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A major issue in any application of multistage stochastic programming is the rep-
resentation of the underlying random data process. We discuss the case when
enough data paths can be generated according to an accepted parametric or non-
parametric stochastic model. No assumptions on convexity with respect to the
random parameters are required. We emphasize the notion of representative sce-
narios (or a representative scenario tree) relative to the problem being modeled.
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1 Multistage stochastic programs

In the general T -stage stochastic program we think of a stochastic data process

ω = {ω1, . . . , ωT−1} or ω = {ω1, . . . , ωT }

whose realizations are (multidimensional) data trajectories in (Ω,F , P ) and of a vector
decision process

x = {x1, . . . , xT },

a measurable function of ω. The sequence of decisions and observations is

x1, ω1, x2(x1, ω1), ω2, . . . , xT (x1, x2, . . . , xT−1, ω1, . . . , ωT−1) = xT (x1, ω1, . . . , ωT−1).
(1)

In addition, ωT may contribute to the overall costs. The decision process is nonantic-
ipative in the sense that decisions taken at any stage of the process do not depend on
future realizations of the random parameters or on future decisions, whereas it is the past
information and the given probabilistic specification (Ω,F , P ) of the process ω which are
exploited. The dependence of the decisions solely on the history and on the probabilistic
specification can be expressed as follows: Denote by Ft−1 ⊆ F the σ-field generated
by the observations ωt−1,• := {ω1, . . . , ωt−1} of the part of the stochastic data process
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that precedes stage t. The dependence of the t-th stage decision xt only on these past
observations means that xt is Ft−1-adapted or, in other words, that xt is measurable
with respect to Ft−1. In each of the stages, the decision is limited by constraints that
may depend on the previous decisions and observations.

Two formulations of multistage stochastic programming problems can be used. For
general results concerning their equivalence see, e.g., [64], for an introductory survey
see [26].

Let Xt be given nonempty sets in Rnt , t = 1, . . . , T, and denote by

Xt(ω) =
{

x
t• ∈ X1 ×X2 × . . . ×Xt : fti(x

t•, ωt−1,•) ≤ 0, i = 1, . . . , mt

}

(2)

the t-th stage constraints, t = 2, . . . , T , and by f0(x, ω) the overall cost connected with
the decision process (1). The form of (2) reflects the requirement that the choice of
decisions from Xt(ω) is not explicitly constrained by future decisions and observations.
However, this does not, in general, exclude the presence of induced constraints which must
be fulfilled to guarantee the existence of a feasible nonanticipative decision process x for
almost all ω.

The T -stage stochastic program is to find

x1 ∈ X1 and xt Ft−1–measurable, x
t• ∈ Xt(ω), t = 2, . . . , T a.s., (3)

that minimizes E {f0(x1, x2(ω), . . . , xT (ω), ω)} .

The special choice of the function f0 in (3), as an indicator function of a certain
interval, leads to the probability objective function of the form

P{g0(x1, x2(ω), . . . , xT (ω), ω) /∈ I}

where I is a given interval of desirable values of g0. Similarly, the replacement of the con-
straints x

t• ∈ Xt(ω), a.s., t = 1, . . . , T , by the requirement that x
t• ∈ Xt(ω), t = 1, . . . , T,

holds true with a prescribed probability, provides stochastic programs with probabilistic
or chance constraints .

The second formulation of the T -stage stochastic program is based on a recursive eval-
uation of the overall objective function which allows us to write the multistage stochastic
program as a sequence of nested two-stage programs and spells out the nonanticipativity
conditions in an explicit way:

min E {f0(x, ω)} := f10(x1) + Eω1
{ϕ10(x1, ω1)} (4)

subject to
x1 ∈ X1 and f1i(x1) ≤ 0, i = 1, . . . , m1,

where for t = 2, . . . , T, ϕt−1,0(x1, . . . , xt−1, ω1, . . . , ωt−1) is the optimal value of the
stochastic program

min ft0(xt) + Eωt|ωt−1,• {ϕt0(x1, . . . , xt, ω1, . . . , ωt−1, ωt)} (5)

with respect to xt ∈ Xt and subject to

fti(x1, . . . , xt−1, xt, ω1, . . . , ωt−1) ≤ 0, i = 1, . . . , mt.
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Here, ϕT,0 ≡ 0 or is an explictly given function of x1, . . . , xT , ω1, . . . , ωT . All constraints
involving random parameters hold almost surely.

A special case is the following multistage stochastic linear program with recourse

min c
⊤
1 x1 + Eω1

{ϕ1(x1, ω1)} (6)

subject to
A1x1 = b1

l1 ≤ x1 ≤ u1,

where the functions ϕt−1, t = 2, . . . , T, are defined recursively as

ϕt−1(xt−1, ωt−1) = inf
xt

[

ct(ωt−1)
⊤

xt + Eωt|ωt−1
{ϕt(xt, ωt)}

]

(7)

subject to
Bt(ωt−1)xt−1 + At(ωt−1)xt = bt(ωt−1), a.s.,

lt ≤ xt ≤ ut,

and ϕT ≡ 0.
For simplicity, we denote by ωt−1 the random vector that generates the coefficients

bt, ct and matrices At, Bt in the decision problem of the t-th stage, t = 2, . . . , T. Both
the individual stages’ objectives and the constraints introduced have a certain Markov
structure (compare with the scheme (5)). We assume that the At are (mt, nt) matrices
and that the remaining vectors and matrices are of consistent dimensions. Furthermore,
we suppose that the corresponding expectations E are well defined. For the first stage,
known values of all elements of b1, c1, A1 are assumed. The main decision variable is x1

that corresponds to the first stage.
Finally, the T -stage stochastic linear program with recourse and with a finite number

of scenarios written in the arborescent form (compare with (2), (3)) is

min c
⊤
1 x1 +

K2
∑

k2=2

pk2
c
⊤
k2

xk2
+

K3
∑

k3=K2+1

pk3
c
⊤
k3

xk3
+ . . . +

KT
∑

kT =KT−1+1

pkT
c
⊤
kT

xkT
(8)

subject to constraints

A1x1 = b1,
Bk2

x1 +Ak2
xk2

= bk2
, k2 ∈ K2,

Bk3
xa(k3) +Ak3

xk3
= bk3

, k3 ∈ K3,
. . .

. . .
...

