Fixed interval scheduling problems under uncertainty

Martin Branda et al.

Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Stochastic Programming and Approximation, 2016

2016

1 / 37

Motivation

- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation
- 4 Numerical study I
- 5 Flow-based formulation
- 6 Numerical study II
 - 7 References

(E) < E)</p>

Motivation

- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation
- 4 Numerical study I
- 5 Flow-based formulation
- 6 Numerical study II
- 7 References

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

- Prof. Asmund Olstad (Molde University, Norway) reparations of oil platforms:
- Fixed Interval Scheduling (FIS) problem under Uncertainty (FISuU)
 - **Machines** = highly specialized and costly workmen (Ph.D. in engineering, mountain climbing etc.)
 - Jobs = reparations of oil platforms
 - Intervals = helicopter trips
 - **Uncertainty** = weather conditions, unpredictable complications

イロト 不得 トイヨト イヨト 二日

Fixed Interval Scheduling

Other applications:

• personnel scheduling (Shift Minimization Personnel Task Scheduling Problems)

< 回 > < 回 > < 回 >

2016

5 / 37

- assigning aircrafts to gates (Kroon et al. 1995)
- bus driver scheduling problem
- crew scheduling,
- vehicle scheduling
- telecommunication, data transmission
- scheduling of operating rooms in hospitals

• ...

Motivation

2 Stochastic integer programming formulation

- 3 Robust coloring formulation
- 4 Numerical study I
- 5 Flow-based formulation
- 6 Numerical study II
- 7 References

- 4 同 6 - 4 同 6 - 4 同 6

Notation

- T = [0, T] planning horizon with continuous time,
- C set of machines,
- \mathcal{J} set of jobs,
 - s_j starting time,
 - f_i^0 prescribed completion time,
 - $\check{D}_j(\xi)$ random delay, where $D_j(\xi)=0$ has a positive probability,
 - random "true" finishing time

$$f_j(\xi) = f_j^0 + D_j(\xi),$$

• x_{jc} - binary decision variable, $j \in \mathcal{J}$, $c \in C$ - equal to one if job j is assigned to machine c, and to zero otherwise.

Maximization of schedule reliability

$$\max_{x_{jc}} P\left(\xi \in \Xi: \sum_{j: s_j \leq t < f_j(\xi)} x_{jc} \leq 1, t \in \hat{\mathcal{T}}, c \in \mathcal{C}\right)$$

$$\sum_{j: s_j \leq t < f_j^0} x_{jc} \leq 1, c \in \mathcal{C}, t \in \hat{\mathcal{T}}, \qquad (1)$$

$$\sum_{c \in \mathcal{C}} x_{jc} = 1, j \in \mathcal{J}, x_{jc} \in \{0, 1\}, c \in \mathcal{C}, j \in \mathcal{J}.$$

- Maximization of probability that in each moment a machine processes at most one job under the constraints:
- at most one job assigned to a machine at each time with respect to the prescribed job processing times,
- a job is assigned to exactly one machine.

Minimization of expected number of overlaps

$$\begin{split} \min_{x,y} \mathbb{E}_{\xi} \left[\sum_{c \in \mathcal{C}} \sum_{j \in \mathcal{J}} y_{jc}(\xi) \right] \\ \sum_{j: s_j \leq t < f_j^0} x_{jc} \leq 1, \ t \in \hat{\mathcal{T}}, \ c \in \mathcal{C}, \\ \sum_{j: s_j \leq t < f_j^0} x_{jc} = 1, \ j \in \mathcal{J}, \\ \sum_{c \in \mathcal{C}} x_{jc} \in \{0, 1\}, \ c \in \mathcal{C}, j \in \mathcal{J}, \\ \sum_{k: f_j^0 \leq s_k < f_j(\xi)} x_{kc} \leq y_{jc}(\xi) + |\mathcal{J}|(1 - x_{jc}), \ c \in \mathcal{C}, j \in \mathcal{J}, \\ y_{jc}(\xi) \in \mathbb{N}, \ c \in \mathcal{C}. \end{split}$$

$$(2)$$

 $y_{jc}(\xi)$ express the number of jobs which cannot be processed by machine c due to the random delay in processing job j.

