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Comparison of Multistage Stochastic Programs with Recourse

and Stochastic Dynamic Programs with Discrete Time

When solving a dynamic decision problem under uncertainty it is essential to choose or to build a suitable

model taking into account the nature of the real�life problem� character of input data� availability of software

and computer technology� The purpose of this paper is to discuss similarities and di�erences of two candidate

approaches connected with discrete time decision processes and with uncertainties of probabilistic nature�
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� Introduction and Motivation

Multistage stochastic programs and stochastic dynamic programming problems with discrete time parameter deal
essentially with the same types of problems � the dynamic and stochastic decision processes� They were initiated
approximately in the same period� In ���������� the basic ideas� problem formulations and solution concepts
were elaborated and� at the same time� the �rst applications were successfully solved� However� they did follow
an independent development� They have been included in Mathematical Subject Classi�cations under di	erent
numbers and were considered mostly competitive� Recognition of similarities and complementary features has
been rare� See the illustrative chart and comments in Section 
� we refer to recent monographs ��� �
��� ����� ��
��
���� for full quotations� Since the contemporary rapid increase of computer e�ciency as well the recent development
of tractable computational approaches enable e�cient solutions of complex dynamic stochastic problems� there is
a call for comparisons of these approaches and there are instance of their combinations �����

In this article we shall discuss similarities and di	erences of multistage stochastic programs �MSP� with
recourse and stochastic dynamic programs �SDP� with discrete time parameter and with a �xed �nite horizon�
The main distinction is in the decision concept� in di	erent structures used in their formulation and� consequently�
also in di	erent solution methods� On the contrary to the multistage stochastic programs� most of the motivation for
the research on dynamic programming models come from a class of operations research and engineering applications
where it is the decision rule that is primarily of interest and the horizon is very long� e�g� inventory control �
��
hence the insistence on �nding a rule that depends on the observed state and not on the information we may infer
about the underlying stochastic phenomena� An appropriate de�nition of state is then the central point of dynamic
programming formulations �see e�g� ���� �
� or ��
� for basic concepts in dynamic programming� whereas in the
context of multistage stochastic programs states usually do not appear�

Sections 
 and � present brie�y the multistage stochastic programs and stochastic dynamic programs with
discrete time� respectively� The emphasis lies in careful listening assumptions needed to formulate and solve these
problems� Illustrative examples are given in Section � and the conclusions formulated in Section ��

� Multistage Stochastic Programs

��� Basic formulations

In the general T �stage stochastic program we think of a stochastic data process � � ���� � � � � �T��� or � �
���� � � � � �T � and of a decision process x � �x�� � � � �xT � � The xt�s are real nt�vectors� while the random elements
�t may be of quite general nature� mostly� they are real random vectors as well� The realizations of � are called also
trajectories or scenarios� We denote by P the probability distribution of � and by � its support and we assume�

Basic assumption� The probability distribution P of � is known and independent of the decision x�

We refer to ��
�� ���� for a possible modeling of partial information� to ��
� for a review on applications of
stochastic programming under incomplete information and to ��
� for a discussion of problems with probability
distributions dependent on decisions�
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� � � � seminal paper � � � � chapter in � selected monograph

MDP � � � Markov Decision Processes DP � � � Dynamic Programming

�M�SP � � � �Multistage� Stochastic Programming ChC � � � Chance�Constraints

The sequence of decisions and observations is

x�� ���x�� ��� � � � �xT��� �T���xT � ���

The decision process is nonanticipative in the sense that decisions taken at any stage of the process do
not depend on future realizations of the data process or on future decisions whereas the past information as
well as the the probabilistic speci�cation ���F � P � of the process � are exploited� This requirement can be
mathematically expressed as follows� Denote Ft�� � F the ���eld generated by the observations of the part
�t�� �� ���� � � � � �t��� of the stochastic data process that precedes stage t� The dependence of the t�th stage
decision xt only on these past observations means that xt is Ft���adapted or� in other words� that xt is measurable
with respect to Ft��� In each stage t� the decision is limited by explicit constraints that may depend on the
previous decisions xt�� �� �x�� � � � �xt��� and on past observations of �t��� Thus the decision at stage t is
xt � xt�x

t��� �t���� or more precisely� xt � xt�x
t��� �t��� P ��

The outcome attributed to the sequence ��� is quanti�ed by a function f��x� ��� The aim is to minimize the
expected value Ef��x� �� under both deterministic constraints xt � Xt �t �Xt given sets in Rnt�� f�i�x�� � �� i �
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�� � � � �m�� and constraints
fti�x

t� �t��� � �� i � �� � � � �mt� t � 
� � � � � T

that may depend on previous decisions and observations� here� fti �t� i are real functions�
In the sequel we shall suppose that all functions are measurable with respect to � and all expectations exist

�this is certainly ful�lled if � is a �nite set�� Relations containing random elements are assumed to hold with
probability �� To simplify this exposition we shall assume in addition that all in�ma are attained� hence we shall
write min instead of inf� This assumption implies that the sets de�ned by the t�stage constraints� t � �� � � � � T�

xt � Xt � fti�x
t���xt� �

t��� � �� i � �� � � � �mt �
�

are nonempty for all histories xt��� �t��� The �rst�stage constraints do not depend on the random element�

The corresponding T �stage stochastic program reads�

minimize Ef��x��x��x�� ���� � � � �xT �x
T��� �T���� �� ���

subject to xt � Xt� t � �� � � � � T and

f�i�x�� � �� i � �� � � � �m�� fti�x
t� �t��� � �� i � �� � � � �mt� t � 
� � � � � T ���

Realizations of �T � i�e�� those behind the horizon� do not a	ect the decision process� but they may contribute to
the overall observed costs� Thus the decision process may be a	ected by the probability distribution of �T �

