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The model

We shall deal with probabilistic programs

min
x∈X

G0(x ,P) := EP f0(x , ω) subject to (1)

Gj(x ,P) ≤ 0, j = 1, . . . , J

where Gj(x ,P) ≤ 0 are probabilistic constraints such as

P(ω : g(x , ω) ≤ 0) ≥ 1− ε, (2)

X ⊂ IRN is fixed nonempty closed set,

P is known probability distribution of random parameter ω whose
support Ω is closed subset of IRM ,

g : IRN × Ω→ IRK and

ε ∈ (0, 1) fixed, chosen by decision maker or prescribed by
regulations.

Individual probabilistic constraints correspond to K = 1, for joint
probabilistic constraints K > 1.
Denote X (P) set of feasible solutions, X ∗(P) set of optimal solutions,
ϕ(P) optimal value of the objective function in (1), (2).
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Probabilistic constraints

Probabilistic constraints (2) are reliability type constraints which can be
written as

H(x ,P) := P(ω : max
k

gk(x , ω) ≤ 0) := P(ω : ω ∈ H(x)) ≥ 1− ε (3)

with H(x) := {y ∈ IRM : gk(x , y) ≤ 0∀k}. Constraints in (2) can be
equivalently written with expectation of characteristic function

X (P) = {x ∈ X : EP IH(x)(ω)) ≥ 1− ε} (4)

Contrary to common static stochastic programs

min
x∈X

EP f (x , ω) (5)

constraints depend on P.
Moreover, the integrand in (4) is not smooth and the resulting
optimization problem is typically nonconvex one.  Reasons why are
probabilistic programs classified as hard optimization problems.
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Survey of achievements – The milestones

1958 Charnes, Cooper and Symonds – randomness influences
constraints gk(x) ≤ 0 of a nominal deterministic MP  use
reliability type individual probabilistic, chance constraints

P(gk(x , ω) ≤ 0) ≥ 1− εk ;

for each constraint separately. P is a known probability distribution
of random parameter ω on Ω ⊂ IRM and probability levels
εk ∈ (0, 1) are fixed, chosen by the decision maker.
Ignores stochastic dependence.

1970 – Use (one or more) joint probabilistic constraints

P(gk(x , ω) ≤ 0, k = 1, . . . ,K ) ≥ 1− ε. (6)

Hard problems due to lack of convexity and smoothness.
Breakthrough Prékopa 1971 → it is possible to deal efficiently with
problems that belong to one of convex programming subclasses.
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α-concave functions

Nonnegative function f (x) defined on convex set C ⊂ IRN is α-concave
with α ∈ [−∞,∞] if for all x , y ∈ C, λ ∈ [0, 1]

f (λx + (1− λ)y) ≥ mα(f (x), f (y), λ).

Function mα : IR+ × IR+ × [0, 1]→ IR is defined as
mα(a, b, λ) = 0 if ab = 0, and for a > 0, b > 0, 0 ≤ λ ≤ 1

mα(a, b, λ) =


aλb1−λ if α = 0, i.e. f log-concave
max[a, b] if α =∞, i.e. f quasi-convex
min[a, b] if α = −∞, i.e. f quasi-concave
(λaα + (1− λ)bα)1/α otherwise.

Apply suitable transforms of α-concave distribution functions.

∃ extension to nonconvex sets C; important for discrete distributions:

Distribution function F is α-concave on A ⊂ IRN if
x , y , z ∈ A, λ ∈ (0, 1), z ≥ λx + (1− λ)y =⇒ F (λx + (1− λ)y) ≥
mα(F (x),F (y), λ).
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Convexity for Probabilistic Constraints

General result about convexity of sets defined by (6), cf. Theorem 4.39 in
[S-D-R] – extension of Prékopa’s theorem.

Theorem

Assume gk : IRN × IRM → IR ∀k quasi-convex, ω ∈ IRM random vector
with α-concave probability distribution, then
H(x ,P) := P(ω : gk(x , ω) ≤ 0 ∀k) is α-concave on

D := {x ∈ IRN : ∃y ∈ IRM s.t. gk(x , y) ≤ 0 ∀k}.

PROBLEM: Joint quasi-convexity of gk(x , ω) −→
Theorem is applicable e.g. for gk(x , ω) = −gk(x) + ωk , ∀k i.e. for
separable joint probabilistic constraints.
Prominent standing of separable joint constraints with α-concave
distribution of right-hand sides and convex g(x).

