
ORIGINS OF STOCHASTIC PROGRAMMING

Early 1950’s: in applications of Linear Programming –

unknown values of coefficients:

demands, technological coefficients, yields, etc.

QUOTATION – Dantzig, Interfaces 20,1990 – nutrition problem

”When is an apple an apple and what do you mean by its cost and
nutrition content? For example, when you say apple do you mean a
Jonathan, or McIntosh, or ....? You see, it can make a difference, for the
amount of ascorbic acid (vitamin C) can vary from 2.0 to 20.8 units per
100 grams depending upon the type of apple.”

Uncertainties modeled as random −→

STOCHASTIC PROGRAMMING



Multi-objective Optimization and
Stochastic Programming Models

We shall consider now various approaches to mathematical formulation of
stochastic programs.
Inspiration comes from multi-objective programming.

SP PROBLEM

Select the “best possible” decision which fulfills prescribed “hard”
constraints, say, x ∈ X where X ⊂ IRn is a closed nonempty set.

Outcome of a decision x is influenced by a random element ω of a general
nature whose realization is not known at the time of decision — scenario.

Random outcome of decision x is quantified by f (x, ω) and different
scenarios ω provide different optimal solutions,
x∗(ω) ∈ arg minx∈X f (x, ω).



Scenario analysis

ASSUME:

Finite set of considered scenarios, {ωs , s = 1, . . . ,S}.

S optimal solutions xs and S values f (xs , ωs) of objective functions
f (x, ωs), s = 1, . . . ,S .

The idea – analyse the values f (xs , ωk) to see what happens when for
decision xs scenario ωk occurs instead of ωs .

EXAMPLE



Scenario-based SP I.

ASSUME AGAIN:

Finite set of considered scenarios, {ωs , s = 1, . . . ,S}.

Methods of multi-objective programming suggest to choose a solution
efficient with respect to S objective functions f (x, ωs), s = 1, . . . ,S .

Such efficient solutions can be obtained, e.g., by minimization (or
maximization) of a weighted sum of f (x, ωs), s = 1, . . . ,S .

In our case, it is natural to use probabilities ps of scenarios ωs at the
place of weights ts and the problem to be solved is

min
x∈X

S∑
s=1

ps f (x, ωs).

The result is the widely used expected value criterion.



Scenario-based SP II.

Notice that we get efficient solutions regardless the origin of probabilities
ps , e.g., for ps

the true probabilites,

subjective probabilities,

probabilities offered by experts,

equal probabilities obtained via simulation or coming from an
empirical probability distribution.

Similarly, using goal programming approach we may get the tracking
model, e.g.

min
x∈X

S∑
s=1

ps |f (x, ωs)− f (x∗(ωs), ωs)|.



Models of SP with non-stochastic constraints

ASSUME:

Known, general probability distribution P of ω, EP denotes expectation.

Random elements appear only in the objective function f (x, ω),

set X is fixed.

Similarly as in financial applications, choice among various objective
functions which depend only on the probability distribution P,
NOT on observed scenarios.

In case of minimization, we have for example

minx∈X f (x, ω̂), with ω̂ a point estimate of ω

minx∈X EP f (x, ω), risk neutral expected value criterium

minx∈X EPu(f (x, ω)), expected disutility criterium

minx∈X EP f (x, ω) + λRP(f (x, ω) includes a risk measure RP

minx∈X EP f (x, ω) + λvarP(f (x, ω), cf. Markowitz model



Random elements in constraints of (MP) I.

X (ω) = {x ∈ X0 : hj(x, ω) = 0∀j , gk(x, ω) ≤ 0 ∀k}

WE CANNOT WAIT WHICH SCENARIO OCCURS!

How to choose SET OF FEASIBLE DECISIONS INDEPENDENT OF
SCENARIOS?

