Weak dependence in stochastic programming

Michal Houda

Faculty of Mathematics and Physics, Charles University in Prague

May 17, 2007

Michal Houda Weak dependence in stochastic programming

- ∢ ⊒ →

I. Coefficients of weak dependence and convergence of integrated empirical process

3

- ∢ ≣ →

- $(\Omega, \mathcal{A}, \mathbb{P})$... probability space
- (X, \mathbb{B}) ... measurable space (value space)
- $\{\xi_t\}_{-\infty}^{+\infty}$... X-valued stochastic process with discrete or continuous time
- $\mathcal{B}^b_a \dots \sigma$ -algebra generated by events

$$\{\xi_{t_1}\in A_{t_1},\ldots,\xi_{t_n}\in A_{t_n}\}$$

where $(a \leq) t_1 \leq \cdots \leq t_n \ (\leq b), n$ are arbitrary, A_{t_1}, \ldots, A_{t_n} are \mathcal{B} -measurable sets

• $\mathcal{B}_1, \mathcal{B}_2 \dots$ two arbitrary σ -algebras of subsets of Ω

Definition

The process $\{\xi_t\}$ is *m*-dependent if $\mathcal{B}^a_{-\infty}$ and $\mathcal{B}^{+\infty}_b$ are independent when b-a>m

Example: moving average process MA(m) is (m + 1)-dependent (but not *m*-dependent)

Strong mixing (α -mixing) coefficient

$$\alpha(\mathcal{B}_1, \mathcal{B}_2) = \sup_{\substack{A \in \mathcal{B}_1, B \in \mathcal{B}_2\\s}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$
$$\alpha(t) = \sup_{s} \alpha(\mathcal{B}_{-\infty}^s, \mathcal{B}_{s+t}^{+\infty})$$

Definition

The process $\{\xi_t\}$ is α -mixing if $\alpha(t) \to 0$ as $t \to +\infty$

- α -coefficient measures direct covariance dependence
- range: $\alpha(\mathcal{B}_1, \mathcal{B}_2) \leq 1/4$

Example: autoregressive process AR(m) with normal increments is strong mixing (but not with binomial increments)

Absolute regularity (β -mixing) coefficient

$$eta(\mathcal{B}_1,\mathcal{B}_2) = \mathbb{E} \operatorname*{esssup}_{B\in\mathcal{B}_2} |\mathbb{P}(B|\mathcal{B}_1) - \mathbb{P}(B)|$$

 $eta(t) = \sup_s eta(\mathcal{B}_{-\infty}^s,\mathcal{B}_{s+t}^{+\infty})$

Definition

The process $\{\xi_t\}$ is β -mixing if $\beta(t) \to 0$ as $t \to +\infty$

•
$$\beta(\mathcal{B}_1, \mathcal{B}_2) = \sup_{\{A_i\}, \{B_i\}} \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{J} |\mathbb{P}(A_i \cap B_j) - \mathbb{P}(A_i)\mathbb{P}(B_j)|$$

 $\{A_i\} \subset \mathcal{B}_1, \{B_i\} \subset \mathcal{B}_2$ are partitions of Ω

(E) < E)</p>

-2

*-mixing (φ -mixing) coefficient

$$\varphi(\mathcal{B}_1, \mathcal{B}_2) = \sup_{\substack{A \in \mathcal{B}_1, B \in \mathcal{B}_2 \\ s}} \left| \frac{\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(A)\mathbb{P}(B)} \right|$$
$$\varphi(t) = \sup_{s} \varphi(\mathcal{B}^s_{-\infty}, \mathcal{B}^{+\infty}_{s+t})$$

Definition

The process $\{\xi_t\}$ is φ -mixing if $\varphi(t) \to 0$ as $t \to +\infty$

< 注→ < 注→ …

Uniform mixing (ϕ -mixing) coefficient

$$\phi(\mathcal{B}_1, \mathcal{B}_2) = \sup_{\substack{A \in \mathcal{B}_1, B \in \mathcal{B}_2}} \left| \frac{\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(A)} \right|$$
$$\phi(t) = \sup_{s} \phi(\mathcal{B}_{-\infty}^s, \mathcal{B}_{s+t}^{+\infty})$$

Definition

The process $\{\xi_t\}$ is ϕ -mixing if $\phi(t) \to 0$ as $t \to +\infty$

< 注→ < 注→ …

Complete regularity (ρ -mixing) coefficient

$$egin{aligned} & eta(\mathcal{B}_1,\mathcal{B}_2) = \sup_{\eta_1,\eta_2} \Big| rac{\mathbb{E}\eta_1\eta_2 - \mathbb{E}\eta_1\mathbb{E}\eta_2}{\sqrt{ ext{var}\,\eta_1\, ext{var}\,\eta_2}} \Big| \ & \phi(t) = \sup_{a}
ho(\{\xi_s,s\leq a\},\{\xi_s,s\geq a+t\}) \end{aligned}$$