Another favorable class – linear ChC with joint normal distribution of
coefficients; cf. [Prekopa], [Henrion]. Convexity also for individual
probabilistic constraints with radial distributions cf. [Calafiore& El
Ghaoui], uniform over a convex set.

Jitka Dupačová Robustness for Probabilistic Programs



Derivatives of probability function H(x ,P)

Derivatives are expressed as surface or volume integrals, boundary of set
H(x) := {y ∈ IRM : gk(x , y) ≤ 0 ∀k} plays an important role. The first
result was due to Raik for case of H(x) defined by one function
g : IRN × IRM → IR. For more general results cf. Marti and Uryasev,
their summary is in [S-D-R].

Let H(x) = {y ∈ IRM : g(x , ω) ≤ 0}, g : IRN × IRM → IR. Assume that
probability distribution P has density θ(z), its support Ω is closed set with
piecewise smooth boundary, g is continuously differentiable and such that

bdH(x) = S(x) = {z ∈ Ω : g(x , z) = 0},

M − 1-dimensional surface of H(x). Let ∇zg(x , z) > 0, ‖∇xg(x , z)‖ > 0.
Then dervative of H(x ,P) can be expressed as a surface integral(

∂H(x ,P)

∂xi

)N

i=1

=

∫
bdH(x)∩Ω

θ(z)

‖∇zg(x , z)‖
∇xg(x , z)dS.

Simplification for separable problems  derivatives of (continuous)
distribution function.
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Base for applications and software development

Minimization of objective function subject to constraints (6) is nonlinear
programming problem and in principle, known NLP algorithms can be
adapted provided that checking feasibility is is easy and the resulting
feasible region is convex.
Example – linear constraints with normally distributed rhs.
• Around 1978 – Successful applications, cf. volume [SzTAKI] edited by
Prékopa.

In general, even to test feasibility of a candidate solution, i.e. evaluation
of P(g(x , ω) ≤ 0) turns to be a rather demanding task. Approximation,
simulation and bounding techniques have been developed.
Interest in probabilistic programs with discrete distributions that appear in
approximations and/or in problem formulation. Use of integer variables.

Situation is much better for integrated chance constraints, cf. Klein
Haneveld: “Remove” the 0-1 characteristic function.

P(ω : g(x , ω) ≥ 0) ≥ ε⇐⇒ E [I (g−(x , ω))] ≤ 1− ε

relaxed to E [g(x , ω)−](=
∫ 0

−∞ P(ω : g(x , ω) ≤ t)dt).

• Around 1990 – use of p-level efficient points (Prékopa, Sen and others)
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Discrete distributions

Consider now finitely discrete distribution

P(ω = ωs) = ps , ps > 0, s = 1, . . . ,S ,
∑

s

ps = 1 (7)

X compact and (vector) functions g(•, ωs) continuous for all s. Rewrite
constraints (6) as follows:
For each s ∈ {1, . . . ,S} introduce binary variable z s such that z s = 0
guarantees that g(x , ωs) ≤ 0 ∀x ∈ X and K -dimensional vector Ms

whose components are sufficiently large. For deterministic objective
function G0 the problem is

minimize G0(x) subject to

g(x , ωs)−Msz s ≤ 0, s = 1, . . . ,S (8)∑
s

psz s ≤ ε, (9)

x ∈ X , z s ∈ {0, 1} ∀s.

For convex G0 and convex g(•, ωs)∀s → convex mixed integer program.
Large size problem, various approaches to solving it efficiently have been
elaborated.
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p-efficient points

For separable functions g(x , ω) constraints can be expressed by means of
distribution function F , F (g(x)) ≥ 1− ε. New solution techniques:

Definition

Point v ∈ IRm is p-efficient point of distribution function F if F (v) ≥ p
and there is no y ≤ v , y 6= v such that F (y) ≥ p.