AD HOC IDEA:

Replace ω by a fixed characteristics ω̂ which depends on P – point
estimate, mostly expectation EPω. Solve deterministic problem with set

X (ω̂) = {x ∈ X0 : hj(x, ω̂) = 0∀j , gk(x, ω̂) ≤ 0 ∀k}

NOT THE BEST IDEA — example

min{x1 + x2 : αx1 + x2 ≥ 7, βx1 + x2 ≥ 4, x1, x2 ≥ 0}

(α, β) random, uniformly distributed on [1, 4]× [1/3, 1]. Replace α, β by
their expected values 5/2 resp. 2/3 and solve the LP.

Optimal solution x∗1 = 18
11 , x∗2 = 32

11 . Probability that (x∗1 , x
∗
2 ) satisfies the

random constraints is only 1/4! Not acceptable.



Random elements in constraints of (MP) II.

PERMANENTLY FEASIBLE or FAT DECISIONS

x ∈ X (ω) for all scenarios ω, or x ∈ X (ω) almost surely.

P{ω : x ∈ X (ω)} = 1.

The set X = ∩ω∈ΩX (ω) is small and it is often empty, e.g. for ω in
equations and P absolutely continuous. BUT — Robust Optimization.

RELAX THE REQUIREMENT −→ PROBABILITY or CHANCE
CONSTRAINTS

JOINT PROBABILITY CONSTRAINT

P(ω : x ∈ X (ω)) ≥ 1− ε,
with 0 ≤ ε ≤ 1 chosen by the decision maker.

Reliability type constraint; for absolutely continuous P can be used only
for random parameters in inequality constraits.

PROBLEM: convexity of the resulting set of feasible decisions. Can be
proved only for special structure of contraints and special probability
distribution, e.g. normal.



Individual Probability Constraints

Given probability treasholds ε1, . . . , εm the feasible decisions are x ∈ X0

that fulfil m INDIVIDUAL PROBABILITY CONSTRAINTS

P(ω : gk(x, ω) ≤ 0) ≥ 1− εk , k = 1, . . . ,m (1)

Easy structure of problem, namely, if ω are right-hand sides of contraints,
i.e. gk(x, ω) = gk(x)− ωk .

Denote Fk marginal d.f. of ωk , uεk (P) 100εk% quantile of Fk −→ (1)
reformulated

Fk(gk(x)) ≤ εk i.e. gk(x) ≤ uεk (P)

For convex gk(x) — convex set of feasible decisions.

Notice: random rhs ωk replaced by a specified QUANTILE of marginal
pdf.

No more valid for joint probability constraints! Even for random rhs
special requirement on P needed, cf. log-concave or quasiconcave
probability distributions (Prékopa).



Joint Probability Constraints

THEOREM (Prékopa) Assume:

• gk(x, ω)∀k are jointly convex in x, ω on IRn × IRl

• probability distribution P of ω is logarithmically concave on IRl .

THEN is the function

h(x) := P{ω : gk(x, ω) ≤ 0, ∀k}

logarithmically concave on IRn.

=⇒ convexity of the set X (P) := {x : h(x) ≥ α}

GENERALIZATIONS: to quasiconcave probability distributions −→
Applicable for a rich class of absolutely continuous probability
distributions

PROBLEMS: Joint convexity of gk(x, ω) −→
Theorem is applicable e.g. for gk(x, ω) = gk(x)− ωk , i.e. for
separable joint probabilistic constraints;
No direct application to discrete probability distributions



Random elements in constraints of (MP) — cont.

IDEA: Penalize discrepances and include the penalty into the objective
function, cf. Problem of Private Investor. Recall

Initial decision is independent of scenarios observed in future,
non-anticipativity.

It can be updated in dependence on observed scenarios later on to
fit the requirements as much as possible.

The cost of discrepace enters objective function; EXPECTED
PENALTY TERM.

Exist various models. EXAMPLE — NEWSBOY PROBLEM



Illustrative examples – The newsboy problem

Newsboy sells newspapers for the cost c each. Before he starts selling, he
has to buy the daily supply at the cost p a paper. The demand is random
and the unsold newspapers are returned without refund at the end of the
day. How many newspapers should he buy?