BkT
xa(kT ) +AkT

xkT
= bkT

, kT ∈ KT ,

lt ≤ xkt
≤ ut, kt = Kt−1 + 1, . . . , Kt, t = 1, . . . , T, (9)

with K1 = 1, Kt = {Kt−1 + 1, . . . , Kt} , t = 2, . . . , T.
We denote here by a(kt) the immediate ancestor of kt, so that a(k2) = 1, k2 =

2, . . . , K2. Furthermore, pkt
> 0 for all kt, with

Kt
∑

kt=Kt−1+1

pkt
= 1, t = 2, . . . , T , are path
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probabilities of the corresponding subsequences of realizations (ckτ
, Akτ

, Bkτ
, bkτ

), τ ≤ t.
Finally, pkT

≡ ps are probabilities of the individual scenarios ωs, that can be obtained
by multiplication of the (conditional) arc probabilities. The nonanticipativity constraints
are implicit in this formulation.

The size of the linear program (8), (9) can be very large; for instance, consider just the
two-stage problem with random right hand sides bk2

for k2 = 2, . . . , K2, each consisting
of m2 independent random components with probability distributions approximated by
the alternative ones: it gives K2 = 2m2 + 1, hence, m1 + m2(2

m2 − 1) equations in
(9). The usefulness of special numerical techniques based on decomposition, aggregation,
sampling and parallelization is obvious, see e.g. [19], [21], [35], [41], [54], [60], [65],
[66]. Many solvers (CPLEX, MSLiP-OSL, OSL-SP, etc.) are currently available for the
solution of multistage problems with linear constraints and nonlinear objectives. Hence,
in applications, it is the modeling part of the problem, including a meaningful generation
of scenarios, which has become the most demanding part.

The stages do not necessarily refer to time periods, they correspond to steps in the
decision process. The main interest lies in the first-stage decisions which consist of all
decisions that have to be selected before the information is revealed, whereas the second-
stage decisions are allowed to adapt to this information, etc.

2 Scenarios, scenario trees and their generation

For scenario-based multistage stochastic programs one assumes that the probability distri-
bution P of ω is discrete, and concentrated on a finite number of points, say, ω1, . . . , ωS.
Accordingly, the supports St(ω

t−1,•) of the conditional probability distributions of ωt

conditioned by past realizations ωt−1,• = {ω1, . . . , ωt−1} are finite sets. The sequences
of realizations ωt,• = {ω1, . . . , ωt} are called scenarios at stage t and the condition on
sensible scenarios at stage t is

ωτ ∈ Sτ (ωτ−1,•)∀τ > 1. (10)

Hence, the set of all considered scenarios is

S := {ω1, . . . , ωS} = {ω|ωt ∈ St(ω
t−1,•)∀t > 1}. (11)

Denote by St the (finite) sets of all different scenarios ωt,• at stage t which satisfy (10),
i.e., S := ST , and by St the (finite) supports of the marginal probability distributions of
ωt, t = 1, . . . , T .

The associated conditional probabilities P (ωt|ω
t−1,•) on St(ω

t−1,•) for t > 1 and
the marginal probabilities P (ω1) on S1 are called the arc probabilities. Their products

P (ωt−1,•) = P (ω1)
∏t−1

τ=2 P (ωτ |ω
τ−1,•) are the path probabilities and the probability ps of

scenario ωs = {ωs
1, . . . , ω

s
T } ∈ S is

ps = P (ωs) = P (ωs
1)

T
∏

τ=2

P (ωs
τ |ω

s
1, . . . , ω

s
τ−1).

The decisions at stage t = 1, . . . , T depend on the sequence of observed realizations of
the random variables in the preceding stages, i.e., on the section (ωs

1, . . . , ω
s
t−1) in case of
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the s-th scenario. The first-stage decision variables are scenario independent and the last
stage decisions depend on the sections ωT−1,•. The last component ωT of ω (observable
after the last decision xT is taken) contributes to the evaluation of the final outcome of
the decision process.

An adequate representation of the underlying random data is needed for any applica-
tion of stochastic programming. An additional problem related to multistage stochastic
programs is the required special structure of the input in a form consistent with (10)–
(11). We can think of it as of an oriented graph which starts from a root (the only node
at level 0) and branches into nodes at level 1, each corresponding to one of the possible
realizations of ω1, and the branching continues up to nodes at level T assigned to the
whole possible data paths ωT,•. A common special arrangement is the scenario tree which
is based on the additional assumption that there is a one-to-one correspondence between
the sections ωt,• and the nodes of the tree at stage t for t = 1, . . . , T . This means that for
any node at level t, each of the new observations ωt must have only one immediate prede-
cessor ωt−1,•, i.e., a node at level t− 1, and a (finite) number of descendants ωt+1 which
result in nodes at level t + 1, t < T ; compare with (8)–(9). The number of descendants
of all nodes at a given level 0 ≤ t < T of the scenario tree can be equal; this is typical for
the initial structure of the tree. If this occurs for all stages, the scenario tree is balanced
and the structure of the tree can be coded as a product of the number of descendants of
the root and of nodes at levels 1, . . . , T − 1. For example 3222 describes the structure of
a scenario tree for 4 stages with 3 branches from the root and from the first level nodes
and 2 branches from nodes at the second and third levels. The total number of scenarios
equals the numerical value of this product, i.e., 36. See Figure 1.

Two special cases of the scenario tree are worth mentioning:

• For all stages t = 2, . . . , T , the conditional probabilities P (ωt|ω
t−1,•) are indepen-

dent of ωt−1,• and are equal to the marginal probabilities P (ωt) – the interstage
independence. In this case, scenario generation methods for two-stage problems,
reviewed in [27], apply to each stage separately. Evidently, the scenario tree must
be balanced.

• For all stages t = 2, . . . , T , the supports St(ω
t−1,•) of conditional probability distri-

butions of ωt conditioned by realizations ωt−1,• = {ω1, . . . , ωt−1} of sections ωt−1,•

are singletons. This means that the scenario tree is nothing else but a ”fan” of in-
dividual scenarios ωs = {ωs

1, . . . , ω
s
T } which occur with probabilities ps = P (ωs

1)∀s
and, independently of the number of periods, the multiperiod stochastic program
reduces to the two-stage one. See Figure 2.

Can we have fan of 36 scenarios to relate the figure with the previous one?

An alternative data arrangement relaxes the requirement of unique predecessors in
the previous stages and assumes instead special recombining properties of the data paths.
Recombining trees or lattices help to reduce the number of nodes and, subsequently, the
size of the solved problem provided the evaluation of the t-stage coefficients does not
depend on the path ωt−1,• which leads to the respective node at level t − 1. This is the
case for the coefficients in (7).