The p-efficient points are minimal elements of the p-level set

Zp = {z ∈ IRM : P(ω ≤ z) ≥ p}
of distribution function F for value p. Constraints F (g(x)) ≥ p can be
written as g(x) ∈ Zp.  

minx{G0(x) : g(x) ∈ Zp, x ∈ X}, (10)

Zp 6= ∅, closed for all p ∈ (0, 1), mostly nonconvex.
If v j , j ∈ J are all p-efficient points of F , we get representation

Zp =
⋃
j∈J

Kj , Kj = {v j}+ IRM
+

and constraints g(x) ∈ Zp in (10) can be written as

g(x) ≥ z ≥
∑

j
λjv

j , λj ∈ {0, 1},
∑

j
λj ≥ 1. (11)
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p-efficient points – cont.

For finitely discrete distributions (7) ∃ FINITE No. of p-efficient points
and Zp is convex for p > 1−mins ps . Constraints in (10) are then

g(x) ≥ ωs , s = 1, . . . ,S , x ∈ X ;

cf. permanently feasible solutions.

For finite J – solve J problems separately for each p-level point v j to get

φj = min{G0(x) : g(x) ≥ v j , x ∈ X},

the optimal value equals ϕ(P) = minj φj . For convex G0, concave vector
function g and convex X , one solves then many convex programs.

Another possibility – allow in disjunctive constraints (11)
λj ∈ [0, 1]∀j ,

∑
λj = 1 and solve relaxed convex problem which provides

a lower bound for ϕ(P).
We have convZp = conv{v j , j ∈ J}+ IRM

+ , closed and its extreme points
are contained in Zp  convex hull problem with Zp in (10) replaced by
convZp.
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Discrete separable problems

For α-concave distribution F the set Zp is convex. Extreme points of Zp

are contained in set of p-efficient points and for finitely discrete
distributions on IZM set of p-efficient points is nonempty, finite and (10)
can be replaced by

min
x,λ,z

G0(x) subject to x ∈ X , λj ≥ 0, z ∈ IZM

g(x) ≥ z , z ≥
∑
j∈J

λjv
j ,
∑
j∈J

λj = 1,

cf. [S-D-R], Prékopa, Dentcheva, Ruszczyńsky and others. For solving it,
knowledge of p-efficient points is crucial.

∃ Numerical techniques which combine generation of p-efficient points
and optimization.
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Example

There are 3 p-efficient points of a discrete distribution F of ω,
(1, 15, 6), (2, 13, 2), (5, 5, 2), in

min{x1 + x2 : x1 ≥ ω1, x1 + 2x2 ≥ ω2, x2 ≥ ω3}.
The blue set of feasible solutions of (10) is nonconvex, its convex hull
means an extension for red set M, for relaxed problem green set is added.
p-efficient points appear as right-hand sides of the parallel lines of
constraints.
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Approximations and solution techniques

Besides of simplification to individual probabilistic constraints with
carefully chosen thresholds, ∃ number of approaches that propose
approximation problems which are convex and yield feasible or likely to
be feasible solutions to the original probabilistic program; balance
between tractability and feasibility.
Use Monte Carlo technique – replace P by the empirical distribution Pν

and solve the “sample” based probabilistic program – Sample Average
Approximation  probabilistic program, with different, discrete
probability distribution. Also ε is replaced by a different risk level.
∃ asymptotic results, including rates of convergence, estimates of
required sample size; cf. Ahmed, Luedtke, Nemirovski, Pagoncelli,
Shapiro and others.
Another idea, cf. [Calafiore, Campi] is to select finite number of
randomly chosen ωs , s = 1, . . . ,S and solve deterministic nonlinear
program with constraints

gk(x , ωs) ≤ 0, k = 1, . . . ,K , s = 1, . . . ,S .

Convexity of original problem implies convexity of this sampled program
and when sufficient number of samples is used, the obtained solution fails
to satisfy only small portion of original constraints.
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Approximations and solution techniques – cont.

Approaches to solve numerically the “big-M” problem for discrete
distributions depend on structure of (8). (The origin of scenarions is not
that important.)
• Using p-efficient points for separable linear problems [Prékopa et al]

For nonlinear nonseparable problems

Lagrangian relaxation wrt. constraint (9) provides a scenario
decomposable problem that can be solved by means of Progressive
Hedging Algorithm, cf. [WWW]

Various upper and lower bounding schemes based on Lagrangian
relaxation or other valid inequalities

Branch & bound techniques, e.g. [Ruszczynski]
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Robustness properties

To solve complex probabilistic programs one tends to simplify or
reformulate the model (e.g. replace joint probability constraints by
individual ones), to approximate the probability distribution, etc. These
approximations and simplifications ask for development of suitable
validation techniques and for stability and robustness tests.

