a linear program in case of the linear utility
function; its optimal value equals ϕ(Q).

The next step reduces to evaluation of the performance of the initial opti-
mal decision x∗(P ) under the new scenario ι∗; the obtained value u∗(x∗(P ))
appears in (6) at the place of

∑

σ qσu
σ(x∗(P )).

Probability λ assigns a weight to the view of experts and the bounds
(6), (8) are valid for all 0 ≤ λ ≤ 1. They indicate how much the weight
λ, interpreted as the degree of confidence to the experts’ view, affects the
outcome of the investment decision.

The above results are then exploited to quantify the deviations in the
performance of the obtained decision when new, extremal circumstances are
taken into account, which is a true robustness result.

Also the impact of a modification of every single scenario according to
the experts’ views on the performance of the portfolio can be studied in a
similar way. One uses the initial distribution P contaminated by Q which is
carried now by equiprobable scenarios ι̂s = ιs + δs, s = 1, . . . , S, and δs de-
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notes the suggested (additive) modification of scenario ιs. The contamination
parameter λ relates again to the degree of confidence to the experts’ view.

Contamination technique can be useful in postoptimality analysis with re-
spect to inclusion of out-of-sample scenarios obtained by simulation or under
disparate alternative input data, such as volatility curves in [12] or changed
assumptions about behavior of insured in [15], for emphasizing the impor-
tance of a scenario by increasing its probability, in stress testing, and also in
various stability studies, e.g. with respect to the assigned probabilities ps. It
is valid for multistage problems and may be also used to quantify changes
due to inclusion of additional stages of the decision process, cf. [9].

Before the contamination technique can be applied the problem must
be reformulated so that the set of feasible decisions is independent of P,
see (3), continuity of the optimal value function ϕ(λ) = ϕ(Pλ) at λ = 0
and existence of the directional derivative ϕ′(0+) must be proved and the
form of the derivative which appears in the bounds must be derived. Solving
the stochastic program of the same form for an alternative scenario-based
probability distribution Q and evaluation the derivative means to apply a
known procedure, usually for smaller optimization problems.

3.2 Comments and extensions

Contamination technique was initiated in mathematical statistics as one of
the tools for analysis of robustness of estimators with respect to deviations
from the assumed probability distribution and/or its parameters. It goes back
to von Mises and the concepts are briefly described e.g. in [27]. In stochastic
programming it was developed first in [7] for stochastic programs written in
the form (1)

min
x∈X

F (x, P ) :=

∫

Ω

f(x, ω)dP (ω).

It helps to reduce the robustness analysis with respect to changes in P to a
much simple analysis with respect to a scalar parameter λ : Possible changes
in the probability distribution P are modeled using contaminated distribu-
tions (4) with λ ∈ [0, 1] and Q another probability distribution under con-
sideration. Due to this reduction, the results are directly applicable but they
are less general than quantitative stability results with respect to arbitrary
(but small) changes in P summarized in [25].

Being an expectation, the objective function in (1) is linear in P, hence

F (x, λ) :=

∫

Ω

f(x, ω)dPλ(ω) = (1 − λ)F (x, P ) + λF (x, Q)

is linear in λ and its derivative with respect to λ equals F (x, Q) − F (x, P ).
We suppose that for all considered distributions, stochastic program (1)

has an optimal solution. It is easy to prove that the optimal value function

ϕ(λ) := min
x∈X

F (x, λ)
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is concave for λ ∈ [0, 1]. This guarantees its continuity and existence of direc-
tional derivatives in the open interval (0, 1), whereas continuity at the point
λ = 0 is a property related with stability results for the stochastic program in
question. In general, one needs a nonempty, bounded set of optimal solutions
X ∗(P ) of the initial stochastic program (1). Various sets of assumptions are
summarized in [8], the two most frequently used cases are listed below:

• Nonempty, compact X and F (x, P ), F (x, Q) finite, continuous in x;
• Convex, closed X , F (x, Q) convex in x for all considered probability

distributions (or f(x, ω) in (1) a convex function of x) and the set of
optimal solutions X ∗(P ) 6= ∅, bounded.