Except for the two special cases mentioned above, to build a representative scenario
tree is a crucial problem in applications. It can be approached from the point of view of
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a suitable data manipulation ([4], [36], [37], [53]). It includes a decision concerning the
number of stages and the branching scheme with an appropriate labeling technique (cf.
[50]) to avoid ambiguity in the definition of data and variables. It should reflect both
the underlying probability assumptions and the existing data, and be linked with the
purpose of the application. It often asks for compromises between a manageable problem
size and the desired precision of the results. In this context, authors have looked at design
strategies for aggregating nodes and stages, see [46] and [70], trimming or refining of trees,
see [11], [18] and [21] for a reduction technique and importance sampling method based
on the concept of the expected value of perfect information (EVPI). The contamination
technique can be used to test the influence of including additional scenarios and stages [25].
[34] offers a possibility to design strategies for refining the barycentric scenario trees. We
shall describe the importance sampling technique for constructing the scenario tree in
Subsection 3.1, and we introduce below the main ideas of the contamination method. We
emphasize that in line with the scope of the paper, these two methods are independent
of the structure of the model and of the specific application area.

The contamination method applies to general multistage problems rewritten into the
form (4), briefly

min F (x, P ) := Eω{f0(x, ω)} (12)

on a closed nonempty set X which does not depend on P . This notation is used to
underline the dependence of the problem on the chosen probability distribution P of ω
on (Ω,F).

Inclusion of additional scenarios or branches of the scenario tree means to pass from
the initial probability distribution P to the probability distribution

Pλ = (1 − λ)P + λQ, 0 ≤ λ ≤ 1. (13)

The probability distribution P is contaminated by the probability distribution Q which is
carried by the additional scenarios or branches of the scenario tree. For fixed probability
distributions P, Q, the expected value in (12) computed for the contaminated distribution
Pλ is linear in the parameter λ and under mild assumptions, its optimal value

ϕ(λ) := min
x∈X

F (x, Pλ)

is a finite concave function on [0, 1] with a derivative ϕ′(0+) at λ = 0+.
Bounds on the optimal value ϕ(λ) for an arbitrary λ ∈ [0, 1] follow by properties of

concave functions:

(1 − λ)ϕ(0) + λϕ(1) ≤ ϕ(λ) ≤ ϕ(0) + λϕ′(0+) ∀λ ∈ [0, 1]. (14)

An upper bound for the derivative ϕ′(0+) equals F (x(0), Q) − ϕ(0) where x(0) is
an arbitrary optimal solution of the initial problem (12) obtained for the probability
distribution P ; in case of a unique optimal solution, this upper bound is attained. Hence,
the evaluation of bounds in (14) requires the solution of another stochastic program
of type (12) for the new distribution Q to get ϕ(1) and evaluation of the expectation
F (x(0), Q) at an already known optimal solution of the initial problem (12), but for the
contaminating distribution Q.
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The contamination method does not depend on any specific assumption about the
probability distribution and it provides globally valid bounds. Small values of the contam-
ination parameter λ are typical for various stability studies, the choice of λ may reflect
for example the degree of confidence in expert opinions, a problem considered in [47].
By a suitable choice of the contaminating distribution Q, one can study the influence of
including additional branches at specified nodes of the initial scenario tree, cf. [25], to
test the recommended number of stages and to emphasize the importance of a scenario
by increasing its probability.

An illustrative example

Inspired by [47], consider the problem of investment decisions in the debt and equity
markets in the US, Germany and Japan. Historical data allows us to construct many sce-
narios concerning returns of investments in the considered assets categories. Denote these
(in principle equiprobable) scenarios by ωs, s = 1, . . . , S, and let P be the corresponding
discrete probability distribution. Assume that for each of these scenarios, an outcome of
a feasible investment strategy, say, x ∈ X can be evaluated as f(x, ωs). Maximization of
the expected outcome

F (x, P ) =
1

S

S
∑

s=1

f(x, ωs) with respect to x ∈ X

provides the optimal value ϕ(P ) and an optimal investment strategy x(P ).
The historical data do not cover all possible extremal situations on the market. How-

ever, experts in the investment committee may foresee such events. Assume that they
are aggregated in an additional scenario ω∗. This is the only atom of the degenerated
probability distribution Q, for which the best investment strategy is x(Q)—an optimal
solution to maxx∈X f(x, ω∗). The contamination method is based on the probability
distribution Pλ, carried by the scenarios ωs, s = 1, . . . , S, and on the experts’ scenario ω∗

with probabilities 1−λ
S

for s = 1, . . . , S, and p∗ = λ. The probability λ assigns a weight
to the view of the investment committee and the bounds (14) (multiplied by -1) are valid
for all 0 ≤ λ ≤ 1. They clearly indicate how much the weight λ, interpreted as the degree
of confidence to the investor’s view, affects the outcome of the portfolio allocation.

The impact of a modification of every single scenario according to the investor’s views
on the performance of each asset class can be studied in a similar way. We use the initial
probability distribution P contaminated by Q, which is now carried by equiprobable
scenarios ω̂s = ωs + δs, s = 1, . . . , S. The contamination parameter λ relates again to the
degree of confidence in the experts’ view.

We now concentrate on the generation of scenario trees for interstage dependent com-
ponents ωt of ω. We discuss these problems for models that do not assume convexity
with respect to the random parameters and for the cases when enough data paths can
be generated in accordance with a parametric or nonparametric stochastic model. This
specification excludes the generation of scenario trees which exploit extremal properties
of families of probability distributions, cf. [33], and scenario trees that are based solely
on experts’ oppinion, e.g., [3], [30], [31] or [68]. Even within this problem specification,
the notion of representative scenarios, or of a representative scenario tree, depends on the
real-life background of the underlying optimization problem. The main goal of a scenario
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generation procedure is to get a representative scenario tree which supports sensible de-
cisions and is acceptable for the user. For further discussions related to requirements on
scenario generation for stochastic programming asset and liability management models,
see [58] and various other papers included in the collection [71].

3 From data paths to a scenario tree

In many application areas, such as finance, water resource management, and electric-
ity production, there exist advanced continuous and discrete time stochastic models and
historical time series that serve to calibrate these models. We refer to [13], [43] and
to a survey in [11] for diffusion type models applied in financial problems, and to [15],
[16], [38], [42], [67] or [23] for multivariate autoregression models exploited in water re-
sources problems, the modeling of electricity demand or in finance. Using the calibrated
model, or its time discretization, one can simulate, in principle, arbitrarily many sample
paths of ω. These models employ a specified type of probability distributions, mainly
the (multi)normal ones. Successful examples are the global scenario system developed by
Towers Perrin [55] or the model FAM [22] for simulation of economic and capital market
scenarios.