∃ qualitative stability results wrt. ε, g , X , e.g. [Henrion]

Moreover, probability distribution P itself is not known completely →
∃ two sources of uncertainty and errors
& one wishes to get solutions reliable enough to support sensible
decisions.

• Since 1990 – various stability results developed mainly for special
convex classes of probability distributions, cf. [Römisch in R-S] and
references therein.
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Stability results and robustness wrt. P

Key result on stability for

min
x

G0(x ,P) s.t. x ∈ X , P(gk(x , ω) ≤ 0, k = 1, . . . ,K ) ≥ 1− ε (12)

is Theorem 5 of [Römisch in R-S]. It provides upper semicontinuity of set
of optimal solutions and local Lipschitz property of optimal value function
if the objective function G0(x ,P) is Lipschitz continuous on X ∩ clU and
a metric regularity holds at each optimal solution of unperturbed problem.
Basic assumption: X ∗(P) 6= ∅ and belongs to open bounded set U .
Definition

Consider arbitrary mapping S : X → Y, (x , y) ∈ gphS. Then S is
metrically regular around (x̄ , ȳ) ∈ gphS if ∃κ > 0 such that

d(x ,S−1(y)) ≤ κd(y ,S(x))∀x ∈ N (x̄), y ∈ N (ȳ). (13)

(cf. Theorem 9.43 of [R-W].)

Metric regularity is related with continuity of constraint set X (P) when
some perturbation is considered. Proper choice of probability distance is
important and requirements concern mainly the unperturbed problem.
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Robustness analysis via Contamination

was developed and applied for X (P) independent of P and for
expectation type objective G0(x ,P).
Assume that such SP was solved for P, finite optimal value ϕ(P).
Changes in probability distribution P are modeled using contaminated
distributions P(t) := (1− t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution such that ϕ(Q) is finite.
Via contamination, robustness analysis wrt. changes in P gets reduced to
much simpler analysis of parametric program with scalar parameter t.
Objective function is linear in P =⇒
G0(x , t) := G0(x ,P(t)) = (1− t)G0(x ,P) + tG0(x ,Q) is linear wrt. t
=⇒ optimal value function ϕ(t) := minx∈X G0(x , t) is concave on [0, 1]
=⇒ continuity and existence of directional derivatives in (0, 1).
Continuity at t = 0 is property related with stability for SP. In general,
one needs set of optimal solutions X ∗(P) 6= ∅, bounded.
Concave ϕ(t) =⇒ global contamination bounds

ϕ(0) + tϕ′(0+) ≥ ϕ(t) ≥ (1− t)ϕ(0) + tϕ(1), t ∈ [0, 1]. (14)

They quantify change in optimal value due to considered perturbations.
Choice of Q?
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Application to stress testing for scenario-based SP

Stochastic program for risk management or for portfolio optimization
solved for fixed set of scenarios ωs , s = 1, . . . ,S −→
P – probability distribution concentrated at ωs , s = 1, . . . ,S with
probabilities ps . Reformulation needed:

min
x∈X

G0(x ,P) :=
∑

s

psus(x)

with fixed set of first-stage feasible solutions (initial investments) and
with convex performance measures u dependent on scenarios (covers
static, two-stage, multistage SP).
ORIGIN OF SCENARIOS?
Inclusion of other out-of-sample or stress scenarios – another discrete
probability distribution Q carried by out-of-sample or stress scenarios
indexed by σ = 1, . . . ,S ′, with probabilities qσ. Contaminated probability
distribution P(t) is carried by pooled sample of S + S ′ scenarios that
occur with probabilities

(1− t)p1, . . . , (1− t)pS , tq1, . . . , tqS′ .