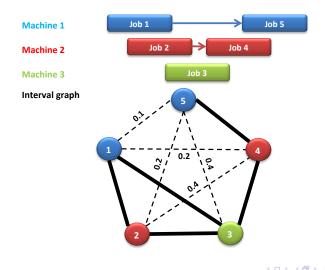
- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation
 - 4 Numerical study I
 - 5 Flow-based formulation
- 6 Numerical study II
- 7 References

2016 10 / 37

★ ∃ ► < ∃</p>

4 A²

Feasible coloring with reliability (1-0.1)(1-0.4) = 0.54



2016 11 / 37

Robust coloring problem

The interval graph for FIS:

- C available machines (colors),
- ${\mathcal J}$ set of vertices,
- set of (hard) edges E with overlapping pairs of jobs $\{j, j'\}$, i.e. $s_j \leq s_{j'} < f_j^0$.
- set of complementary (soft) edges \overline{E} with all pairs $\{j, j'\}$ such that delay of job j can influence job j' if it is processed by the same machine, under unbounded support of $D_j(\xi)$ if $f_i^0 \leq s_{j'}$.

$$E \cap \overline{E} = \emptyset$$

ASSUMPTION: the number of available machines (colors) is greater or equal to the chromatic number of the graph \mathcal{J} , E.

イロト 不得 とうせい かほとう ほ

Robust coloring problem

Yanez and Ramirez (2003):

$$\min_{x_{jc}, y_{jj'}} \sum_{\{j, j'\} \in \overline{E}} q_{jj'} y_{jj'} \\
\sum_{c \in \mathcal{C}} x_{jc} = 1, \ j \in \mathcal{J}, \\
x_{jc} + x_{j'c} \leq 1, \ \{j, j'\} \in \overline{E}, c \in \mathcal{C}, \\
x_{jc} + x_{j'c} \leq 1 + y_{jj'}, \ \{j, j'\} \in \overline{E}, c \in \mathcal{C}, \\
x_{jc} \in \{0, 1\}, \ c \in \mathcal{C}, j \in \mathcal{J}, \\
y_{jj'} \in \{0, 1\}, \ \{j, j'\} \in \overline{E}.$$
(3)

- Penalty $q_{jj'}$ assigned to edges from \overline{E} if the connected vertices share the same color,
- exactly one color is assigned to vertex j,
- forbids an identical coloring to hardly connected vertices,
- $y_{jj'} = 1$ for equally colored vertices connected in \overline{E}

Schedule reliability maximization - independence

ASSUMPTION: The delays are mutually **independent**.

Penalties suggested by Yanez and Ramirez (2003):

$$q_{jj'}=-\ln\left(P(D_j(\xi)\leq s_{j'}-f_j^0)\right)=-\ln(p_{jj'}),$$

for $y_{jj'} = 1$, $\{j, j'\} \in \overline{E}$ obtained

$$\sum_{\{j,j'\}\in\overline{E}: \ y_{jj'}=1} q_{jj'} = -\ln\left(\prod_{\{j,j'\}\in\overline{E}: \ y_{jj'}=1} p_{jj'}\right),$$

which is equal to the minus logarithm of the whole schedule reliability in the case of independence of the machine overload. This formula does not hold for FISuU, a simple example ...

イロト イポト イヨト イヨト

Simple example

Three jobs scheduled to the same machine, i.e. $s_1 < f_1^0 \le s_2 < f_2^0 \le s_3 < f_3^0$, and $y_{12} = y_{13} = y_{23} = 1$. Let the delays $D_1(\xi), D_2(\xi)$ be independent. Then the reliability of the schedule is equal to

$$\begin{split} & P(D_1(\xi) \leq s_2 - f_1^0, D_1(\xi) \leq s_3 - f_1^0, D_2(\xi) \leq s_3 - f_2^0) \\ &= P(D_1(\xi) \leq s_2 - f_1^0, D_2(\xi) \leq s_3 - f_2^0) \\ &= (1 - p_{12})(1 - p_{23}) \\ &\neq (1 - p_{12})(1 - p_{13})(1 - p_{23}). \end{split}$$