Nonparametric methods for scenario generation can be applied for very large families
of probability distributions which cannot be indexed by a finite dimensional parameter
in a natural way; another term used in this connection is distribution-free methods. The
simplest idea is to use as scenarios the past observations obtained under comparable
circumstances and assign them equal probabilities; see for instance [69] for scenarios of
future electricity demand in a given period of a year. Similarly, [56] suggests to construct
scenarios of joint asset returns for a T -period model as n − T distinct T -tuples of their
subsequent observations from n previous periods and to assign them equal probabilities,
(n − T )−1.

The available data are often in the form of correlated multivariate time series of dif-
ferent lenghts, various time steps, with missing observations, with change points, etc. The
dimensionality of the random components ωt can be reduced by methods of multivariate
statistics: Factor analysis is mostly applied under the normality assumption, whereas
the principal components method is distribution-free. Both of these methods aim at ex-
plaining the correlation structure of the data by a small number of independent factors
or components, which can be simulated separately and used to replace the original multi-
dimensional and intercorrelated data process. These ideas appear in various papers, e.g.,
[14], [41], [43], [56]. A detailed description of the various statistical procedures designed
for time series analysis lies beyond the scope of this paper. Let us assume instead that
a suitable preprocessing of these time series has resulted in S different equiprobable ”ob-
servations” of ω and that this input information has been accepted as an approximation
of the underlying stochastic process for the considered decision model.

We focus on the generation of scenario trees for the cases when the main random
factors have been detected and enough data paths of their realizations can be generated
in accordance with the above mentioned parametric or nonparametric methods. The first
important step is to delineate the initial structure of the scenario tree, i.e., the number
of stages and the branching scheme. The stages are connected with the possibility to
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take additional decisions based on newly released information. Such information can be
obtained at a specific date (expiration of an option), every day, week, month, year, etc.
The stages do not necessarily correspond to time periods of an equal length. Typically, the
first stage relates to a relatively short time period whereas the last one may cover several
years or it may be the end-effect period designed to reduce the effects of approximating
an infinite horizon model by the model with finite horizon T , e.g. [9].

For initial screening studies the degree of aggregation of possible future outcomes,
which results in a number of branches from the individual nodes, is quite high. It can
be verbally described as distinction of ”high” or ”low”, ”up” or ”down” for branching
into two descending nodes, ”high”, ”medium”, ”low” or ”dry”, ”medium”, ”wet” for
branching into three descending nodes. Another strategy is to use an extensive branching
from the root leading to relatively many, say 10, nodes on level 1, use a modest branching
from the nodes at the middle of the tree and a relatively poor branching, e.g., into two
descendants for the nodes at the last levels of the tree. There are some hints concerning
the minimal number of descenadants which come from problem specific requirements, such
as the necessity to build a model without arbitrage opportunities or to fit some moments
of the probability distribution.

Using the tree independent procedures for generating scenarios requires additional
steps to build a scenario tree of a prescribed structure. This has been done often by ad
hoc crude methods, by cutting and pasting the data paths in a more or less intuitive way.
The next possibility mentioned also in [2] and applied in [8] is the cluster analysis. It is
relatively easy to cluster according to the first component (or subvector) ω1 of ω and to
continue by conditional clustering according to the second components (subvectors) ω2

of the objects included into the created clusters, etc. To treat properly the interstage
dependences, consider instead a multi-level clustering scheme which exploits the whole
sequences of observed/simulated data {ω1, . . . , ωT }:

• For each pair ωi, ωj evaluate a suitable dissimilarity measure, e.g.,

d1(ω
i, ωj) =

1

T

T
∑

t=1

wt|ω
i
t − ωj

t |

d2(ω
i, ωj) =

1

T

T
∑

t=1

wt(ω
i
t − ωj

t )
2,

where wt ≥ 0 are suitably chosen nonincreasing weights. This allows us to put more
weight on the differences in the beginning of the sequence.

• Measures of dissimilarity among the compared objects are used in definitions of the
standard measures of dissimilarity of clusters and used subsequently in the cluster
analysis approaches; see e.g. [39]. The result is K1 clusters, C1

1 , . . . , CK1

1 represented
by ω̃k

1 , k = 1, . . . , K1; these can be the mean values or modal values of the first
components ω1 of the observations of ω included into the cluster. Probabilities of
ω̃k

1 , k = 1, . . . , K1, equal the sum of probabilities of the individual ωi’s belonging to
the relevant cluster.

• The clustering procedure continues for each cluster Ck
1 separately, starting with the

second component ω2 of the observations included into Ck
1 , or equivalently, with the
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first component ω1 replaced by ω̃k
1 and so on. The desired structure of the scenario

tree is taken into account.

For data paths obtained by sampling from a continuous probability distribution,
existence of two or more predecessors of a node is small. The arc probabilities are fixed
according to the assumption of equiprobable initial observations. A possibility to generate
the best approximating scenario tree of a given structure via stochastic approximation
technique is suggested in [61].

A Markov structure of data can be exploited for conditional generation of scenarios in
a way which takes into account the already created structure of the tree; cf. [14], [41]. In
this case, ωt depends only on the preceding component ωt−1 and on an additional random
variable εt which is independent of the history ωt−1,•:

ωt = Pωt−1 + εt. (15)

Here the transition matrix P can depend on t. Interstage independence can be regarded
as a special form of the Markov structure (15) with P the zero matrix.

The Markov property (15) allows for a direct sampling from the distribution of εt at
each node which corresponds to an already obtained realization of ωt−1; the arc proba-
bilities of all descendants of the given node are equal; this appears, e.g., in [19]. Another
possibility is to discretize the distribution of εt at a given number of points, and add the
obtained realizations to the already known past values of Pωt−1. The arc probabilities
are fixed according to the used discretization method. This approach was used already
in [6], [7].

The recent technique of the sequential importance sampling by [10], [11], [12], [18],
[21], and others, elaborates further methods based on the Markov structure. It takes into
account a given suitably labeled tree structure already in the course of simulation. For
details see Subsection 3.1.