Bounds for the optimal value ϕ(P(t)) of problem based on pooled
sample – test of robustness, stress test; cf. [ALM], [D-P]
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Contamination bounds – constraints dependent on P

Denote X (t) = {x ∈ X : G (x ,P(t)) ≤ 0}, ϕ(t), X ∗(t) the set of
feasible solutions, the optimal value and the set of optimal solutions of
contaminated problem

minimize G0(x ,P(t)) on the set X (P(t)). (15)

The task: to construct computable lower and upper bounds for ϕ(t) &
exploit them for robustness analysis with respect to inclusion of
additional scenarios etc.
New problems – ϕ(t) is no more concave in t.
∃ formulas for directional derivative ϕ(0+) based on Lagrange function
L(x , u, t) = G0(x ,P(t)) + uG (x ,P(t)) for contaminated problem.
Generic form

ϕ′(0+) = min
x∈X∗(0)

max
u∈U∗(x,0)

∂

∂t
L(x , u, 0).

Thanks to the assumed structure of perturbations lower bound can be
derived for G (x ,P) linear (or concave) with respect to P without any
smoothness or convexity assumptions with respect to x ,
However, to get at least local upper bound (14) means to get X (t) fixed
for t small enough. To this purpose, various assumptions are needed.
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Lower bound

1. One constraint dependent on P and objective G0 independent of P:
For contaminated probability distribution P(t) we get

min
x∈X

G0(x) subject to G (x , t) := G (x ,P(t)) ≤ 0 (16)

Theorem

Let G (x , •) in (16) be linear (or concave) function of t ∈ [0, 1] and
optimal value function

ϕ(t) := min
x∈X

G0(x) subject to G (x , t) ≤ 0

be finite on [0, 1]. Then ϕ(t) is quasiconcave in t ∈ [0, 1] with lower
bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (17)

2. Objective function G0 also depends on probability distribution

min
x∈X

G0(x , t) := G0(x ,P(t)) subject to G (x , t) ≤ 0. (18)

For G0(x ,P) linear (or concave) in P, lower bound can be obtained by
application of (17) separately to G0(x ,P) and G0(x ,Q).
Notice that no convexity assumptions with respect to x were needed.
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Upper bound

To derive upper bound for optimal value of contaminated problem with
probability dependent constraints we assume that G (x , t) is linear in t on
interval [0, 1].

1. Assume first that for an optimal solution x(0) of (18), the constraint
is not active, i.e. G (x(0), 0) < 0. Then there exists t0 > 0 such that
G (x(0), t) ≤ 0 → trivial local upper bound

ϕ(t) ≤ G0(x(0), t) = (1− t)ϕ(0) + tG0(x(0), 1)∀t ∈ [0, t0]. (19)

2. Assume that x(0) ∈ X ∗(0) ∩ X (1). Then x(0) ∈ X (t)∀t ∈ [0, 1] ⇒
ϕ(t) ≤ G0(x(0), t) = (1− t)ϕ(0) + tG0(x(0), 1), i.e. (19) is upper bound
valid for all t ∈ [0, 1].

Notice that trivial upper bound (19) holds true without any convexity or
smoothness assumptions and for arbitrary distribution Q. For G0

independent of t, it is in agreement with quasiconcavity of ϕ(t).

3.Upper bound ϕ(t) can be constructed whenever ∃ feasible solution
x̂ ∈ X (Pt) → ϕ(t) ≤ G0(x̂ , t).
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Upper bound – cont.

Direct search for x̂ ∈ X which satisfies constraints

Gj(x , 0) ≤ 0 ∀j and Gj(x , 1) ≤ 0 ∀j

may be manageable, namely, when Q = δω∗ is degenerated probability
distribution: It means to augment X by deterministic constraints
gk(x , ω∗) ≤ 0, k ∈ Kj , j = 1, . . . , J.

For problems with one joint probability constraint one may solve

min
x∈X

G (x , 1) subject to G (x , 0) ≤ 0.

The above ideas do not exploit parametric form of constraints in X (Pt).
Instead – for problems with one joint probabilistic constraint solve

min
x∈X

[(1− t)G (x , 0) + tG (x , 1)] (20)

for increasing values of t  x̂ ∈ X (Pt) and upper bound ϕ(t) ≤ G0(x̂ , t).
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Illustrative example

In jointly constrained probabilistic program of [P-A-S]

min x1 + x2 subject to

P(ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4) ≥ 1− ε, (21)

x1 ≥ 0, x2 ≥ 0

random components (ω1, ω2) are independent and have uniform
distributions on intervals [1, 4] and [1/3, 1]. It is convex program.
Independence → explicit form of optimal solution can be obtained
directly: x∗1 (P)

.
= 3.6735, x∗2 (P)

.
= 2.7755 and ϕ(P)

.
= 6.4480 for

ε = .05.
To stress distribution P we choose extremal scenario
(ω∗1 , ω

∗
2 ) = (1.02, 0.34). Optimal solution x∗1 (P), x∗2 (P) is infeasible for

t = 1, x∗1 (Q)
.