These assumptions together with stationarity of derivatives

dF (x, λ)

dλ
= F (x, Q) − F (x, P )

are used to derive the form of the directional derivative

ϕ′(0+) = min
x∈X∗(P )

F (x, Q) − ϕ(0), (9)

which enters the upper bound for the concave function ϕ(λ) in (5), cf. [8],
[10] and references therein. If x∗(P ) is the unique optimal solution of (1),

ϕ′(0+) = F (x∗(P ), Q) − ϕ(0),

i.e., the local change of the optimal value function caused by a small change
of P in direction Q − P is asymptotically the same as that of the objective
function at x∗(P ). If there are multiple optimal solutions of (1), each of them
leads to an upper bound

ϕ′(0+) ≤ F (x(P ), Q) − ϕ(0), x(P ) ∈ X ∗(P ).

Contamination bounds (6), and similarly also (8), can be then rewritten as

(1 − λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q)

valid for an arbitrary x(P ) ∈ X ∗(P ) and λ ∈ [0, 1].

Concavity of the optimal value function ϕ(λ) is important for constructing
the above global bounds which hold true for all λ ∈ [0, 1]. It cannot be
obtained, in general, when the set X depends on the probability distribution
P. In such cases and under additional assumptions, only local stability results
can be proved. On the other hand the results can be generalized to objective
functions F (x, P ) convex in x and concave in P —the case appearing in the
context of the mean-variance objective function and in robust optimization
formulated in [22]; see [10], [11] for the related contamination results. To
get these generalizations, it is again necessary to analyze persistence and
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stability properties of the parametrized problems minx∈X F (x, Pλ) and to
derive the form of the directional derivative. Under the assumptions listed
above, the optimal value function ϕ(λ) remains concave on [0, 1]. Additional
assumptions are needed to get the existence of the derivative

ϕ′(0+) = min
x∈X∗(P )

d

dλ
F (x, Pλ)|λ=0+ .

Example 2. Consider the mean-variance objective function

F (x, P ; ̺) := −EP r(x, ω) + ̺varP r(x, ω) (10)

with r(x, ω) the random return of an investment x ∈ X attained when the
realization ω occurs; ̺ > 0 is a fixed parameter. By minimization of (10) for
changing values of the parameter ρ one gets mean-variance efficient solutions
and the points on the mean-variance frontier of the corresponding Markowitz
model.

The variance of return for the contaminated probability distribution Pλ

varPλ
r(x, ω) = EPλ

r2(x, ω) − (EPλ
r(x, ω))2

= (1 − λ)EP r
2(x, ω) + λEQr

2(x, ω) − ((1 − λ)EP r(x, ω) + λEQr(x, ω))2

is a concave function of λ for λ ≥ 0. Its derivative

dvarPλ
r(x, ω)

dλ
|λ=0 = varQr(x, ω)− varP r(x, ω) + (EQr(x, ω)−EP r(x, ω))2.

The objective function (10) for the contaminated probability distribution
Pλ is

F (x, Pλ; ̺) = −(1 − λ)EP r(x, ω) − λEQr(x, ω) + ̺varPλ
r(x, ω)

and its directional derivative

dF (x, Pλ; ̺)

dλ
|λ=0+ = F (x, Q; ̺) − F (x, P ; ̺) + ̺(EQr(x, ω) − EP (r(x, ω))2.

The optimal value function of the contaminated problem,

ϕ(λ; ̺) := min
x∈X

F (x, Pλ; ̺)

is a concave function of λ and ϕ(0; ̺) coincides with the optimal value ϕ(P ; ̺)
of (10) on the set X . Under similar conditions as for the expected value
objective function in (1), its one-sided derivative exists,

ϕ′(0+; ̺) ≤ F (x(P ), Q; ̺) − ϕ(P ; ̺) + ̺(EQr(x(P ), ω) − EP (r(x(P ), ω))2

and the contamination bounds of the type (6) follow.
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Even without convexity with respect to x one may be able to prove the
needed stability results, such as the joint continuity of F (x, P ), and apply
Theorem 7 in [8] to get the existence and the form of the directional deriv-
ative. This was examined for two-stage stochastic integer programs, see e.g.
[6].