 η_1, η_2 are \mathcal{B}_1 -, \mathcal{B}_2 -measurable random variables

Definition

The process $\{\xi_t\}$ is ϕ -mixing if $\phi(t) \to 0$ as $t \to +\infty$

< 注→ < 注→ …

Relationships among mixing conditions

General relationships:

$$\begin{array}{cccc} \varphi & \Rightarrow & \phi & \Rightarrow & \beta \\ \varphi & \Rightarrow & \phi & \Rightarrow & \alpha \\ \rho & & & \end{array}$$

Strictly stationnary Gaussian sequences:

$$\begin{array}{ccc} \begin{array}{ccc} \textbf{m-dep.} & & \rho \\ \uparrow & & \rho \\ \varphi & \Rightarrow & \beta & \Rightarrow & \uparrow \\ \uparrow & & & \alpha \\ \phi & & & \end{array}$$

3 X X 3 X ...

Relationships among mixing conditions

Various limiting theorems remain valid with weakly dependent sequences. Example of CLT:

Theorem (MORI, YOSHIHARA (1986))

Let

• $\{\xi_i\}$... strong mixing sequence with $\alpha(n)$

•
$$\mathbb{E}\xi_1 = 0$$
, $\mathbb{E}\xi_1^2 < +\infty$

•
$$S_0 = 0, \ S_n = \sum_{j=1}^n \xi_j$$

•
$$s_n^2 = ES_n^2$$

Then

$$\frac{S_n}{s_n} \longrightarrow^d N(0;1)$$

iif $\left\{\left(\frac{S_n}{s_n}\right)^2\right\}_{n=1}^{+\infty}$ is uniformly integrable, i.e.,

$$\lim_{a\to+\infty}\sup_{n\geq 1}\int_{|\frac{S_n}{s_n}|>a}\frac{S_n^2}{s_n^2}\mathrm{d}\mathbb{P}=0$$

-2

< ∃ →

Wasserstein distance

Convergence of integrated empirical process

$$\sqrt{N} W(\mu_N, \mu) = \int_{-\infty}^{+\infty} \sqrt{N} |F_N(t) - F(t)| \,\mathrm{d}t \tag{1}$$

• $F_N(t) = rac{1}{N} \sum_{i=1}^N I_{(-\infty;t]}(\xi_i), \quad t \in \mathbb{R} \dots$ empirical distribution function

- μ_N ... corresponding probability measure
- μ ... probability measure with finite first moment and distribution function ${\it F}$
- $\xi_1, \ldots, \xi_N \ldots$ iid sample from μ

Classical result for μ uniform distribution on [0; 1]:

$$\int_0^1 \sqrt{N} \left| \frac{1}{N} \sum_{i=1}^N I_{(0;t]}(\xi_i) - F(t) \right| \mathrm{d}t \to_d \int_0^1 |\mathbb{U}(t)| \mathrm{d}t \tag{2}$$

Distribution of RHS is known explicitly in this case. SHORACK, WELLNER (1986)

ゆ ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

General distribution

$$\int_{-\infty}^{+\infty} \sqrt{N} \left| \frac{1}{N} \sum_{i=1}^{N} I_{(-\infty;t]}(\xi_i) - F(t) \right| \mathrm{d}t \to_d \int_{-\infty}^{+\infty} |\mathbb{U}(F(t))| \mathrm{d}t.$$
(3)

DEL BARRIO, GINÉ, MATRÁN (1999): (3) is valid if (and only if)

$$\int_{-\infty}^{+\infty} \sqrt{F(t)(1-F(t))} \mathrm{d}t < +\infty$$

(In fact: if some processes Y_N converge weakly in $L_1(\mathbb{R})$ to Y, then, among others, $||Y_N||_{L_1} \rightarrow_d ||Y||_{L_1}$ where $||g||_{L_1} = \int_{-\infty}^{\infty} g(t) dt$ for each non-negative $g \in L_1(\mathbb{R})$.)

- idea: convergence is proved for iid data, but some weak dependence property would not make difficulties (as CLT is valid with weak dependence)
- illustration: on simple MA(1) process ξ_k := 0.5ζ_k + 0.5ζ_{k−1} with normal distribution comparison of independent and weakly dependent and samples
- still to do: AR process (α -mixing for some class of continuous distributions)
- still to do: modify the proof of DEL BARIO ET AL. (1999) involving the appropriate condition from theory of weakly dependent sequences

Wasserstein distance Convergence of integrated empirical process

回 と く ヨ と く ヨ と

Π.