= 4.4118, x∗2 (Q)
.

= 2.5000 and ϕ(Q)
.

= 6.9118.
Hence, for all 0 ≤ t ≤ 1 lower bound (17) for ϕ(t) is ϕ(P)

.
= 6.4480.

Solution x̂1 = 4.4725, x̂2 = 2.4994 of “upper bound problem” (20) for
t = 0 is feasible for all contaminated problems (7.0614 ≥ 7, 4.02 > 4).
Then, 6.9719 = x̂1 + x̂2 is upper bound for ϕ(t)∀t.
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Local upper bound via NLP stability results

If for all optimal solutions G (x(0), 0) = 0 and G (x(0), 1) > 0, a detailed
analysis is needed. Second order analysis as done in [D-K] offers such
possibility. However, we want to avoid using higher order differentiability.

For differentiable functions Gj in (1) – (2) properties of X (t) = X (Pt)
for small t follow from results of cf. [Robinson], [B-S]. Linear
independence condition at x∗(0) implies that x∗(0) is nondegenerate
point, vector u∗(0) of Lagrange multipliers is unique and problem (15)
can be locally reduced to one with a fixed set of feasible solutions:

min
z

G0(T (z , t), t) on a set C (22)

where T (z , t) is continuously differentiable and T (0, 0) = x∗(0).
However, linearity of objective function with respect to t gets lost. This
can be compared to situation described in detail in Example 1 of [B-D]
for stochastic linear program with individual probabilistic constraints and
random right-hand sides ωk . Using quantiles of marginal probability
distributions, problem can be cast into linear program with dual feasible
set independent of P. But quantiles of contaminated marginal probability
distributions – parameter dependent coefficients in dual objective
function – are not linear in t.
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Perturbed discrete distributions

Consider separable probabilistic program with finitely discrete distribution
(7). Let Z contain all possible atoms of ω. The p-level set Zp and
p-efficient points depend on p,Z and on probabilities of atoms of P.
With fixed p and Z, scenario probabilities ps are the ingredients which
may be perturbed.

When F (v j) > p for all p-efficient points v j , j ∈ J, sufficiently small
changes in probabilities do not influence the set of p-efficient points and
the set Zp persists:
For example, to increase probability of z∗ ∈ intZp means to contaminate
P by δz∗ . Set Zp does not change if 0 ≤ t ≤ t1,
t1 = 1− p[minj F (vj)]−1. A similar result holds true if z∗ /∈ Zp.
When F (v∗) = p for p-level point v j = v∗ of P, then t1 = 0. Increasing
probability of v∗ means that contaminated Ft(v∗) > p. To keep other
Ft(v j) ≥ p contamination parameter is limited to 0 ≤ t ≤ t2,
t2 = 1− p[minj 6=∗ F (vj)]−1. See [D-P] for a similar procedure applied to
VaR contamination.

Possible extension of set Z can be treated by contamination technique,
too: Start with an augmented set Z̃ = Z ∪ {z∗} for which probability of
z∗ is 0 and apply the above idea to increase its probability.

Jitka Dupačová Robustness for Probabilistic Programs



Various limitations for robustness analysis including
contamination technique

Metric regularity needed in robustness analysis
Bonnans-Shapiro, Rockafellar-Wets, Mordukhovich
Henrion, Schultz, Römisch
directional regularity is OK for contamination; choice of Q?

Convexity of X (P)
Prekopa, Borel, ...