Independently repeated procedures for building a scenario tree of a given structure
by sampling from the assumed continuous probability distribution P allow for the con-
struction of a stochastic lower bound on the optimal value ϕ(P ) of the true underlying
stochastic program. Let Pn be one possible discrete probability distribution based on n
scenarios sampled from P and ϕ(Pn) the optimal value of the stochastic program based
on the corresponding scenario tree. Then a slightly extended demonstration valid for
two-stage stochastic programs, cf. [51], implies

Eϕ(Pn) ≤ ϕ(P ).

The Central Limit Theorem applied to a large number i.i.d. replicas of ϕ(Pn) provides
an asymptotic confidence interval for the expectation Eϕ(Pn) whose lower bound gives
a lower bound for the true optimal value ϕ(P ) at the chosen confidence level. Just as for
the contamination technique, this result does not require any special assumptions, such
as convexity or saddle property with respect to ω.

3.1 Sequential importance sampling-based scenario generation

Based on (8)–(9), we introduce an importance sampling technique which can be used to
construct a set of objective-relevant realizations of the vector data process ω = {ωt}

T
t=1
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in (Ω,F , P ). Whenever a sampling technique is adopted for the iterative refinement of
the discrete representation of a continuous process, the scenario generator needs to be
integrated in a more general framework, as discussed in this section.

The framework is based on the definition of a scenario tree nodal partition matrix
M = {m(i, t)} that uniquely identifies the structure of the associated scenario tree. The
matrix, with the number of rows equal to the number of scenarios and the number of
columns equal to the number of stages, provides the necessary labelling scheme for the
specification of the index sets kt, t = 1, . . . T, introduced in (8)–(9). In the iterative
procedure, the matrix is an input to the conditional scenario generator, and an output
from the sampling algorithm. A balanced 312111 tree structure would be described in the
matrix as

M =

















1 2 5 11
1 2 6 12
1 3 7 13
1 3 8 14
1 4 9 15
1 4 10 16

















where, row-wise, every scenario is explicitly labelled. The matrix can clearly accommodate
any tree configuration in a straight forward way. Parental relations are easily identified
in the tree.

Algorithm for sequential sampling

Independently of the chosen importance sampling criterion, the sampling procedure
is itself part of a general framework whose driving components are as follows:

• A scenario generator, defined as a general method mapping the current knowledge
of the underlying uncertainty into a finite set of future possible realizations, repre-
sented by a tree.

• A stochastic program generator, whose inputs are the mathematical formulation of a
decision problem and a scenario tree, and whose output is a stochastic programming
problem in standard format (SMPS files, see [4] or [37]).

• A solver, possibly interfaced with a sampling algorithm, whose input is the stochastic
program in SMPS format and whose outputs are the problem solution and the
current estimate or the current value of the sampling criterion.

The sequential sampling algorithm is designed as an iterative procedure. It requires
the specification of the number of stages, T , the maximum number of possible iterations,
a stopping criterion and the initial scenario tree structure together with the associated
nodal partition matrix M . At every iteration, the following steps are performed:

• The conditional scenario generator produces selective sample paths of the data
process;

• The core, time and stoch files of the corresponding stochastic programming prob-
lem are generated in the SMPS format;
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• Some version of the stochastic program, such as (8)–(9), is specified and solved;

• Along the tree, the nodal values of the importance sampling criterion are evaluated;

• A new tree structure is defined through an update of the nodal partition matrix.

Various sampling rules can be defined and the procedure can also be improved by
modifying the direction of movement along the tree at every iteration. For instance,
we either move forward a predefined number of stages or we resample at the current
stage. As the algorithm progresses, the scenario generator defines, stage by stage, forward
trajectories by resampling the state space of the process. Selective backward and forward
resampling can also be imposed, and the scenario generator will always run consistently
due to the update of the matrix M .

The state space of the random process will in this way be iteratively enriched with
a varying number of new trajectories starting in the nodes selected by the importance
sampling criterion.

The scenario generation procedure is general, and independent of both the mathe-
matical characterization of the random data process and the adopted sampling criterion.
Within the sequential procedure, the expansion of the tree structure can be governed by
different rules entering the refinement procedure at different stages.

Scenario generation procedures fitting into our general framework fall into two classes.
In one class, the tree is built iteratively based on information from the solution of sample
problems. In the other class, the focus is on consistent a-priori characterization of the
data process. In the first class we find [11], [14] and [18], in the second for example [33]
and [55]. The two approaches can be combined.

Data path generation

In previous works (see [10], [11]) we have discussed a possible two-step formulation of
scenario generation. In many applications, we need to separate the definition of the ran-
dom process generated by the coefficients of the problem, i.e., ωt−1 = {ct, At, Bt, bt}, t =
2, . . . , T, in (8)–(9), from the random elements that can be regarded as the driving factors
of the problem uncertainty. The distinction between a coefficient process and a random
data process is therefore introduced. In general, the former process is defined as a de-
terministic function of the latter. Unlike the coefficient process, the data process can
be modeled according to theoretical and empirical assumptions, and does not need to
satisfy the time partition imposed by the stages of the stochastic programming formula-
tion. The coefficient process is by construction a discrete time path-dependent process,
consistent with the recourse formulation of the problem, while the characterization of the
data process refers to a conceptual underlying continuous time process, say, θt, t ∈ [1, T ].

In summary, a scenario generator for a stochastic programming problem (see [19],
[53]) can be characterized depending on:

• The planning horizon of the decision problem and the time partition induced by the
problem stages and recourse decisions;

• The state transitions of the coefficient process with the associated probability mea-
sure;
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• The dependency of the coefficient process on the underlying random process and
the adopted model for this process.

Industrial project evaluation, as well as asset and liability performance measures, will
often include as random element an interest rate process. Long term pension fund and
insurance models have in addition to take into account an inflation process. These are
examples of random processes—often cross-correlated—that try to capture the core un-
certainty of the problem, leading to the definition of the data process. They provide the
explanatory variables for the definition of a possibly very large set of coefficients in the
mathematical model.

Many recent applications in the fields of risk management and asset allocation have
highlighted the need of capturing extreme events . The recent crisis in parts of the emerg-
ing markets and its impact on financial markets worldwide, have pushed forward the
research in this direction. The contamination method described in Section 2 provides a
convenient formulation for the inclusion of catastrophic events in the scenario set.

At present, we can treat many different types of models for the data process. In
particular:

• Random walk models - with or without drift - with fine time discretization and
Gaussian noise, adopted in Monte Carlo generators.

• Binomial or trinomial models with a coarser time partition, and characterized by in-
dependent increments and theoretical properties for asymptotic convergence towards
continuous processes, typical for short term decision problems without continuous
control.