Various schemes were considered to reduce the T �stage stochastic program ������� to a sequence of similar
t�stage programs� t � T � If �T is not considered� the objective functions are then de�ned recursively as

�T �x
T � �T��� � f��x� ��� �t�x

t� �t��� � E�tj�t�� min
xt��

�t���x
t��� �t�� t � 
� � � � � T � � ���

and ���x�� � E�� minx�
���x��x�� ���� The minimization is carried over the respective t�stage constraints �
� and

the symbol E�j�� denotes the expectation with respect to � conditioned by ���
To relate an optimal solution of the T �stage problem to those minimizing the t�stage objective functions �t�

certain boundedness assumptions concerning sets de�ned by the t�stage constraint and convexity of f� as a function
of x� have to be ful�lled� see ����� Then not only the canonical projections of the optimal solution �xT of the T �stage
problem are optimal solutions of the t�stage problems� t � T � but also the optimal solutions of the t�stage problems
can be extended to an optimal solution of the T �stage problem� For instance� if �x� � argmin���x�� over the
�rst�stage constraints x� � X� and f�i�x�� � �� i � �� � � � �m�� then the next component of the optimal solution�
�x���x�� ��� is obtained by solving minx�

����x��x�� ��� over the second�stage constraints� etc� By introducing a
�ctious decision xT�� which does not in�uence the value of the objective function f� these results may be extended
also to problems which include �T �

Under additional assumptions� e�g�� for

f��x� �� � f���x�� �

TX
t��

ft��x
t���xt� �

t��� ���

the scheme ��� can be written as a sequence of nested two�stage stochastic programs of the following type�

minimize Ef��x� �� �� f���x�� �E�����x�� ��� ��

subject to
x� � X� and f�i�x�� � �� i � �� � � � �m��

where for t � 
� � � � � T� for given x�� � � � �xt�� and observed realizations of ��� � � � � �t���
�t���x�� � � � �xt��� ��� � � � � �t��� denotes the optimal value of the stochastic program

minimize ft��xt� �
t��� �E�tj�t��

�
�t�x

t���xt� �
t��� �t�

�
subject to �
�� ���

Here� �T � � or it is an explicitly given function of x�� � � � �xT � ��� � � � � �T if the contribution of �T is considered�
The two terms in the de�nition of functions �t�� may be interpreted as the costs attributed to the decision xt at
stage t augmented for the expected minimal future costs�

It is important to realize that the stages do not necessarily refer to time periods� they correspond to steps in
the decision process� The main emphasis is on the �rst�stage decisions which consist of all decisions that have to
be selected before a further information is revealed whereas the second�stage decisions are allowed to adapt to this
information� etc� In some applications the importance of the best �rst�stage decisions is evident� The examples
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are the decision about the capacity of a new water reservoir� about an initial contract or allocation of funds or the
initial charge decision for the metal melting process�

The formulation ������ resembles the backward recursion common in stochastic dynamic programming

problems� see Section �� In spite of this formal similarity the form ������ does not enter the numerical procedures
for solving such stochastic programs� As the model formulation in stochastic programming and the algorithmic so�
lution are separated there exist a large variety of stochastic programming models of various mathematical properties
and with problem speci�c numerical approaches�

The dynamic decision process is approximated by optimal solutions obtained by repeated solution of similar
stochastic programs which are rolled forward in time� i�e�� by solving the problem repeatedly starting always with
the new state of the system attained by application of the obtained optimal �rst�stage decision and using updated
and�or shifted data trajectories� To enable a future continuation of such forward decision process behind the horizon
one has to treat the end�e	ect in an appropriate way� to add constraints for the last stage� e�g�� on the water level
in the reservoirs� to include the expected value of the achieved state of the system into the objective function� to
penalize the value of the expected outstanding debt� or to extend the problem for an additional �steady� stage and
related constraints� cf� �����

Characterization of decision rules �or recourse decisions� for stochastic programs was studied for instance
in ����� ����� The well�known properties of solutions of deterministic linear programs imply that in the two�stage
stochastic linear programs with random right�hand sides b����� the decision rule x��x�� ��� is continuous piecewise
linear in b������ This result can be extended also to random transition matrices B� and bounds u�� l�� it holds
true also when the only random coe�cients are c����� in the second�stage objective function� However� optimal
piecewise linear decision rules need not exist even for three�stage stochastic linear programs with random� inter�
stage independent right�hand sides� for an example see ����� An exception are problems with discrete probability
distributions� Under special assumptions which guarantee existence of a �xed optimal basis even an optimal linear
decision rule can be obtained� cf� ����� These results are further discussed and extended to nonlinear recourse
problems in ����� Existence of continuous decision rules can be proved for convex multistage stochastic programs
under additional assumptions about the properties of the problem and for a special class of �laminary� probability
distributions� cf� ����� discrete probability distributions with an arbitrary dependence structure and probability
distributions which ful�l assumption of interstage independence belong into this class�

A special case of ������ is the following multistage stochastic linear program with recourse where all functions
f �with arbitrary indices� in the above scheme are linear in the decision variables�

minimize c�� x� �E�����x�� ��� ���

subject to
A�x� � b�� l� � x� � u��

where the functions �t��� t � 
� � � � � T� are de�ned recursively as

�t���x
t��� �t��� � min

xt

�
ct��

t����xt �E�tj�t�� �t�x
t���xt� �

t��� �t�
�

����

subject to
t��X
���

Bt� ��
t���x� �At��

t���xt � bt��
t���� lt��

t��� � xt � ut��
t���

and �T � � or a given function of x and ��
Here� the At�s are �mt� nt� matrices and the remaining vectors and matrices are of consistent dimensions�

For the �rst stage� the values of all elements in b�� c��A�� l��u� are known� Again� the main decision variable is
x� that corresponds to the �rst stage�

According to our assumption� an optimal solution of ���� exists for all t and all considered histories xt��� �t��

� the case of the relatively complete recourse�
For purposes of applications one approximates the true probability distribution P of � by a discrete probability

distribution concentrated on a �nite number of atoms� called scenarios�

��� Scenario�based stochastic linear programs

Without loss of generality we shall work now with problems �������� in which Bt� � � for � � t� � and we shall
assume that the distribution of � is concentrated on a �nite number of scenarios� Accordingly� the supports �t of
marginal probability distributions of the components �t �t and the supports of conditional probability distributions
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of �t conditioned by past realizations of ��� � � � �t�� are �nite sets� The associated conditional probabilities are
called the arc probabilities� A special common arrangement of the data process is the scenario tree in which each
value of �t corresponds to one node kt�� at the stage t � � and each node has a unique ancestor� a�kt��� � the
value of the corresponding �t�� assigned to one of nodes at the stage t� The root of the tree� node indexed by ��
is ancestor of all nodes k� � 
� � � � �K� at the second stage� etc� In some cases� it is expedient to use sets D�kt�
of descendants of kt which consist of those nodes kt�� which can descend from kt with a nonzero probability� To
each kt one assigns the t�th stage decision vector xkt � This allows to rewrite the T �stage scenario�based stochastic

linear program with additive recourse in the following arborescent form�

Minimize

c�� x� �

K�X
k���

pk�c
�
k�
xk� �

K�X
k��K���

pk�c
�
k�
xk� � � � ��

KTX
kT�KT����

pkT c
�
kT
xkT ����

subject to

A�x� � b�
Bk�x� � Ak�xk� � bk� � k� � 
� � � � �K�

Bk�xa�k�� �Ak�xk� � bk� � k� � K� � �� � � � �K�

� � �
� � �

���
BkTxa�kT � �AkTxkT � bkT � kT � KT�� � �� � � � �KT

lkt � xkt � ukt � kt � Kt�� � �� � � � �Kt� t � �� � � � � T� ��
�

The problem is based on the used scenarios� i�e�� on KT �KT�� sequences of possible realizations of coe�cients
�ckt �Akt �Bkt � bkt � lkt �ukt� in the objective function ����� in recourse matrices� transition matrices and right�hand

sides in the constraints for all stages� and on the path probabilities pkt � �� kt�
PKt

kt�Kt����
pkt � �� t � 
� � � � � T�

of partial sequences of these coe�cients� hence� probabilities of realizations of �t�� �t�
Probabilities p� of scenarios �� of �� i�e�� the path probabilities assigned to the terminal nodes� are obtained

by multiplication of the �conditional� arc or transition probabilities related with the corresponding sequences of
realizations� Nonanticipativity constraints are included here in an implicit form whereas decomposition of �������
�
along scenarios requires that the nonanticipativity constraints are spelled out in an explicit way�

The size of the linear program �������
� can be very large and usefulness of special numerical techniques is
obvious� Its special structure suggests exploitation of decomposition techniques� both with respect to stages �cf�
��� ��� for adaptation of the Benders decomposition algorithm or ���� for basis decomposition methods� and along
scenarios� In the last case� the nonanticipativity constraints are spelled out explicitly and are subsequently relaxed
within an augmented Lagrangian type method� This idea can be applied also to nonlinear multistage stochastic
programs� see e�g� ���� for the progressive hedging algorithm or �
�� for the diagonal quadratic approximation
method� A further possibility is to use interior�point�based methods along with their parallel implementation� for
instance ����� ����� The stochastic extension of the MPS input format ��� allows uni�ed description� storing of
multistage stochastic problems and data� Nevertheless� exploiting the properties and the structure of the solved
problems is the key to e	ective algorithms� An example are multistage stochastic programs with network structure�
cf� ���� who report numerical results from an application from the insurance industry with � stages� with up to
����
 scenarios� where the arborescent form will have a half million constraints and ��� million variables�

As a consequence of these achievements� it is possible to solve numerically large scale linearly constrained
convex stochastic programs based on scenarios� e�g�� �������
� with the linear objective function ���� replaced by

f��x�� �

K�X
k���

pk�fk��xk�� �

K�X
k��K���

pk�fk��xk�� � � � ��

KTX
kT�KT����

pkT fkT �xkT �

where fk� k � �� � � � �KT are convex functions �compare with ����� and with ��
� replaced by constraints displaying
a full or partial path dependence�

Besides the formulation of goals and constraints and identi�cation of the driving random process �� building
a scenario�based multistage stochastic program requires speci�cation of the horizon� stages and generation of the
input in the form of scenario tree� We refer to ���� for methods of generating scenario trees and to ���� for discussion
related with the choice of the horizon and stages� For purposes of the present paper� we mostly assume that the
horizon is �nite and both the horizon and stages have been already �xed� We note only that the rapid increase of
the size of the solved stochastic programs along with an increasing number of stages calls for a compromise as to
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modeling of dynamic features �e�g�� the number of stages� and the representation of the underlying random process
�e�g�� the number of scenarios��

In real�life applications� it seems to be the modeling part of the problem and a meaningful generation
of scenarios which have become the most demanding task� Whereas the interstage independence� i�e�� mutual
independence of ��� � � � � �T is neither essential for formulation of scenario�based stochastic program �������
� nor
for its solution by linear programming techniques� it plays an important role whenever bounds and stopping rules
are to be constructed in course of iterative or sample based procedures� This means that such algorithms known
for two�stage stochastic programs with �xed complete recourse� e�g� �
��� �
��� can be generalized to algorithms
for multistage stochastic programs with scenario independent recourse matrices At and mutually independent
��� � � � � �T � see e�g� �
��� Possibility of their generalization to problems with dependent components of � is limited
to problems with a special stochastic speci�cation �e�g�� multinormal right�hand sides��

� Multistage Stochastic Programs and Dynamic Programming

��� Basic connections

To show the connections between multistage stochastic programs and stochastic dynamic programs� let us consider
again the sequence ��� assuming that the next stage of the considered process is entirely determined by the
state� decision and random data occurring in the current stage� In particular� we make the following assumptions
concerning the dynamics of the system�

Assumption �� For every stage t � �� � � � � T

xt � �st� dt� with st�� � Ft�st� dt� �t� and x� � �s�� d�� given� ����

where st � St� dt � Dt� �t � �t and Ft�	� 	� 	� is a mapping from St 
Dt 
�t onto St���

The variable st �resp� dt� is called the state �resp� decision� at stage t� Similarly� St �resp� Dt� is the state

space �resp� decision space� at stage t� Let dt �� �d�� d�� � � � � dt� be a sequence of decisions �called also policy�
controlling the considered process� We restrict ourselves on Markovian �memoryless� policies� i�e� we assume that
dt � Gt�st�� �t�

A further simpli�cation can be obtained by assuming mutual independence of �t�s� called in multistage
stochastic programs the interstage independence assumption�

Assumption �� The random variables ��� � � � � �t� � � � � �T are mutually independent�

For the sake of computational tractability we restrict the class of objective functions as follows�

Assumption �� The objective function ��� is separable with respect to the stage index t� In particular�
we assume that f��x� �� is additive� i�e�

f��x��x��x�� ���� � � � �xT �x
T��� �T���� �� � f���s�� d�� �

TX
t��

 ft�st� dt� �t� ����

The �Markovian� property for generating the sequences of states by ���� of Assumption � along with mutual
independence of �t �interstage independence by Assumption 
� yields the following important implication�

Prob �st�� � sjs�� � � � � st� d�� � � � � dt� � Prob �st�� � sjst� dt� �� pt�st� s� dt� ����

and the form of objective function ��� follows from Assumption ��

E�f��x��x��x�� ���� � � � �xT �x
T��� �T���� �� � c��s�� d�� �

TX
t��

E�ct�st� dt� ����

where c��s�� d�� �� f���s�� d�� � E��
 f��s�� d�� ��� and ct�st� dt� �� E�t

 ft�st� dt� �t� for t � 
� � � � � T �

The following technical assumption leads to an essential simpli�cation for notations� analysis and solution of
stochastic dynamic programming problems�
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Assumption �� For t � �� � � � � T � the sets St � S and the sets Dt � D are �nite� Moreover� the full
information is available about the state st at any stage t and all expectations exist�

The collection of transition probabilities pt�s� s
�� d� along with the initial �possibly degenerated� distribution

and the decision rule dT � �d��s��� � � � � dT �sT �� fully describes the �probabilistic� development of the considered
process without any reference to the transition function F in ����� Since the objective function is assumed to be
separable� under Assumptions �� 
� �� � the considered multistage stochastic control problem can be rewritten in
the form referred often as a classical Discrete Time Markov Decision Process or Discrete Time Stochastic Dynamic

Program�

Given the probabilities pt�s� s
�� d� �where s� s� � S and d � D� �nd a sequence of decisions

dT � �d��s��� � � � � dT �sT �� �where dt � D� that minimizes E�

PT

t�� ct�st� dt��

Under the above assumptions the real valued functions Vt�s� �� min
dT

E�

�
TP
��t

c� �s� � d� �jst � s

�
can be

calculated for t � �� � � � � T � � by the following �backward recursion�

Vt�s� � min
d�D

fct�s� d� �
X
s��S

pt�s� s
�� d� 	 Vt���s

��g ���

with VT �sT � � �� �See e�g� ���� ���� �

��� Hence� for a given initial state s� of the system� V��s�� is the optimal

value of the objective function E�

PT
t�� ct�st� dt��

The analysis can be easily extended for compact decision space D� In case that the state space S is countably
in�nite� the analysis used for �nite state models can be extended under some additional assumptions� Unfortunately�
for the general state space an exact analysis of the above discrete time stochastic dynamic programs is complicated�
for details see e�g� ��� or �

� for an exact measure theoretic analysis of models with general state space�

Solution of the optimization problems ��� can be hard or easy depending on the application� However�
implementation of the �backward recursion� requires storing the values of the functions Vt�	� and of the optimal
decisions for all states of the system� therefore for many applications the number of states is prohibitively large�
This �curse of dimensionality� in dynamic programming is partly due to the dimension of the state space and
makes storing values and decisions for all states impossible� To limit the number of states� one may aggregate
the states� decompose the dynamic program into smaller related dynamic programs� etc� See �
� for references�
Another possibility is to solve an approximate problem using properties of Markov Decision Chains which results
in a numerically tractable method� see the next subsection�

��� Discrete Time Stochastic Dynamic Programs

Let us consider at stages t � �� 
� � � � a nonhomogeneous Markov chain with �nite state space S � f�� � � � � Ng� If the
process is found to be in state i � S then a decision k � �� 
� � � � �K must be selected� Selecting decision k in state
i state j is reached in the next stage with �stage independent� probability p�i� j� k� and an immediate cost c�i� j� k�

�not depending on the current stage� is incurred� c�i� k� �
PN

j�� p�i� j� k� c�i� j� k� is the expected cost incurred in
state i � S if decision k is selected� Such decision process is called a discrete time Markov decision process� The
data p�i� j� k�� c�i� k� are assumed to be known to the decision maker�

Policy ! controlling the process is a rule prescribing the decision to be taken after each transition in any state
of the chain� We restrict on Markov �memoryless� policies� i�e� decision rules taking into account only the number
of transitions t and the current state st � S of the chain� A policy which takes at all times the same decision rule
is called stationary� We write ! � �	�� 	�� � � �� where 	t� the decision rule at stage t� is an N �vector whose i�th
component is the decision at the t�th transition when the chain is in state i� Stationary policy ! is identi�ed by
! � �	��

Let P �	t� be the N 
N matrix whose ij�th element equals p�i� j�	ti� and let P T �!� � P �	�� � � � P �	T � �for
convenience we set P ��!� � I � the identity matrix�� Similarly� c�	t� denotes the N 
 � vector whose i�th element
equals c�i�	ti�� If ! � �	� �i�e� if ! is stationary� then P T �!� � �P �	��T �

In what follows we denote by vT �!� the vector of total expected costs �i�e� the sum of expected costs� incurred
in the T next transitions� its i�th element vTi �!�� i � �� � � � � N� equals the total expected costs incurred provided
the chain starts in state i � S and policy ! is followed� Obviously

vT �!� �

TX
t��

P t���!� c�	t� with lim
T��

�

T
vT �!� � g�!� ����
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provided the limit exists �the i�th element of g�!�� denoted gi�!�� is the long run average expected costs if the

Markov chain starts in state i�� Observe that for a stationary policy ! � �	� we get vT �!� �
PT

t���P �	��t��c�	��
In contrast to multistage stochastic programs� there are no principle di�culties in the study of stochastic

dynamic programs with long or even in�nite time horizon� To study such models we recall some facts from Markov
chain theory �cf� e�g� �
���� It is well known that the following matrices exist�

P � � lim
n��

�
n

n��P
k��

P k �the Cesaro steady state limit�� Z � �I � P � P ���� �the fundamental matrix of P ��

If P has one recurrent class then the rows of P � are identical and equal to the stationary probability distribution
�row� vector p� � �p��� � � � � p

�
N � �i�e� the row of P �� of the considered discrete�time Markov chain� Moreover� if P is

also aperiodic �i�e� if one is the only eigenvalue of P with the modulus equal to one� then limn�� Pn � P ��
In what follows we make the following simplifying assumption�

Assumption �� P �	� has a single class of recurrent states for any 	�

In virtue of the above facts for T tending to in�nity we have for a stationary policy ! � �	�

g�!� � g�	� � lim
T��

�

T

TX
t��

�P �	��t��c�	� � P ��	�c�	�� ����

where the rows of P ��	� are identical� and so are also the elements of g�	��
Policy �! is called average optimal if

lim sup
T��

�

T
vT ��!� � lim sup

T��

�

T
vT �!� for every policy !� �
��

The following facts are well�known to the researchers in dynamic programming�

�i� For every 	 there exists an N 
 � vector w�	� �unique up to additive constant� such that

g�	� � w�	� � c�	� � P �	�w�	�� �
��

Moreover� under condition P ��	�w�	� � �� the constant vector g�	� �given by ����� along with
w�	� � Z�	� �I � P ��	�� c�	� are the unique vectors ful�lling �
���

�ii� There exists �	� unique vector �g � g��	� and vector �w � w��	� �unique up to an additive constant� such that
for every decision vector 	

�g � �w � c��	� � P ��	� �w � c�	� � P �	� �w� �

�

Moreover� under condition P ���	� �w � �� �w is the unique solution ful�lling �

��

�iii� For an arbitrary policy ! � �	t� it holds

vT �!� � T �g � �w � P T �!� �w �

TX
t��

P t���!�
�	t� where 
�	� � c�	� � �g � P �	� �w � �w� �
��

Hence stationary policy �! � ��	� ful�lling condition �

� must be average optimal policy� and a �nonstationary�

policy ! � �	t� is average optimal if and only if limT�� T��
PT

t�� P
t���!�
�	t� � ��

Up to now we have mostly assumed that the time horizon is rolling forward� The only exception is the
�backward dynamic programming recursion� ��� mentioned in Section �� In what follows we show that results
analogous to �
�� can be also obtained in case of a rolling backward horizon� To this end� �x the number of stages
T and rewrite ���� for t � �� � � � � T as

V
�T �
T�t�!� �

TX
m�t

Pm���!� c�	m� � c�	t� � P �	t�V
�T �
T�t���!� where v

�T �
� �!� � �� �
��

Observe that the i�th element of V
�T �
T�t�!�� denoted V

�T �
T�t�!��i�� is the total expected cost obtained at stages

t� t� �� � � � � T on condition that the process was in state i at stage t and policy ! is followed�
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Denoting n � T � t� from �
�� we can conclude that

V �T �
n �!� � c�	T�n� � P �	T�n�V

�T �
n���!� � min

�

h
c�	� � P �	�V

�T �
n���!�

i
�
��

�observe that since in each state the decision can be selected independently� the above �componentwise� vectorial
minimum exists� 	 is the decision vector whose i�th element is the decision selected in state i��

In virtue of these facts we can write the �backward recursion� of dynamic programming for �nding minimum
values of vt�!� over all policies ! � �	t�� denoted by �Vt� as follows