Differentiability of probabilistic constraints
Marti, Uryasev, Raik

Discrete distributions
Using properties of p-efficient points  ∃ good chances for
separable constraints

Importance of lower bound – no assumptions needed

Open possibilities: Try to apply other types of bounds e.g.

|ϕ(P)− ϕ(Pt)| ≤ Ld(P,Pt) for t small enough

or lower bounds based on duality.
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Alternative approaches

General lower bound, but limited possibilities to construct local upper
contamination bounds for nonconvex probabilistic programs when
differentiability cannot be guaranteed; trivial upper bounds are exception.
Indirect approach was suggested in [B-D]: Apply contamination technique
to penalty reformulation of probabilistic program. Then set of feasible
solutions does not depend on P and for approximate problem, global
bounds (14) follow. See Example 4 of [B-D] for numerical results.
Bounds for optimal value of probabilistic program follow by worst-case
analysis with respect to a whole set P of considered probability
distributions, e.g. [P-W]. It means to hedge against all probability
distributions belonging to chosen ambiguity set P and to solve

min
x∈X

max
P∈P

G0(x ,P) subject to (23)

P(ω : g(x , ω) ≤ 0) ≥ 1− ε ∀P ∈ P. (24)

or subject to
min
P∈P

P(ω : g(x , ω) ≤ 0) ≥ 1− ε. (25)

Jitka Dupačová Robustness for Probabilistic Programs



Worst-case analysis I.

Problem (23)–(24) or (25) need not be more complicated than the
underlying probabilistic program. Its tractability depends on function
g(x , ω) and on choice of P. Bounding expectations, in our case –
bounding probabilities P(ω : g(x , ω) ≤ 0) in (25), for fixed x and for P
belonging to convex class of probability distributions has got long
tradition for scalar random variables, say, η := g(x , ω) and for P defined
by known moment values. Additional information e.g. symmetry and/or
unimodality can be incorporated by transformation or by duality
arguments [Popescu MOR]. Given mean M and variance σ2 of η the best
upper bounds on P(η ≥ a) inclue one-sided Chebyshev inequality.

Distribution a > M a ≤ M

arbitrary σ2

σ2+(M−a)2 1

symmetric 1/2 min{1, σ2

(M−a)2 } 1

symmetric unimodal 1/2 min{1, 4σ2

9(M−a)2 } 1

Table: Optimal M − σ2 upper bounds for P(η ≥ a).

Direct use of known results based on moment problem is limited because
convexity of integrands IH(x)(ω)) in ω is rare.
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Worst-case analysis II.

Multidimensional extensions are demanding, are based on duality
arguments; cf. [Bertsimas&Popescu], [Popescu MOR]. For P with given
mean, covariance matrix and polyhedral or elliptic support (23)–(24) can
be solved via semidefinite optimization. ∃ Results also for using higher
order moments.
Application simplifies if g(x , ω) = x>ω and EPω = µ, varω = Σ are
prescribed [Popescu]. Then for fixed x , EPη = µ>x and variance of η is
x>Σx  known one-dimensional results.
Main field of interest – Robust portfolio optimization under VaR
constraints such as (24) or (25) with µ− Σ class of probability
distributions.
Other favorable classes P:
• Finite list of proposed “scenarios” (µ− Σ)s & ideas of multiobjective
optimization;
• Relative entropy neighborhood of nondegenerate Gaussian N(µ,Σ)
distribution [ElGhaoui et al.];
• Prokhorov neighborhood of nominal P cf. [Erdogan & Iyengar] or
Kantorovich distance cf. [P-W].
See also Zhu & Fukushima, Fabozzi et al. Results depend on input
information. Their stability should be studied similarly as in [Optim] or
[Delage & Ye].
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FSD constraints - added complexity

Wish - observe stochastic ordering of outcomes. Concept of stochastic
ordering was introduced in statistics already in the 1940-ties and is
known as the first order stochastic dominance (FSD):

Definition

We say that a random variable X dominates a random variable Y in the
first order if P(X ≤ u) ≤ P(Y ≤ u) ∀u ∈ R.

In financial applications constraints based on the FSD allow us to
incorporate random benchmarks (defined on the same probability space)
instead of fixed thresholds.
HOWEVER FSD constraints are expressed in general as continuum of
probabilistic constraints. Reduction possible for discrete distributions.
The second order stochastic dominance (SSD) constraints are easier to
deal with. For comparison of portfolios, SSD constraints can be
formulated as continuum of CVaR constraints. Moreover, for discrete
probability distributions reduction to finite number of constraints is
possible.
See Dentcheva, Henrion, Ruszczyński, Schultz, Kopa,...
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Chapters by Prékopa, Römisch, Shapiro and references therein.
[S-D-R] Shapiro, Dentcheva, Ruszczyński (2009) Lectures on Stochastic
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