・ロト ・同ト ・ヨト ・ヨト

Schedule reliability maximization - copula dependence

We say that $C : [0,1]^J \rightarrow [0,1]$ is a *J*-dimensional copula if it satisfies

•
$$C(u_1, ..., u_{i-1}, 0, u_{i+1}, ..., u_J) = 0$$
 for arbitrary *i*,

- $c(1,\ldots,1,u_i,1,\ldots,1) = u_i \text{ for arbitrary } i,$
- **3** C is J-increasing, i.e. for each $B = \prod_{i=1}^{J} [a_i, b_i] \subseteq [0, 1]^J$

$$\int_{B} dC(u) = \sum_{z \in \times_{i=1}^{J} \{a_{i}, b_{i}\}} (-1)^{\operatorname{card}\{i: \ z_{i} = a_{i}\}} C(z) \geq 0.$$

Joint distribution of delays using their marginal distributions F_j

$$\mathcal{P}(D_1(\xi) \leq d_1,\ldots,D_J(\xi) \leq d_J) = \mathcal{C}(\mathcal{F}_1(d_1),\ldots,\mathcal{F}_J(d_J)).$$

If each d_j corresponds to the difference between the prescribed job end f_j^0 and a start of the subsequent job s_k , then we obtain the schedule reliability. Note that we set $d_j = \infty$ if there is no subsequent job.

Archimedean copula

A copula C is called **Archimedean** if there exists a continuous strictly decreasing function $\psi : [0, 1] \to \mathbb{R}^+$ such that $\psi(1) = 0$ and

$$C(u) = \psi^{-1}\left(\sum_{i=1}^{J} \psi(u_i)\right),\,$$

where ψ is called the **generator** of the Archimedean copula *C*. These are the most important generators and corresponding copulas:

- The independent copula $\psi(u) = -\log(u)$,
- Clayton copulas $\psi(u) = \theta^{-1}(u^{- heta} 1)$, heta > 0,
- Gumbel copulas $\psi(u) = (-\log(u))^{ heta}$, $heta \geq 1$,
- Frank copulas $\psi(u) = -\log(\frac{e^{-\theta u}-1}{e^{-\theta}-1})$, $\theta > 0$.

イロト 不得 トイヨト イヨト 二日

Archimedean copula

Since the random delays are assumed to have **Archimedean copula dependence**, **the schedule reliability** R of coloring x can be expressed as

$$\begin{aligned} \mathsf{R}(x) &= \mathsf{P}\bigg(\xi \in \Xi : \sum_{j: \ s_j \leq t < f_j(\xi)} x_{jc} \leq 1, \ t \in \hat{\mathcal{T}}, c \in \mathcal{C}\bigg) \\ &= \psi^{-1}\left(\sum_{j=1}^J \psi(u_j)\right), \end{aligned}$$

with $u_j = P\left(D_j(\xi) \le \min_{k: y_{jk}=1} \& s_k \ge f_j^0 s_k - f_j^0\right)$, where we are using the convention for the minimum over an empty set $\min_{\emptyset} = +\infty$, i.e. $P\left(D_j \le \min_{\emptyset} s_k - f_j^0\right) = 1$ if job *j* has no successors scheduled to the same machine.

$$q_{jj'} = \psi \left(P(D_j(\xi) \le s_{j'} - f_j^0) \right), \ \{j, j'\} \in \overline{E}.$$

Extended robust coloring problem

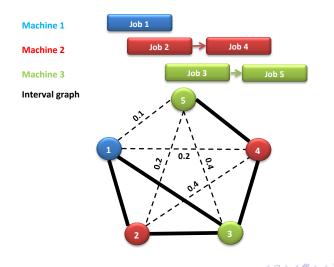
ASS.: Jobs sorted according their starting times s_j (no ties).