We shall see in the next Section that an application of the above results to
stability analysis and stress testing for the Conditional Value at Risk (CVaR)
is straightforward.

There exist results for optimal solutions of contaminated stochastic pro-
grams and for the case that also constraints depend on P , but these results
are not yet ready for a direct practical exploitation.

4 Contamination and stress testing for CVaR

4.1 Basic formulas

Value at Risk (VaR) was introduced and recommended as a generally ap-
plicable risk measure to quantify, monitor and limit financial risks and to
identify losses which occur with an acceptably small probability.

Denote

• g(x, ω) the loss if x ∈ X is selected and realization ω occurs,
• P{ω : g(x, ω) ≤ k} := G(x, P ; k) the distribution function of the loss

connected with a fixed decision x,
• α ∈ (0, 1) a selected confidence level.

Then the Value at Risk at the confidence level α is defined as

VaRα(x, P ) = min{k ∈ R : G(x, P ; k) ≥ α} (11)

or
VaR+

α (x, P ) = inf{k ∈ R : G(x, P ; k) > α}.

Hence, random losses greater than VaR occur with probability 1 − α. This
interpretation is well understood in the financial practice.

It turns out, however, that there are various weak points of the recom-
mended VaR methodology. To settle these problems new risk measures have
been introduced. Here we shall discuss one of them—the Conditional Value
at Risk.

The Conditional Value at Risk—CVaRα is the mean of the α-tail
distribution Hα of g(x, ω) defined as

Hα(x, P ; k) = 0 for k < VaRα(x, P )

Hα(x, P ; k) = G(x,P ;k)−α
1−α for k ≥ VaRα(x, P ). (12)
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Assume that EP |g(x, ω)| <∞∀x ∈ X and define

Φα(x, ψ, P ) = ψ +
1

1 − α
EP (g(x, ω) − ψ)+. (13)

The fundamental minimization formula in [24] helps to evaluate CVaR
and to analyze its stability including stress testing.

Theorem [24]. As a function of ψ, Φα(x, ψ, P ) is finite and convex
(hence continuous) with

min
ψ
Φα(x, ψ, P ) = CVaRα(x, P ) (14)

and
arg min

ψ
Φα(x, ψ, P ) = [VaRα(P,x),VaR+

α (x, P )]. (15)

The auxiliary function Φα(x, ψ, P ) is linear in P and convex in ψ. To get
persistence and stability properties with respect to P, it is enough to assume
that the set (15) of optimal solutions of the simple stochastic program (14)
is nonempty and bounded—a natural request concerning the quantiles of the
probability distribution G(x, P ; •).

There are various papers discussing properties of VaR, CVaR and re-
lations between CVaR and VaR, see e.g. [5], [23]. We shall focus on the
contamination-based stress testing for CVaR. The presence of probability
constraints in definition of VaR requires that various distributional and struc-
tural properties are fulfilled, namely, for the unperturbed problem. These re-
quirements rule out direct applications of contamination technique in case of
empirical VaR whereas for normal distribution and parametric VaR one may
exploit stability results valid for quadratic programs. Some related results on
stress testing for VaR can be found e.g. in [16], [20].

4.2 Stress testing for CVaR

Let P be a discrete probability distribution concentrated on ω1, . . . , ωS with
probabilities ps > 0, s = 1, . . . , S and x a fixed element of X . Then the
program (14) has the form

min
ψ
ψ +

1

1 − α

∑

s

ps(g(x, ω
s) − ψ)+ (16)

and can be further rewritten as

min
ψ,y1,...,yS

{ψ +
1

1 − α

∑

s

psys : ys ≥ 0, ys + ψ ≥ g(x, ωs)∀s}.

Consider now a stress test of CVaRα(x, P ), i.e., of the optimal value of
(16). Let ψ∗ = ψ∗(x, P ) be an optimal solution of (16) and ω∗ be the stress
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scenario. We apply the contamination technique and proceed as explained in
Example 1.