• Autoregressive models with random volatility patterns associated with long term
planning problems and transitions which in most cases coincide with the original
problem stages.

In a multistage setting, the generator of the data process is embedded in the coefficient
process generator, and determines the state transition from one node to the next along
the scenario tree. From here!

Let us now go back to the sequential framework, and describe in more detail the
steps associated with the update of the scenario tree within the algorithm for sequential
sampling, see Table 1.

Step 4 uses a predefined discretization of stages into Nt subperiods, t = 1, . . . , T .
Step 6 can involve various possibilities, from the call of an extended set of linked subrou-
tines to a simple simulation of a driftless random walk. The actual coefficients for the
mathematical model can then be computed from this underlying process. The operator
Γ in step 7 typically performs a deterministic nonlinear transformation, mapping a set of
realizations of the data process into the current state of the system. More specifically, it
describes the set of computations necessary to derive from the generated sample paths of
the data process the appropriate set of random coefficients of the model.

Step 8 is needed before generating the numerical solution of the stochastic program
in order to allow at every iteration of the sequential procedure a consistent recovery of
the history of the process as discussed previously.
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Table 1: Scenario tree generation and sequential update

read initial nodal partition matrix M (1);
define number of major iterations J ;
for j = 1, . . . , J {

read current sampling algorithm iteration j;
read current number of scenarios I(j);
set the stage dependent initial conditions for the simulator;

if j = 1 then τ := 1;
1. read nodal partition matrix M (j);
2. read current stage τ ;
3. load ωt, t ≤ τ ;
4. for t := τ + 1, . . . , T {

5. for i = 1, . . . , I(j){
if i = 1 or m(i, t) 6= m(i − 1, t) then

for nt := 1, . . . , Nt {
6. run data generator from m(i, t − 1) to m(i, t)

to obtain θnt
;

}
7. compute stage-dependent coefficients

ωt = Γ(θnt
, nt = 1, . . . , Nt) according to M(j);

}
}

8. update process and initial conditions;
τ := τ + 1;

}
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At the beginning of every iteration the current nodal partition matrix defines the index
time set for the current iteration, allowing the conditional specification of the coefficient
process, and determines a new partition of the state space of the process suggested by
the information collected at the end of the previous iteration. To here!

EVPI as importance sampling criterion

Following the dynamic programming formulation in (4), which exploits the Markov
structure of the decision problem, one can define (cf. [17], [11]) the expected value of
perfect information — ηt(ω

t,•), for t = 1, . . . , T — as the difference between the optimal
value of the stochastic programming problem

πt(ω
t,•) = min

xt∈Xt

E
{

ft(ω
t,•, xt−1,•, xt) + ϕt+1(ω

t,•, xt,•)|Ft

}

(16)

and the associated expected value of wait-and-see problems (assuming perfect foresight)

φt(ω
t,•) = E[ min

xt∈Xt

{

ft(ω
t,•, xt−1,•, xt) + ϕt+1(ω

t,•, xt,•)
}

|FT ]. (17)

In (16) and (17), ϕt+1 expresses the optimal expected value for the remaining stages
from t + 1 to T . The function is evidently nonnegative and at the horizon, it is zero by
definition. The dependency of the problem solution on the available information is made
explicit in the given formulations by conditioning the expectation operator at stage t on
the σ-field Ft in program (16) and on FT in (17). The real-valued processes (16) and (17)
are defined at every node of the scenario tree. The set, for t = 1, . . . , T, of nodal EVPI
estimates is generated by relaxing only the measurability condition with respect to the
current σ-field in the original stochastic program.

The EVPI sampling algorithm has been developed as an interface with the MSLiP-
OSL solver [21] instantiating the nested Benders decomposition algorithm [1], [35]. It is
there used as an importance sampling criterion.

The method has been designed and tested for a dynamic investment problem initially
formulated as a stochastic control problem, cf. [12]. It is a 12 stage model which covers
a period of 20 years. The scenario generator is based on conditional simulations of a 4-
dimensional vector diffusion process which includes dividend rates, stock returns, a short
rate and a long rate processes. The associated computational results confirmed, inter alia,
the iterative increase of the number of selected sample paths, the increasing root-EVPI
value, and the convergence of the first-stage optimal solutions to a stationary state.

In the EVPI-sampling method, the tree structure representing the model uncertainty
is updated at every major iteration of the algorithm, and additional sample paths are
selected or previous realizations deleted, depending on the nodal EVPI estimates at the
current iteration. At termination, particularly in the case of long-term decision problems
with many stages, a complex tree structure is typically generated. Ideally, the optimal
here-and-now solution becomes independent of possible additional scenarios and so does
the root-EVPI value, typically adopted as a variable to be monitored for termination.

Associated with the last set of generated scenarios and with the solution of the cor-
responding stochastic program, a sequence of recourse decisions along every scenario is
obtained. This helps to model and detect the extremal events and to study their impact
on the obtained first-stage solutions by imposing increasing probablity weights on the
scenarios which incorporate these rare events; see the contamination method in Section
2.
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The procedure (cf. [11],[18]) results in general in an irregular expansion of the scenario
tree. The efficiency of the method depends on the adopted sampling rule, its consistency
is enforced at each iteration by updating the nodal partition matrix.

In Subsection 3.3, a method is described which, unlike the one previously considered,
does not require an analytical specification of the data model and can be applied to
stochastic problems when a poor information structure is assumed.

3.2 Problem oriented requirements

When building the scenario tree one tries to avoid as much as possible any distortion of
the available input information. Moreover, the goal of this procedure does not reduce to
an approximation of the probability distribution P but rather the goal is to create an
input which provides good solutions to the underlying problem. This means, inter alia,
that problem oriented requirements should be respected. The motivation comes from
various problem areas.

• Scenarios based solely on past observations may ignore possible time trends or
exogenous knowledge or expectations of the user; see for instance Mulvey [57] or
[47].

• Selection of scenarios should respect the no-arbitrage properties; cf. [23], [45], [46].
This means that scenario-based estimates of future asset prices in a portfolio opti-
mization model should not allow arbitrage opportunities.

• The scenarios coming from historical data need not be directly applicable; [62]
suggests a scenario tuning procedure to discover the information hidden in indirect
measurement results contained in past records on specific metal melting processes.