In the framework of stochastic programming, one assumes that the
demand is random and the verbal description of the newsboy problem
leads to the familiar mathematical formulation

max
x≥0

[(c − p)x − cEP(x − ω)+] (2)

where c > p > 0 and EP denotes expectation with respect to a known
probability distribution P of the random (nonnegative) demand ω. The
optimal decision is then

x(P) = u1−α(P) (3)

where α = p/c and u1−α(P) is the 100 (1− α)% quantile of probability
distribution P.



Newsboy problem cont.

In practice, the newsboy does not know probability distribution P. He
may base his decision on historical records, or on a few expert forecasts -
scenarios, he may use worst-case analysis
For instance, his decision based on independent identically distributed
observed past realizations uν of ω, ν = 1, . . . ,N, can be obtained as

arg max
x≥0

[(c − p)x − c

N

N∑
ν=1

(x − uν)+] (4)

with the optimal solution x(PN), the 100 (1− α)% quantile of empirical
distribution PN . Sample from a censored distribution!
Applicability of this procedure depends on the available sample size N, in
particular for α near to 0 or 1. With 0 < α < 1, empirical quantiles are
asymptotically normal under quite general assumptions and the quantile
process can be bootstrapped to obtain an estimate of the variance;
consequently, for N large enough, asymptotical confidence intervals for
x(P) can be constructed. Any additional knowledge about the rules that
influence the changes of demand can be in principle incorporated into
this procedure.



Newsboy problem cont.

Alternatively, newsboy can confine himself to a parametric family of
probability distributions, estimate its parameters from the sample and
apply formula (2) for the obtained probability distribution P#. If he was
right in his choice of the family (and this assumption seems to be the
stumbling block of the approach), parametric analysis plus statistical
inference or the worst case analysis with respect to the parameter values
can be used to obtain a relationship between the true x(P) and the
obtained x(P#).

Known (or estimated) range and moments of P in connection with the
minimax approach can be used to obtain lower and upper bounds L and
U on the optimal value of the objective function in (1): one considers a
family of probability distributions, say P described by the moments
values and solves the problem for the “worst” and the “best” distribution
of the family. → bounds

L(P) = max
x≥0

min
P∈P

[(c − p)x − cEP(x − ω)+] (5)

U(P) = max
x≥0

max
P∈P

[(c − p)x − cEP(x − ω)+] (6)

such that



Newsboy problem cont.

L(P) ≤ max
x≥0

[(c − p)x − cEP(x − ω)+] ≤ U(P) ∀P ∈ P

and, wrt. family P, they are tight. The result depends, of course, on the
choice of P. If (for the chosen family P) the difference between L(P)
and U(P) is too large, the newsboy should try to collect an additional
information about the distribution of demand.

Without any historical records, the newsboy might base his decision on
experts’ estimates of “low” and “high” demand (we can relate these
values to the given range of P) augmented perhaps by subjective
probabilities of these outcomes or by a qualitative information such as
ranking probabilities of the outcomes. In the former case, he solves (1)
for the corresponding discrete distribution P and, naturally, he gets
interested in the robustness of the obtained decision, its sensitivity on the
occurrence of another outcome (scenario), etc. In the later case, the
available qualitative information can be used to define the family P
needed for the worst case analysis.



Newsboy problem cont.

Finally, the newsboy may prefer ANOTHER MODEL

max
x≥0

(c − p)x

subject to a reliability type constraint

P(x ≤ ω) ≥ 1− ε.
– individual probability constraint which may be written as

F (x) ≤ ε or x ≤ uε(P)

with uε(P) the 100ε% quantile of P. The newsboy chooses the value of
ε ∈ (0, 1) and according the problem formulation, it will be a value close
to 0. The optimal decision is

x(P) = uε(P).

Notice, that in both cases, the resulting optimal decision can be obtained
by solving simple optimization problem

max
x≥0

(c − p)x subject to x ≤ ω̂

obtained by replacing the random demand by ω̂ — a quantile of its
probability distribution P; NOT ecpectation EPω!