$$\begin{split} \min_{x,y,z} \sum_{\{j,j'\}\in\overline{E}} q_{jj'} z_{jj'} & \text{s.t.} \quad \sum_{c\in\mathcal{C}} x_{jc} = 1, \ j\in\mathcal{J}, \\ x_{jc} + x_{j'c} & \leq 1, \ \{j,j'\}\in\overline{E}, \\ x_{jc} + x_{j'c} & \leq 1 + y_{jj'}, \ \{j,j'\}\in\overline{E}, \\ y_{jj'} + \sum_{k:\ \{j,k\}\in\overline{E}} z_{jk} & \leq 1, \ \{j,j'\}\in\overline{E}, \\ \sum_{k:\ \{j,k\}\in\overline{E}} y_{jk} & \leq 1, \ \{j,j'\}\in\overline{E}, \\ \sum_{k:\ \{j,k\}\in\overline{E}} y_{jk} & \leq |\mathcal{J}| \cdot \sum_{k:\ \{j,k\}\in\overline{E}} z_{jk}, \ j\in\mathcal{J}, \\ x_{jc}, y_{jk}, z_{jk} & \in \ \{0,1\}, \ c\in\mathcal{C}, j, k\in\mathcal{J}, \end{split}$$

where $z_{jk} = 1$ if job k is a successor of j and share the same color.

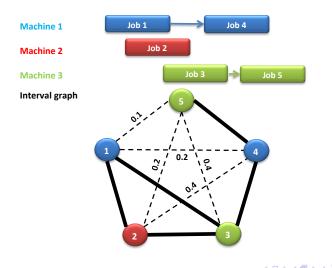
▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Feasible coloring with reliability (1-0.4)(1-0.4) = 0.36

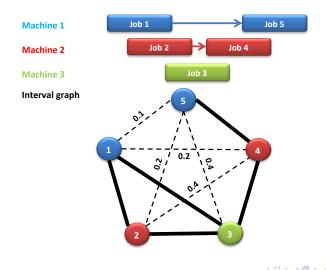


2016 20 / 37

Feasible coloring with reliability (1-0.2)(1-0.4) = 0.48

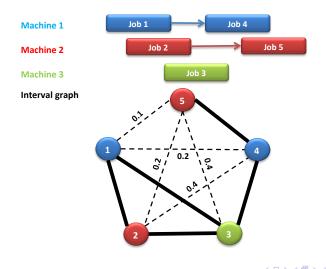


Feasible coloring with reliability (1-0.1)(1-0.4) = 0.54



- 🔹 🖻

Feasible coloring with reliability (1-0.2)(1-0.2) = 0.64



1 Motivation

- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation

4 Numerical study I

- 5 Flow-based formulation
- 6 Numerical study II

References

Image: A = 1

Simulated test instances

We consider 40 original test instances, which were simulated using the exponential distributions for the job processing times (with parameter λ_1) and breaks between jobs (λ_2):

- Instances 1–10: 30 jobs assigned to 5 machines, $\lambda_1 = 0.2$, $\lambda_2 = 0.05$ (simulated on 5 machines with 6 jobs)
- 11–20: 30 jobs, 5 machines, $\lambda_1 = 0.1$, $\lambda_2 = 0.05$ (5m, 6j)
- 21–25: 100 jobs, 10 machines, $\lambda_1 = 0.2$, $\lambda_2 = 0.05$ (5m, 20j)
- 25–30: 100 jobs, 10 machines, $\lambda_1 = 0.2$, $\lambda_2 = 0.1$ (5m, 20j)
- 31–35: 250 jobs, 20 machines, $\lambda_1 = 0.2$, $\lambda_2 = 0.05$ (10m, 25j)
- 35–40: 250 jobs, 30 machines, $\lambda_1 = 0.2$, $\lambda_2 = 0.05$ (25m, 10j)

Simulated test instances

Solution:

- CPLEX 12.1 solver available in the modeling system GAMS 23.2.
- PC with Intel Core i7 2.90 GHz CPU, 8 GB RAM and 64-bit Windows 7 Professional operational system
- Time limit set to 1 hour.
- Matlab implementation of tabu search (parameters: No of iterations, maximal length of tenures, random neighbourhood).