On one hand, finding a discrete approximation (a scenario tree) of a continuous
distribution (or from sampled data) is statistics. On the other hand, we must remember
the purpose of the process, namely to create input to a decision model. The discrete
approximation is not in itself a goal. A simple discussion to this effect, but still very
useful, can be found in [44]. It is shown how some popular, and from many points very
good, three-point approximations of one-dimensional distributions can lead to very bad
estimates of entities that depend on the distributions. His example relates to certainty
equivalents of games. In the well-known mean-variance model of Markowitz [52], it is
known that only the first two moments (including the cross moments) matter for the
solution. Therefore, if we choose to solve the Markowitz model with discrete distributions
(which is not necessary), all distributions with the same first two moments will produce
the same solution. Matching higher order moments will have no effect on the model. In
this case, we see that it is the model that determines what properties from the distribution
that are important.

Hence, our trees must on one hand represent the underlying distribution, on the other
hand be such that the model produces good (first-stage) decisions. We must realize that
the scenario trees are parts of the models, not the data (the only exception is when the
tree represents the full truth of the stochastic process, such as rolling a dice twice).

Explicitly formulated additional requirements concerning properties of the probabil-
ity distribution can help. The statistical properties can be made concrete through a
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suitable massaging of the data to obtain the prescribed moments values, given a fixed
tree structure. This idea has appeared for instance in [9] where at the given stage of
a multistage stochastic program, the observed data were grouped and scaled to retain
the prescribed values of expectations and variances. One of the reasons was the sought
possibility of comparisons with the Markowitz mean-variance model. Another example
is in [57] where the expectations are kept fixed at the values declared by the user or [59]
where the authors fit their recombining tree so that the first and second moments equal
to those used in the continuous (calibrated) model. We shall follow [40] who suggest to
build the scenario tree in such a way that some statistical properties of the data process
are retained, for instance, there are specified expectations, correlation matrices (also over
time) and skewness of the marginal distributions of ωt. Some of these properties may
depend on earlier realizations, representing such as volatility clumping and reversion of
the mean. Also the methodology allows for inconsistent data. This will be discussed
below.

Why match moments? The question of a possible representation of probability dis-
tributions by (infinite) sequences of moments, and approximating them using only a few
moments goes back to Tchebycheff and is connected with the moment problem. Moreover,
it is possible to prove that given m admissible values of moments, there exists a discrete
probability distribution with these moments and its support has at most m+2 points. We
refer to Chapter 5 of [63] for a brief introduction and selected results in this direction. For
our purposes it means that given values of certain moments or expectations of continuous
functions, say, µk =

∫

Ω uk(ω)dP, k = 1, . . . , m, there exists a modest number of scenarios
ωs, s = 1, . . . , S, and their probabilities ps, s = 1, . . . , S,

∑

s ps = 1 so that the moment
values are retained, i.e.,

∑

s

psuk(ωs) = µk, 1, . . . , m. (18)

To get the scenarios and their probabilities means to find a solution ωs and ps, s = 1, . . . , S,
of the system (18) extended for nonnegativity conditions on probabilities and for the
additional constraint

∑

s ps = 1. This is a hihgly nonlinear numerical problem.
Most of the methodology mentioned above assumes that the distribution we are trying

to approximate exists, be that because it is given explicitly, or because we are obtaining
the data (samples) from one source, for example a simulator, guaranteeing that the data is
automatically consistent. But in reality, data often comes from different sources, collected
by different people for different reasons, often over different time periods, and we must
therefore expect the given specifications to be inconsistent. For example, (18) may not
have a solution. We are then faced with three options, to give up, change the data, or try
to find a scenario tree which fits as well as possible (but not perfectly) to the data and
the given requirements. Giving up is rarely a useful alternative, and changing the data is
not sound practice, hence, in our view, the correct approach is to take the data as they
are, and continue from there.

3.3 Matching more complex distributions

The system of equations (18) can be further extended for other constraints on the selection
of scenarios to represent certain strata, to cover extremal cases, etc. As an example, let
us assume that ω = (ω1, ω2) is a two-dimensional random vector with the first three
moments µk(1), µk(2), k = 1, 2, 3, of the marginal distributions and with the covariance
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ρ estimated from the true probability distribution, and we require in addition that in at
least one scenario, ω1 ≥ l1, ω2 ≥ l2 to capture a very difficult but unlikely event. Let the
discrete two-dimensional distribution which matches the given requirements be carried by
S atoms ωs = (ωs

1, ω
s
2), s = 1, . . . , S, with probabilities ps ≥ 0 ∀s,

∑

s ps = 1. Hence, we
search values of pairs (ωs

1, ω
s
2), s = 1, . . . , S, and scalars ps, s = 1, . . . , S, such that

S
∑

s=1

ps = 1,

S
∑

s=1

ps(ω
s
1)

k = µk(1) for k = 1, 2, 3,

S
∑

s=1

ps(ω
s
2)

k = µk(2) for k = 1, 2, 3,

S
∑

s=1

ps(ω
s
1 − µ1(1))(ωs

2 − µ1(2)) = ρ,

ω1
1 ≥ l1, ω

1
2 ≥ l2,

ps ≥ 0, s = 1, . . . , S.

Similar models can of course be set up for more complex situations. Such a formulation is
useful only if we know that the system of equations and inequalities has a solution. If the
data is inconsistent or S is too small, we need a more flexible approach, such as the one
in [40]. We suggest to use a goal programming version of the same problem, so that an
almost feasible solution ωs, and ps, s = 1, . . . , S, can be obtained for instance by solving
a nonconvex weighted least squares minimization problem, i.e.

min

3
∑

k=1

αk

(

S
∑

s=1

ps(ω
s
1)

k − µk(1)

)2

+

3
∑

k=1

βk

(

S
∑

s=1

ps(ω
s
2)

k − µk(2)

)2

+γ

(

S
∑

s=1

ps(ω
s
1 − µ1(1))(ωs

2 − µ1(2)) − ρ

)2

subject to
ω1

1 ≥ l1, ω
1
2 ≥ l2,

ps ≥ 0, for s = 1, . . . , S.

The advantage of this formulation is that the optimal value is zero if the data is
consistent (and S is large enough), but that the optimal solution is also a good repre-
sentation of the data in the case of inconsistency. Hence, also in that case we will get a
usefull discrete distribution. The parameters α, β and γ are important only in the case
of inconsistency, and can be used to reflect importance and/or quality of data.