The CVaRα(x, Q) value for the degenerated probability distribution Q
carried by the stress scenario ω∗ equals g(x, ω∗), the value Φα(x, ψ∗, Q) =
ψ∗ + 1

1−α (g(x, ω∗) − ψ∗)+. Hence, the bounds for the CVaRα for the conta-
minated probability distribution Pλ carried by the initial scenarios ωs, s =
1, . . . , with probabilities (1− λ)ps and by the stress scenario ω∗ with proba-
bility λ have the form

(1 − λ)CVaRα(x, P ) + λΦα(x, ψ∗, Q) = Φα(x, ψ∗, Pλ) ≥ (17)

≥ CVaRα(x, Pλ) ≥ (1 − λ)CVaRα(x, P ) + λCVaRα(x, Q)

and are valid for all λ ∈ [0, 1]; compare with (6). The difference between the
upper and lower bound equals

λ[Φα(x, ψ∗, Q)−CVaRα(x, Q)] = λ[ψ∗ +
1

1 − α
(g(x, ω∗)−ψ∗)+ − g(x, ω∗)].

As the next step, let us discuss briefly optimization problems with
the CVaRα(x, P ) objective function

minimize CVaRα(x, P )

on a closed, nonempty set X ∈ Rn, cf. [1]. Using (14), the problem is

min
x,ψ

Φα(x, ψ, P ), x ∈ X . (18)

For convex X and convex loss functions g(•, ω) for all ω, Φα(x, ψ, P ) is convex
in (x, ψ) and standard stability results apply. Moreover, if P is the considered
discrete probability distribution, g(•, ω) a linear function of x and X convex
polyhedral, we get a linear program

min
ψ,y1,...,yS ,x

{ψ+
1

1 − α

∑

s

psys : ys ≥ 0, x⊤ωs−ψ−ys ≤ 0∀s, x ∈ X}. (19)

Let ψ∗(P ), x∗(P ) be an optimal solution of (18) and denote ϕCα
(P ) the

optimal value. To get contamination bounds for the optimal value of (18)
with P contaminated by a stress probability distribution Q it is sufficient
to assume a compact set of optimal solutions of (18). An evident instance is
compact X and bounded interval (14). The bounds follow the usual pattern,
compare with (6):

(1−λ)ϕCα
(P )+λΦα(x∗(P ), ψ∗(P ), Q) ≥ ϕCα

(Pλ) ≥ (1−λ)ϕCα
(P )+λϕCα

(Q).

To apply them one has to evaluate Φα(x∗(P ), ψ∗(P ), Q) and to solve (18)
for the stress distribution Q. See Figure 2 for an example of contamination
bounds obtained in the numerical example from [16].
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Fig. 2. Contamination bounds for CVaR

The values for λ = 0 and λ = 1 correspond to minimal CVaRs for dis-
tributions P and Q, respectively, both of them carried by different 5184
equiprobable scenarios. The optimal CVaR for the pooled sample of 10368
equiprobable scenarios lies in the interval [0.0175, 0.0195] which corresponds
to λ = 1/2. If the bounds are acceptably tight, the optimal CVaR for the
pooled sample need not be computed.

4.3 Stress testing for CVaR-mean return efficient problem

Similarly as for the Markovitz mean-variance problem, one considers two
criteria – minimize CVaRα(x, P ) and maximize expected return EP r(x, ω)
on a set X . Two reformulations of this bi-criterial problem provide efficient
solutions:

min
x∈X

CVaRα(x, P ) − kEP r(x, ω) (20)

with k ≥ 0 a parameter, compare with (10), or

min CVaRα(x, P ) s.t. x ∈ X , EP r(x, P ) ≥ r (21)

with parameter r(≥ r0).

Optimal solutions x∗
k(P ), x∗

r(P ) of (20) and (21) depend on the tradeof
parameter values k and r, respectively.
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The second reformulation is favored in the practice. Solving (21), one gets
directly points [CVaRα(x∗

r(P ), P ), r] on the CVaR-mean efficient frontier in
dependence on the specified value of parameter r.