2016

26 / 37

Tabu search

1. INITIALIZATION:

- I. Find a feasible coloring using the left edge algorithm for the graph (\mathcal{J}, E) .
- II. Set the tabu lists (tabu1, tabu2) to zero.
- III. Set the actual \tilde{x}_0 and the best solution \hat{x} equal to the initial solution.
- 2. THE MAIN CYCLE: For i = 1 to MaxIterations do:
 - I. Find the best solution y in a neighbourhood of the actual solution \tilde{x}_{i-1} For all vertices which are allowed (tabu1) to change the color do:
 - i. Assign a new allowed (tabu2) color to the vertex
 - ii. Compute the reliability if the solution x̂ has not changed for 20 iterations, then allow infeasible solutions
 - iii. If the reliability is higher than the best one already found, save the coloring to y
 - II. Set the actual solution to y, i.e. $\tilde{x}_i = y$, and actualize the tabu lists (vertex, new color) by random tenures.
 - III. If the actual coloring \tilde{x}_i has a higher reliability, i.e. $R(\tilde{x}_i) > R(\hat{x})$, then actualize the best solution and set $\hat{x} = \tilde{x}_i$.

Numerical study I

Instances with 30 jobs – results of GAMS (CPlex) and tabu search algorithm (MatLab)

GAMS/ TS	Test instance										
	11	12	13	14	15	16	17	18	19	20	
Reliability	94.9%	83.4%	91.5%	65.4%	90.1%	96.1%	65.7%	88.7%	80.6%	82.2%	Т
Time	2:00	LIMIT	14:26	LIMIT	49:40	3:36	11:23	LIMIT	LIMIT	LIMIT	
Avg. rel.	94.6%	82.5%	91.2%	63.7%	89.3%	95.3%	63.7%	88.5%	79.6%	81.7%	Т
Min. rel.	94.6%	82.2%	90.8%	63.5%	89.2%	95.0%	63.2%	88.5%	79.6%	81.7%	
Max. rel.	94.7%	83.0%	91.4%	64.2%	89.7%	95.7%	64.0%	88.5%	79.7%	81.8%	
Abs. diff. (Avg)	-0.3%	-0.9%	-0.3%	-1.6%	-0.8%	-0.8%	-2.0%	-0.3%	-1.0%	-0.5%	1
Abs. diff. (Min)	-0.3%	-1.2%	-0.7%	-1.9%	-1.0%	-1.1%	-2.6%	-0.3%	-1.0%	-0.5%	
Abs. diff. (Max)	-0.2%	-0.4%	-0.1%	-1.1%	-0.4%	-0.4%	-1.7%	-0.2%	-0.9%	-0.4%	
Rel. diff. (Avg)	-0.3%	-1.1%	-0.3%	-2.5%	-0.9%	-0.8%	-3.1%	-0.3%	-1.2%	-0.6%	-
Rel. diff. (Min)	-0.3%	-1.5%	-0.8%	-2.8%	-1.1%	-1.1%	-3.9%	-0.3%	-1.2%	-0.6%	-
Rel. diff. (Max)	-0.2%	-0.5%	-0.1%	-1.7%	-0.4%	-0.4%	-2.7%	-0.3%	-1.1%	-0.5%	-
Avg. time	1:17	1:15	1:21	1:14	1:17	1:9	1:20	1:13	1:14	1:14	

2016

28 / 37

Numerical study I

Instances with 100 jobs – average reliabilities (10 runs)