Convexity of chance-constrained programs – independent and dependent rows

< ∃⇒

Chance-constrained programming

Basic formulation of the problem

$$\min F_0(x)$$
 subject to $\mathbb{P}(h(x;\xi) \ge 0)) \ge p$ (4)

- $x \in \mathbb{R}^m \dots$ decision vector
- $\xi: \Omega \to \mathbb{R}^s \dots$ s-dim. random vector defined on $(\Omega, \mathcal{A}, \mathbb{P})$
- $h: \mathbb{R}^m \times \mathbb{R}^s \to \mathbb{R}^d \dots$ vector-valued mapping
- $p \in [0; 1] \dots$ (prescribed) probability level

Denote

- $\mu = \mathbb{P} \circ \xi^{-1} \dots$ distribution of ξ
- $F = F_{\mu} \dots$ distribution function of ξ
- $H(x) = \{\xi \in \mathbb{R}^m : h(x;\xi) \ge 0\}$
- M(p) = {x ∈ ℝ^m : ℙ(H(x)) = µ(H(x)) ≥ p} ... set of feasible decisions

Chance-constrained programming

min
$$F_0(x)$$
 subject to $\int_{\mathbb{R}^s} p - \chi_{H(x)}(\xi) \ \mu(\mathrm{d}\xi) \leq 0$ (5)

• form adapted to the general stability theorem – HENRION, RÖMISCH (1999)

min
$$F_0(x)$$
 subject to $\mathbb{P}(h(x;\xi) < 0) \le \varepsilon$ (6)

- $\varepsilon = 1 p \dots$ (admissible) level of violation of the constraints
- $M(1-\varepsilon)$... set of ε -feasible solutions (used in robust programming)

글 문 문 글 문 문

Key question

When the set M(p) of feasible solutions is convex?

Trivial result

If $h(\cdot,\xi)$ is convex for all ξ , M(0), M(1) are convex

M(p) is convex if

- μ is a log-concave (or *r*-concave for $r \ge -1/s$) measure (implied by a log-concave, or $\frac{r}{1-rs}$ -concave density)
- components of *h* are quasi-concave (in both variables)

Parameterization of the concavity

Definition

 $f: \mathbb{R}^d \to (0; +\infty)$ is *r*-concave for $r \in [-\infty; +\infty]$ if

$$f(\lambda x + (1-\lambda)y) \geq [\lambda f^r(x) + (1-\lambda)f^r(y)]^{1/r}$$

• cases $r = -\infty, 0, +\infty$ by continuity

•
$$r = +\infty$$
 ... RHS = max{ $f(x), f(y)$ }
• $r \in (1; +\infty)$... f^r is concave
• $r = 1$... f is concave
• $r = 0$... f is log-concave (log f is concave):
• $f(\lambda x + (1 - \lambda)y) \ge f^{\lambda}(x)f^{1-\lambda}(y)$
• $r < 0$... f^r is convex
• $r = -\infty$... f is quasi-concave: RHS = min{ $f(x), f(y)$ }

• for all $r \leq r^*$, f is r-concave if it is r^* -concave

• interesting cases: $r \leq 1$

< E > < E > E - のQ (~

Special case: random RHS

min
$$F_0(x)$$
 subject to $\mathbb{P}(g(x) \ge \xi)) \ge p$ (7)

•
$$h(x;\xi) = g(x) - \xi$$

•
$$M(p) = \{x \in \mathbb{R}^n : F(g(x)) \ge p\}$$

Required condition: components of *h* are quasi-concave Problem: quasi-concavity is not preserved under addition \Rightarrow we require g(x) to be convex

Idea of HENRION, STRUGAREK (2006):

- relax concavity condition of g;
- make more stringent concavity condition on μ .

- < ∃ >

Definition

- $f: \mathbb{R} \to \mathbb{R}$ is *r*-decreasing for $r \in \mathbb{R}$ if
 - it is continuous on (0; $+\infty$), and
 - there exists a threshold t* > 0 such that t^r f(t) is strictly decreasing for all t > t*
 - $r = 0 \dots$ strictly decreasing (in the classical sense)
 - for all $r \leq r^*$, nonnegative f is r-decreasing if it is r^* -decreasing
 - key property for marginal densities from the chance-constrained problem
 - lemma: if F is distribution function with (r + 1)-decreasing density, then $z \mapsto F(z^{-1/r})$ is concave on $(0; (t^*)^{-r})$

문어 귀 문어 ...

Convexity of the problem with RHS HENRION, STRUGAREK (2006)

Theorem (HENRION, STRUGAREK (2006))

lf

- **1** g_i are $-r_i$ -concave,
- 2 ξ_i have $(r_i + 1)$ -decreasing densities,
- \mathbf{S}_{i} are independent,

then M(p) is convex for $p \ge \max F_i(t_i^*)$

Notation (i = 1, ..., s): $g_i \dots$ components of $g_{\xi_i} \dots$ components of ξ_i

- $F_i \ldots$ components of F
- t_i^* ... threshold of $r_i + 1$ -decreasing density