Dependence of the set of feasible solutions of (21) on P means that in
general, the optimal value for contaminated Pλ is not concave in λ. On the
other hand, the set of feasible decisions of (20) is fixed, independent of the
distribution, hence, contamination bounds for the optimal value function can
be constructed as for CVaR evaluation or optimization. These, however, are
not the bounds around the efficient frontier.

To trace out the CVaR-mean return efficient frontier one may solve
(20) or (21) for many different values of k, r, respectively, or rely on para-
metric programming techniques. In the sequel we shall assume that g(x, ω) =
−r(x, ω) = x⊤ω, X is a convex polyhedral set and P is a discrete probabil-
ity distribution. Then both (20), (21) may be solved via parametric linear
programming techniques, cf. [26].

Contamination of probability distribution P introduces an additional pa-
rameter λ into (20) and (21). As a consequence, nonlinearity with respect
to k, λ appears in the objective function of (20) whereas both the objective
function and the set of feasible solutions of (21) depend linearly on parame-
ters.

Example 3. Assume in addition that EPω = EQω = ω̄. Then the set of
feasible decisions of (21) does not depend on λ, and the contamination bounds
apply. Such assumption appears when scenarios are generated by the moment
fitting method, see e.g. [18]. In this case, the nonlinear dependence of k and
λ in the objective function of the contaminated program (20) disappears and
contamination bounds for the CVaR-mean return problem can obtained by
solving (21).

For solving the contaminated problem (21) one may apply the simplex
based techniques of [17]. The problem is a linear parametric program with
two independent parameters, λ in the objective function and r on the right-
hand sides of constraints. Let us mention some favorable properties of such
parametric programs related with their general form

min
{

(c + λĉ)⊤x : Ax = b + rb̂,x ≥ 0
}

(22)

with (r, λ) ∈ A, a nonempty, closed two-dimensional interval, cf. Theorem
3.2 in [17].

In our CVaR-mean return problem , λ ∈ [0, 1], c comes from P , ĉ from the
“direction” Q−P and r ∈ [rL, rU ] appears only in the mean return constraint
ω̄⊤x ≥ r; we have obviously

rL = min{ω̄⊤x∗(P ), ω̄⊤x∗(Q)}, rU = max
x∈X

ω̄⊤x.

The assumption about A := [0, 1] × [rL, rU ] is fulfilled if rL < rU . In such
case, existence of optimal solution of (22) is guaranteed for all (r, λ) ∈ A and
for optimal solutions, the mean return constraint is active. Moreover,
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• The optimal value function ϕ(r, λ) is continuous on A, convex in r,
concave in λ.

• The two-dimensional interval A can be decomposed in a finite number
of closed intervals, say, Ah

(r,λ) such that there exist optimal solution x∗
r(Pλ)

of (22) which is linear on Ah
(r,λ) and the optimal value function is linear there

in r and in λ. See Figure 3.

Fig. 3. Decomposition of set A

The simplex-based algorithm detailed in Section 3.3 of [17] uses two
columns for solution components and two rows for the criterium. The critical
boundaries of intervals Ah

(r,λ) are obtained by discussion of feasibility and
optimality conditions with respect to parameters r, λ.

These properties and Figure 3 indicate that for values of λ ≤ λ1, λ1 > 0
small enough, the efficient solutions of the contaminated problem are equal
to optimal solutions of the noncontaminated problem (21), i.e., they do not
depend on λ :

x∗
r(Pλ) = x∗

r(P )∀r ∈ [rl, rU ]

and ϕ(r, λ), the optimal contaminated value CVaRα(x∗
r(Pλ), Pλ) with a fixed

mean return r, is linear in λ.
Hence, under assumptions of the example small contamination of P does

not influence composition of CVaR-mean return efficient portfolios.

5 Conclusions

The contamination technique is presented as a tool suitable for postopti-
mality and sensitivity analysis of the optimal value with respect to various
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input perturbations. For scenario-based stochastic programs, it is easily ap-
plicable in out-of-sample analysis and stress testing for portfolio management
models of the recourse and robust optimization type. This extends also to
mean-variance and CVaR optimization whereas its application for CVaR-
mean efficient portfolios is more involved.
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