Max.						Test ir	istance				
tenures	Iter.	21	22	23	24	25	26	27	28	29	30
	0	0.7%	0.7%	0.5%	1.0%	0.6%	0.4%	0.8%	1.0%	0.5%	0.7%
	1000	78.6%	72.8%	68.3%	72.7%	76.8%	84.2%	84.7%	87.8%	89.0%	90.6%
TS	2000	78.9%	73.1%	68.4%	73.4%	77.4%	84.3%	85.0%	88.3%	89.3%	91.0%
60-120	3000	79.0%	73.2%	68.5%	73.6%	77.8%	84.5%	85.1%	88.6%	89.6%	91.1%
	4000	79.0%	73.3%	68.6%	73.7%	78.0%	84.6%	85.2%	88.7%	89.7%	91.2%
	5000	79.0%	73.3%	68.7%	73.9%	78.2%	84.7%	85.2%	88.8%	89.9%	91.3%
Avg. time		24:34	24:29	25:19	24:54	24:46	25:45	25:12	25:23	25:11	25:11
	0	0.7%	0.7%	0.5%	1.0%	0.6%	0.6%	0.8%	1.0%	0.5%	0.7%
TS	1000	77.5%	72.6%	69.3%	72.3%	76.9%	84.3%	85.1%	87.7%	88.8%	90.3%
60-120	2000	77.9%	72.8%	69.8%	72.6%	77.5%	84.6%	85.3%	88.1%	89.1%	90.8%
Rand. sel.	3000	78.2%	73.2%	70.0%	72.9%	77.7%	84.7%	85.4%	88.3%	89.3%	91.0%
30%	4000	78.3%	73.2%	70.3%	73.1%	78.0%	84.7%	85.5%	88.3%	89.4%	91.0%
	5000	78.3%	73.2%	70.4%	73.3%	78.0%	84.9%	85.5%	88.5%	89.5%	91.0%
Avg. time		7:23	7:15	7:17	7:12	7:20	7:17	7:17	7:15	7:13	7:17

2016

29 / 37

1 Motivation

- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation
- 4 Numerical study I
- 5 Flow-based formulation
- 6 Numerical study II
- 7 References

2016 30 / 37

→ 3 → < 3</p>

Flow-based formulation

We define penalties

$$q_{jkc} = \psi \left(P(D_{jc}(\xi) \leq s_k - f_j) \right),$$

Two artificial jobs 0, J + 1 (= machine start and end):

$$\begin{aligned}
\mathcal{J}_{0} &= \mathcal{J} \cup \{0\}, \\
\mathcal{J}_{J+1} &= \mathcal{J} \cup \{J+1\}, \\
\mathcal{J}_{0(J+1)} &= \mathcal{J} \cup \{0\} \cup \{J+1\}.
\end{aligned}$$
(5)

We extend the set of edges \overline{E} by $\{0, J+1\}, \{0, j\}, \{j, J+1\}, \forall j \in \mathcal{J}$ with penalties $q_{0(J+1)c} = q_{0jc} = q_{j(J+1)c} \equiv 0$. We denote by $\overline{E}_{.j}$ the set of possible predecessors of job $j \in \mathcal{J}$, i.e.

$$\bar{E}_{j} = \{j' \in \mathcal{J}_0 : \{j', j\} \in \bar{E}\},\$$

and by \bar{E}_{i} the set of allowed successors

$$\bar{\mathcal{E}}_{j_{\cdot}} = \{j' \in \mathcal{J}_{J+1} : \{j, j'\} \in \bar{\mathcal{E}}\}.$$

Flow-based formulation

Branda and Hájek (2016):

$$\begin{split} \min_{y} & \sum_{c \in \mathcal{C}} \sum_{\{j, j'\} \in \overline{E}} q_{jj'c} y_{jj'c} \\ \text{s.t.} & \sum_{j \in \mathcal{J}_{J+1}} y_{0jc} = 1, \quad c \in \mathcal{C}, \\ & \sum_{k \in \overline{E}_{.j}} y_{kjc} = \sum_{j' \in \overline{E}_{j.}} y_{jj'c}, \quad j \in \mathcal{J}, \quad c \in \mathcal{C}, \\ & \sum_{j \in \mathcal{J}_{0}} y_{j(J+1)c} = 1, \quad c \in \mathcal{C}, \\ & \sum_{c \in \mathcal{C}} \sum_{j' \in \overline{E}_{j.}} y_{jj'c} = 1, \quad j \in \mathcal{J}, \\ & y_{jj'c} \in \{0, 1\}, \quad j, j' \in \mathcal{J}, \quad c \in \mathcal{C}. \end{split}$$
(6)

(日)

1 Motivation

- 2 Stochastic integer programming formulation
- 3 Robust coloring formulation
- 4 Numerical study I
- 5 Flow-based formulation
- 6 Numerical study II
 - 7 References

2016 33 / 37

★ ∃ ► < ∃</p>

Parameters:

- number of jobs J,
- 2 number of machines C,
- λ₁ rate parameter of the exponential distribution starting time of a job,
- **③** λ_2 rate parameter of the exp. d. length of the processing interval,
- **5** p probability that no delay appears, i.e. a job is finished in time,
- λ₃ rate parameter of the exp. d. length of the random delay if it appears with probability (1 p); it enables to compute the coefficients q_{jj'c} = q_{jj'}, independent delays ψ(u) = log u.
 Input parameters 1:

$$\lambda_1 = \frac{1}{2}, \quad \lambda_2 = \frac{1}{5}, \quad \lambda_3 = \frac{1}{2,5}, \quad p = \frac{1}{3},$$

Input parameters 2:

$$\lambda_1 = \frac{1}{2.5}, \quad \lambda_2 = \frac{1}{5}, \quad \lambda_3 = \frac{1}{2}, \quad p = \frac{1}{2}.$$

34 / 37

2016

Prol	blem size		rage comput arameters 1	tational time [s] Input parameters 2		
No. of jobs	No. of machines	FBF	ERCP	FBF	ERCP	
10	5	0.12	0.48	0.13	0.54	
13	6	0.18	3.24	0.18	3.33	
15	6	0.19	46.05	0.19	30.55	
17	7	0.20	66.42	0.21	46.80	
20	8	0.31	254.24	0.27	328.30	
22	8	0.34	652.77	0.38	457.05	
25	9	0.43	707.31	0.42	664.63	
27	10	0.66	920.14	0.67	886.66	
30	11	0.74	879.97	0.75	837.92	
35	12	0.94	928.72	0.97	918.24	
40	15	1.74	1000.14	1.48	1000.13	

Larger instances in Branda and Hájek (2016) ..

<ロ> (日) (日) (日) (日) (日)

- Numerical study II

★ ∃ ► < ∃</p>

References

References

- C. Archetti, N. Bianchessi, A. Hertz, A branch-and-price algorithm for the robust graph coloring problem. Discrete Applied Mathematics (2013), doi:10.1016/j.dam.2013.02.013
- M. Branda, J. Novotný, A. Olstad, P. Popela: A note on fixed interval scheduling with stochastic elements. The Information Bulletin of the Czech Statistical Society 26 (4) (2015), 1–7.
- M. Branda, S. Hájek. Flow-based formulations for operational fixed interval scheduling problems with random delays. Accepted to Computational Management Science, 2016.
- M. Branda, J. Novotný, A. Olstad. Fixed interval scheduling under uncertainty a tabu search algorithm for an extended robust coloring formulation. Computers & Industrial Engineering 93 (2016) 45–54.
- M.R. Garey, D.S. Johnson, Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Company, New York, 1979
- Q. Huang, E. Lloyd, Cost constrained fixed job scheduling. Lecture Notes in Computer Science 2841 (2003) 111–124.
- A.W.J. Kolen, J.K. Lenstra, Ch.H. Papadimitriou, F.C.R. Spieksma, Interval scheduling: A survey. Naval Research Logistics 54 (5) (2007) 530–543.
- J. Korst, E. Aarts, J.K. Lenstra, J. Wessels, Periodic assignment and graph coloring. Discrete Applied Mathematics 51 (1994) 291–305.
- M.Y. Kovalyov, C.T. Ng, T.C.E. Cheng, Fixed interval scheduling: Models, applications, computational complexity and algorithms. European Journal of Operational Research 178 (2007) 331–342.
- L.G. Kroon, M. Salomon, L.N. Van Wassenhove, Exact and approximation algorithms for the operational fixed interval scheduling problem. European Journal of Operational Research 82 (1995) 190–205.
- L.G. Kroon, M. Salomon, L.N. Van Wassenhove, Exact and approximation algorithms for the tactical fixed interval scheduling problem. Operations Research 45 (4) (1997) 624–638.
- R. Schultz, Stochastic programming with integer variables. Mathematical Programming, Ser. B 97 (2003) 285–309.
- J. Yanez, J. Ramirez, The robust coloring problem. European Journal of Operational Research 148 (2003) 546–558.
- F. Wang, Z. Xu, Metaheuristics for robust graph coloring. Journal of Heuristics 19 (2013) 529–548.
- L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization. Wiley, New York, 1999.