�Vn�� � min
�

h
c�	� � P �	� �Vn

i
� c��	n� � P ��	n� �Vn �
��

where �V� �not necessarily equal to zero� is given�
Obviously� in virtue of �
�� n�� �Vn must converge to the constant vector �g of average minimal costs� i�e�

lim
n��

n�� �Vn � �g and j �Vn � n�gj is bounded�

Unfortunately� policies calculated from �
�� can be nonstationary and quite irregular even for large n� but it can
be shown �cf� ���� that under the assumption that all P �	� are aperiodic

lim
n��

� �Vn � n�g� � �w � const� �
�

where const� �N 
 � vector with equal elements� depends on �initial condition� �V��
"From �
� follows immediately that limn��� �Vn��� �Vn� � �g and it can be shown that � �Vn���i� is the i�th

element of �Vn���

max
i

h
�Vn���i�� �Vn�i�

i
� bn� min

i

h
�Vn���i�� �Vn�i�

i
� bn� �
��

are the upper and lower bounds on �g that converge monotoneously to the values of �g and the convergence is
geometric� From this we can conclude that for any naturals m � n

�m� n�bn e � �Vm � �Vn � �m� n�b
n
e �
��

�e is reserved for a unit column vector of appropriate dimension��
This simple fact �called the �turnpike planning theorem�� cf� ����� can be extremely useful for calculating

the values of the maximum total expected return for a large horizon T�

� Illustrative Examples

In this section� we shall illustrate by examples some of the items discussed Sections 
 and ��

��� The 	ower�girl problem

The �ower�girl problem introduced in ��� and studied also in ��
�� ���� is a simple multistage stochastic program�
The �ower�girl sells roses at price c and has to buy them at cost p before she starts selling� Flowers left over at
the end of the day can be stored and sold the next day� when she starts selling the old roses� The roses cannot
be carried over more than one additional day at the end of which they are thrown away� The demand is random�
�t denotes the demand on the t�th day� Whereas x� has to be bought without any knowledge of the realization of
the random demand� the �ower�girl can adapt the subsequent orders xt� t � � to the demand observed during the
previous days� Her goal is to maximize the total expected pro�t�

The horizon is related to the number of days for which the �ower�girl continues selling roses without any
break �and also to the fact that our formulation treats only one�period carry over�� Assume �rst� that the �ower�girl
sells roses only during the weekend� orders the amount x� on Friday evening� observes the demand �� on Saturday�
stores the unsold roses �without any additional cost� and� possibly� buys x����� new roses� The demand �� on
Sunday determines the amount of unsold roses to be thrown away� Denote s����� the stock left for the subsequent
day and z���� ��� the amount of unsold roses at the end of the second day�

All decision variables are nonnegative and subject to constraints

x� � s����� � ��� x����� � s������ z���� ��� � ���
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If the demand ��� �� is known in advance� the objective function is �c� p��x� � x������� cz���� ��� and one of
optimal solutions is to buy x� � �� and x� � �� roses which gives the maximal pro�t of �c� p���� � ����

Consider now a scenario�based version of this ��stage problem� The scenario tree consists of K branches
corresponding to the considered realizations ��k� k � �� � � � �K� of the demand �� on the �rst day� their probabilities
are pk� k � �� � � � �K� Possible realizations of demand ��k� for the second day may be conditional on ��k� We
denote D���k� the set of descendants of ��k� and p�k� �� their �conditional� probabilities� The problem is

maximize �c� p�x� �
KX
k��

pk��c� p�x����k�� c
X

��D���k�

p�k� ��z��k� ��k���

subject to
x� � s����k� � ��k� k � �� � � � �K

x����k� � s����k�� z���� ��k�� � ��k� � � � D���k�� k � �� � � � �K

and nonnegativity constraints� The total number of scenarios ���k� ��k�� equals the number of all descendants of
��k� k � �� � � � �K�

The generalization to T �stage problem is obvious� we index by t all decision variables related with the stage
t� i�e�� the amount of roses ordered �x�� stored �s� and thrown away �z� at the end of the �t� ��st day� We obtain�

maximize �c� p�x� �Ef�c� p�

T��X
t��

xt��
t����� c

TX
t��

zt��
t���g

subject to
x� � s� � s������ z����� � ��

xt��
t��� � st��

t���� st����
t�� zt����

t� � �t� t � 
� � � � � T � �

st��
t���� zt����

t� � �t� t � �� � � � � T � �

with sT ��� � � and nonnegativity of all variables� In case that the initial supply s� � �� one gets z����� � ��
The main decision variables �controls� are xt for t � �� � � � � T � �� the state of the system is described by st for
t � �� ���� T � � and by zT �which is at the same time the only decision variable at the last stage�� The number
of stages equals one plus the number of days for which the �ower�girl sells roses without any break� The scenario
based formulation of the T �stage problem can be written in the arborescent form or in scenario split form with
explicit nonanticipativity constraints�

Imagine now that the �ower�girl wants to earn as much as possible during the two months of her high school
vacations� such �� stages problem may be solvable thanks to its simple form� Still some other possibilities should
be examined� Her problem may be rolled forward in time with a substantially shorter horizon� say� with T � �
which covers a whole week� This means that the �ower�girl decides as if she plans to maximize her pro�t over each
one�week period and solves the problem every day with a known �possibly non�zero� initial supply of roses and
with a new scenario tree spanning over the next T � � days� Another possibility is aggregation of stages� With a
long horizon and random parameters only on the right�hand sides of constraints� one may apply the idea of ����
designed for problems with an in�nite horizon� One chooses a tractable horizon T and adds one stage which takes
into account the remaining stages t � T �

For the simplest three stage case with independent ��� �� it is possible to derive the decision rules explicitly
�cf� ��
��� We rewrite the problem in the nested form �������

max
x���

��c� p�x� �E�����x�� ���� ����

where

���x�� ��� � max
s���

�q��s�� � s� � x� � ��� ����

with

q��s�� � max
x���

��c� p�x� �E�����x�� s�� ����� ��
�

Finally�

���x�� s�� ��� � max
z��

��cz � z � x� � s� � ��� � �c�x� � s� � ���
�� ����
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Hence� the optimal decision rule for the �rd stage as obtained by solving ���� is z� � �x�� s�����
�� To get the

optimal recourse x�� notice that except of the amount of stock s�� the stochastic program ��
� has the form of the
newsboy problem� The optimal recourse x�� is then

x���x�� ��� s�� � �u����P��� s��
� ����

where u����P�� is the ����� quantile of the marginal distribution P� of �� for � � p�c� Monotonicity of q� �with
x� � �u����P�� � s��

�� implies that the optimal value of s� in ���� is s���x�� ��� � �x� � ���
�� Substituting to

��
� and ���� results in

���x�� ��� � �c� p��u����P��� �x� � ���
��� � cE��max�u����P��� �x� � ���

��� ���
�� ����

We conclude that in case of interstage independence and for an arbitrary nonnegative �rst�stage decision x�� the
second�stage decisions s���x�� ���� x

�
��x�� ��� are piecewise linear in �� and the �rd stage decision z� � �x���s

�
�����

�

is piecewise linear in ��� ��� As to the optimal �rst�stage decision x�� it is necessary to solve problem ���� with ����
substituted for ���x�� ���� For discrete probability distributions the piecewise linearity of the recourse decisions
implies that the optimal �rst�stage decision will occur in one of the breakpoints of the resulting polyhedral objective
function�

Relaxation of distributional assumptions to �� dependent on �� means that the quantile in ���� will depend
on �� so that� in general� the piecewise linearity of the second�stage decisions with respect to �� gets lost� An
exception is the joint normal distribution where the quantiles u����P�j��� of the conditional distributions of ��
conditioned by the value �� of the demand on the �rst day are linear in ���

Because of the genesis of the �ower�girl problem with the state of the system identi�ed by the number of
roses st� t � �� � � � � T � � available for selling on the t�day before a new order is placed and by the number of roses
zT to be thrown away at the end� its scenario�based formulation satis�es the requirement of a �nite state space�
�Notice� that the �ower�girl problem should be more realistically formulated as an integer stochastic program��

Under simplifying assumption that the random demands are independent �see Assumption 
� and identically
distributed� the �ower�girl problem can be easily formulated as a stochastic dynamic program and can be also
solved by the backward recursion of dynamic programming� Such approach allows for characterization of the
optimal policy for all states of the system and accommodates easily problems with a long horizon�

Let �t� t � �� 
� � � � �random demands on the t�th day� be independent such that for all t

Prob��t � k � �� � pk for k � �� � � � �K�

KX
k��

pk � ��

Since at most K � � roses can be sold every day� we can restrict on policies storing at most K � � roses on each
day� Of course� the �ower�girl starts selling one day old roses if possible�

Recalling that xt �the control variable� denotes the number of fresh roses ordered for the t�th day �t � �� 
� � � ��
and that st is reserved for the state variable �i�e� the stock of one day old roses left from the �t � ���th day and
s� � �� we immediately conclude that for any t � �

st�� � xt� st � xt � K � �� ����

Hence for any nonnegative integers i� k such that i� k � K � � the transition probabilities are

p�i� k� k� � Prob�st�� � kjst � i� xt � k� �

i��X
m��

pm ���

p�i� j� k� � Prob�st�� � jjst � i� xt � k� � pi�k���j for j � �� � � � � k � �

p�i� �� k� � Prob�st�� � �jst � i� xt � k� �

KX
m�i�k��

pm for k � �

and are equal to zero otherwise�

If the order is xt � k on the t�th day when the stock left from the day �t� �� equals st � i roses� this order

price is pk and the expected amount of the money obtained by selling the roses is equal to c
Pi�k��

j�� �j � �� pj � i�e�
the expected pro�t in notation used for the additive objective function �cf� ����� with dt � k� st � i equals

E�
 ft�st� dt� �t� � c�i� k� � c

i�k��X
j��

�j � �� pj � pk �t� ����
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Now we are ready to solve the �ower�girl problem as a standard stochastic dynamic programming problem�
The �backward dynamic programming recursion� ��� for i � �� �� � � � �K � � reads�

Vt�i� � max
k�������K

��c�i� k� � K��X
j��

p�j� i� k�Vt���j�

�	 where VT �i� � � ����

and can be easily solved for the considered �nite state space S � f�� �� � � � �K � �g and for a large horizon T �
Obviously� the integrality of decision variables is exploited� Also the turnpike planning theorem �cf� ����� can be
helpful for problem with a very long time horizon�

However� it is hard to apply the backward recursion in more complicated problems as to the dimensionality
of the state vector and�or in presence of numerous state and control constraints� In the context of the �ower�girl
problem� think about a whole set of traded �owers with various carry�over constraints� inclusion of a limited store
space or of a substitution e	ect in the �random� demand�

��� Maintenance problem

Consider an equipment consisting of n substantial components� The attribute of each component to the equipment
operating is expressed by a vector aj �j � �� � � � � n� of dimension m � n considered as the j�th column of the
matrix A �an m 
 n matrix�� The equipment can operate according to several modes speci�ed by m�vectors
b�k� depending on value of the mode parameter k �k � �� � � � �K�� A feasible state of the equipment operating
according to the k�th mode is given by the column vector �of dimension n� denoted s � �s���� � � � � s�n��� such thatPn

j�� ajs
�j� � b�k�� s

�j�
min � s�j� � s

�j�
max with given s

�j�
min� s

�j�
max �j � �� � � � � n�� written equivalently as

As � b�k�� smin � s � smax� ����

We are looking for a feasible state for which the incurred costs given by c�s are minimized�

In virtue of the above conditions we may consider only a �nite number of feasible state vectors s� the basic

solutions of the linear programs �����

The above problem is a static one� If we assume some development over time� i�e� that the equipment is
periodically checked and maintained at discrete time points t � �� � � � � T � we add time indices to the state variables�
in particular� we consider st for t � �� � � � � T � instead of s� Moreover� we assume that based on the state st and
the mode of the equipment kt at time t � �� � � � � T a decision dt is taken at time t�

In addition we assume that the development of the equipment over time is uncertain� but depends on the
current state and the current mode of the equipment and on the selected decisions� In particular� we assume that
based on the current state st� current mode kt of the equipment and the decision dt taken at time t two things will
happen�

�i� the equipment will operate at the next time point according to the operating mode  � f�� � � � �Kg with
given probability p�kt� � �st� dt���

�ii� transition costs c�kt� � will be incurred�

From the above formulation it is clear that such a problem can be formulated in the terms of a classical �nite
state Markovian decision problem� In particular� supposing that the equipment starts operating in mode k� � ��
the trajectory of the system is as follows�

�k�� sk� � dk� � k�� sk� � dk� � k�� � � � kt� skt � dkt � � � � kT � skT � ����

with k� � �� Observe that for the selected operating mode k� � �� state vector at time point t � � ful�lls condition
As� � b���� and similarly if the equipment is operating at time t � 
� � � � � T in mode kt the state vector skt ful�lls
condition Askt � b�kt��

Since the sequence of operating modes forms a Markov chain governed by transition probabilities p�k� � �s� d���
following the above decision policy the expected costs incurred are given by�

c�s� �

KX
k���

p��� k�� �s�� d����c��� k�� � c�sk� �

KX
k���

�p�k�� k�� �sk� � dk���

�c�k�� k�� � c�sk� � � � ��

KX
kT����

p�kT��� kT � skT�� � dkT�����c�kT��� kT � � c�skT � � � ��� ��
�
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For the numerical solution of the initial dynamic programming problem formulation �the principle of op�
timality in dynamic programming� can be used and also problems with long time horizon and state dependent
probabilities can be e	ectively treated�

Now let us formulate the dynamic maintenance problem as a scenario�based stochastic linear program with
additive recourse given by �������
� under the above conditions �i�� �ii� and ����� We can readily see the similarities
and the di	erences�

Comparing ���� with ��
� we can observe that pkt in ���� are replaced by the products of transition proba�
bilities

p�k�� k�� �s�� d��� � � � p�kt��� kt� �st��� dt�����

Moreover� the terms
p�k�� k�� �s�� d��� � � � p�kt��� kt� �st��� dt���� 	 c�kt��� kt�

re�ect both the transition and its costs� and all transition matrices Bkt occurring in ��
� are equal to zero�

The random coe�cients appear thus only on the right�hand sides and are driven by the Markov process
whose trajectories correspond to the sequences of indices kt of the considered modes� Assume that the transition
probabilities p�kt� kt��� may be di	erent at di	erent stages t but they do not depend on s� Then the absence of
matrices B in the constraints means that we are left with a multiperiod two�stage stochastic linear program� Its
scenarios are all possible sequences � � f�� k�� � � � � kT g of states of the Markov chain occurring with probabilities

p� � p��� k�� d��p�k�� k�� dk�� � � � p�kT��� kT � dkT����

Let us denote
s��� the scenario � dependent vector composed of sk� � � � � � skT �
h��� the scenario � dependent vector composed of the right�hand sides b�k��� � � � � b�kT ��bA the quasidiagonal matrix with T � � identical diagonal blocks A�
�q the vector consisting of T � � identical subvectors c� and
���� � c��� k�� � c�k�� k�� � � � � c�kT��� kT ��

The resulting stochastic program reads�

max



c�s� �

X
s

p� ����� � �q�s����

�
subject to

As� � b���� bAs��� � h��� �� and the box constrains ���� on all s vectors�

Notice that the objective function can be rewritten in the form ��
��

There are various options how to solve such problem � a large scale linear program whose size depends on
the number of scenarios to be included� There are techniques how to reduce the number of scenarios taking into
account precision requirements� On the other hand� the stochastic programming formulation does not include
possibility of probabilities dependent on decisions�

� Conclusions

The two discussed approaches used for modeling and solution of discrete time dynamic decision problems under
uncertainty are not competitive� they are merely complementary having di	erent favorable and unfavorable features�
Let us summarize�

For dynamic programming� de�nition of state of the system is essential� The structure of the problem is tied
with the solution method � the backward recursion connected with the principle of optimality� A usual assumption
is a �nite number of possible states of the system and the goal is to get an optimal decision rule� This goal together
with the backward recursion puts considerable requirements on the memory� On the other hand� problems with
very distant or in�nite horizon and problems with state and decision dependent transition probabilities can be
treated e�ciently provided that the structure of the problem �ts well the solution method �based on certain
Markov properties� separability of the objective function� etc��� that the dimension of the state vector is not too
big and that the number of constraints is limited�

Multistage stochastic programs do not use the notion of state and their formulation is not connected with
any prescribed solution technique� Therefore� there exists a variety of stochastic programs along with various



�� ZAMM � Z� angew� Math� Mech� �� ������

solution procedures� The emphasis is on the �rst�stage decision� mostly a continuous vector� It is possible to avoid
special requirements on the Markov structure of the problem� Numerous constraints can be included� nevertheless�
integrality of decision variables is a drawback� not an advantage from the computational point of view� The
resulting problems are large mathematical programs� their dimensionality increases rapidly with increasing number
of stages� The probability distribution of random parameters� which is assumed independent on the decisions� is
approximated before or in course of numerical procedures�
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