Inconsistency can appear if the information about moments comes from different
sources, if implicit specifications are inconsistent with explicit ones, etc. Consider for
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instance a problem which covers two periods. Let us specify the variance of ω1 and
the variance of the sum ω1 + ω2. This is reasonable as many users have difficulties
providing conditional statements about second period variances unless these are equal
for all periods. By specifying these two variances, we have said something about the
correlation over time. If we now explicitly specify correlations over time, we are likely to
end up with two inconsistent specifications of the same entity.

From an optimization point of view, the problem is non-convex and has many local
optima. A simple heuristic is discussed in [40], and this area is open for more research.
There is numerical evidence in favor of performance of stochastic programs based on
scenario trees with moment values fitted at each node over those based only on a few
randomly sampled realizations, cf. [48] or [49]. We see it as central to be able to fit also
higher order moments.

Numerical Example

Let us consider the generation of a tree for a portfolio management model in the
energy sector, outlined in [32]. There is uncertainty in spot market prices, inflow going
directly into the reservoir, and inflow going directly to the power station. We employ a
four period (five stage) model with a total of 256 scenarios. The first period has a length
of one week, the second has a length of four weeks, then 16 weeks and finally 64 weeks.

Both prices and inflows are nonstationary time series, for example, inflows are likely
to be low in the winter and high in early summer. In order to keep the example simple,
we do not consider these effects here.

The basis for generating the scenarios is

• user supplied statistical moments for the first period marginal distributions of all
random variables,

• correlations between the variables,

• definition of the state dependent statistical properties and

• bounds on outcomes and probabilities.

A market equilibrium model frequently used for price forecasting in Scandinavia is
the Multiarea Power Scheduling (MPS) model developed by the Norwegian Electric Power
Research Institute (EFI) (now a part of SINTEF Energy Research), and is described in [29]
and [5]. In the MPS, process models describe production, transmission and consumption
activities within the Nordic and adjacent areas. The various demand/supply regions are
connected through the electrical transmission network. A solution of the model results in
a set of equilibrium prices and production quantities, for each week over the time horizon
considered (usually 3 years) and for each historical inflow year. The demand side of the
model consists of price dependent and price independent loads for each region. Important
input for the model are demand, thermal generation costs, and initial reservoir levels. The
model is short term in the sense that there are no mechanisms for endogenously increasing
production capacity. The MPS recognizes that hydro scheduling decisions are made under
the uncertainty of reservoir inflows; to determine the opportunity hydro generation costs
production in each region, stochastic dynamic programming is employed on the scheduling
problem where production in the region is aggregated into an equivalent reservoir/power
station pair.
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Table 2: Specifications of market expectations.

Uncertain variable Distribution property Period 1 Period 2-4
Spot market price expected value NOK/MWh 180.0 State dep

standard deviation 70.0 State dep
skewness 1.23 1.23
kurtosis 4.04 4.04

Reservoir inflow expected value GWh 270.0 State dep
standard deviation 200.0 State dep
skewness 1.43 1.43
kurtosis 1.71 1.71

Station inflow expected value GWh 90.0 State dep
standard deviation 70.0 State dep
skewness 2.76 2.76
kurtosis 8.17 8.17

Table 3: Specification of correlation.

Period
Correlation 1 2 3 4
Price–Reservoir inflow -0.34 -0.62 -0.78 -0.87
Price–Station inflow -0.36 -0.63 -0.79 -0.88
Reservoir inflow–Station inflow 0.35 0.62 0.78 0.87

The MPS model generates independent scenarios for price and inflows. However, this
structure is not appropriate for multistage programming. What is needed is a scenario
tree where information is revealed gradually, and not only after the first stage. In the
following, we assume that the first four moments and the correlations are the relevant
statistical properties. The specifications are given in Tables 2 and 3.

In this example we have modeled state dependent expected values and standard
deviations for all uncertain variables. The other statistical properties are assumed state
independent, meaning that they are the same in all states of the world at a certain point
in time.

The state dependent mean in period t > 1 is

E(ωit) = [MRiE(ωi,t−1) + (1 − MRi)ωi,t−1] RPL Eit (19)

where E(ωit) is the expected outcome of random variable i in period t, ωit is the outcome
of random variable i in period t, MRi ∈ [0, 1] is the mean reversion factor (a high MRi

leads to a large degree of mean reversion), and RPL Eit is a scaling factor depending on
the period length relative to the previous period and on the type of random variable i.
We let the mean reversion factor, MRi = 0.2 for price and = 0.3 for inflow.
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Table 4: Adjustment in mean and standard deviation due to nonuniform period length.
The numbers for standard deviation are based on analyzing autocorrelation in the time
series.

Period
Uncertain variable Parameter 2 3 4
Spot market price RPL E 1.0 1.0 1.0

RPL SD 0.96 0.74 0.54
Reservoir inflow RPL E 4.0 4.0 4.0

RPL SD 3.69 2.88 2.16
Station inflow RPL E 4.0 4.0 4.0

RPL SD 3.77 3.34 2.32

Table 5: Specification of bounds. They are assumed constant for all periods.

Uncertain Relative Relative Absolute
variable upper bound lower bound lower bound
Price 9.00 4.50 25.00 NOK/MWh
Reservoir inflow 5.00 3.25 29.45 GWh
Station inflow 8.00 3.25 2.00 GWh
Probability (cond.) - - 0.01

For standard deviation we assume that the state dependency is given by

SD(ωit) = [V Ci|ωi,t−1 − E(ωi,t−1)| + (1 − V Ci)SDBAS(ωit)] RPL SDit (20)

where V Ci ∈ [0, 1] is the variance clumping parameter for random variable i (a large V Ci

means that variance in the next period is highly influenced by variance in the previous
period), and SDBAS(ωit) is the average standard deviation of the outcome of random
variable i in period t. We let the volatility clumping parameter, V Ci = 0.15 for all
variables. The scaling factor RPL SDit is needed due to the nonuniform period lengths.
In Table 3.3 these scaling factors are listed.

There are two types of bounds implemented here; relative and absolute. Relative
bounds means that the bounds are expressed in terms of minimum or maximum number
of (state dependent) standard deviations from the (state dependent) mean. An absolute
bound is expressed in terms of the outcome or the probability. Table 5 lists these bounds.

These requirements are used to produce a four-period tree (which does not have a
perfect fit due to inconsistencies). The first three periods are shown in Figure 1.

The data in this example were inconsistent. In such a setting it is very easy to realize
that the construction of the scenario tree is part of the modeling, and not part of the
data. The scenario tree is the user’s view on how the data most well can be represented
to give a good model. Hence, when models are to be validated, a subject not discussed


