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Background

We consider

◮ Sets in a finite-dimensional Euclidian space R
n.

◮ Functions defined on a finite-dimensional Euclidian space R
n with

values in the generalized Euclidian space R
∗ = [−∞,+∞].

Having function f : R
n → R

∗ we define its graph, epigraph, hypograph,
domain

graph (f ) = {(x , f (x)) : x ∈ R
n}

= {(x , η) : f (x) = η, x ∈ R
n, η ∈ R

∗} ,

epi (f ) = {(x , η) : f (x) ≤ η, x ∈ R
n, η ∈ R} ,

hypo (f ) = {(x , η) : f (x) ≥ η, x ∈ R
n, η ∈ R} ,

Dom (f ) = {x : f (x) < +∞, x ∈ R
n} .
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Convex sets

A set A ⊂ R
n is called convex whenever for each couple of points

x , y ∈ A and 0 < λ < 1 we have λx + (1 − λ)y ∈ A.

Equivalently,
A is convex
iff
for each couple of points x , y ∈ A we have

[x , y ] = {tx + (1 − t)y : 0 ≤ t ≤ 1} ⊂ A.
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Convex functions

A function f : R
n → R

∗ is called convex if

◮ Dom (f ) is a convex set.

◮ For all x , y ∈ Dom (f ) and 0 < λ < 1

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) .

Equivalently, f is convex iff epi (f ) is convex.

A function f : R
n → R

∗ is called concave iff −f is convex .
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Properties of convex functions

◮ Each level set of a convex function is a convex set, i.e. for each
α ∈ R

lev[≤α] (f ) = {x : f (x) ≤ α, x ∈ R
n} ,

lev[<α] (f ) = {x : f (x) < α, x ∈ R
n} .

◮ Each convex function f is continuous on int (Dom (f )).
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Stronger cases

A function f : R
n → R

∗ is called strictly convex if

◮ Dom (f ) is a convex set.

◮ For all x , y ∈ Dom (f ), x 6= y and 0 < λ < 1

f (λx + (1 − λ)y) < λf (x) + (1 − λ)f (y) .

Equivalently, f is strictly convex iff epi (f ) is convex and each tangent
hyperplane to epi (f ) which is not perpendicular to horizontal hyperplane
contains at most one point of graph (f ).

A function f : R
n → R

∗ is called strictly concave iff −f is strictly convex .
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Stronger cases

A function f : R
n → R

∗ is called strongly convex if

◮ Dom (f ) is a convex set.

◮ For all x , y ∈ Dom (f ), x 6= y and 0 < λ < 1

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) −
C

2
λ(1 − λ) ‖x − y‖2

.

for an appropriate constant C > 0.

Equivalently,
f : R

n → R
∗ is strongly convex

iff
g (x) = f (x) − C

2 ‖x‖2
is a convex function.

A function f : R
n → R

∗ is called strongly concave iff −f is
strongly convex .
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Strongly convex functions - verification

We verify that g (x) = f (x) − C
2 ‖x‖2

is a convex function:

λg (x) + (1 − λ)g (y) − g (λx + (1 − λ)y) =

= λf (x) + (1 − λ)f (y) − f (λx + (1 − λ)y) −

−
C

2

(

λ‖x‖2
+ (1 − λ) ‖y‖2 − ‖λx + (1 − λ)y‖2

)

≥
C

2
λ(1 − λ) ‖x − y‖2 −

C

2

(

λ‖x‖2
+ (1 − λ) ‖y‖2 −

−λ2‖x‖2 − (1 − λ)2 ‖y‖2 − 2λ(1 − λ)x⊤y
)

=
C

2
λ(1 − λ) ‖x − y‖2 −

C

2
λ(1 − λ)

(

‖x‖2
+ ‖y‖2 − 2x⊤y

)

=
C

2
λ(1 − λ) ‖x − y‖2 −

C

2
λ(1 − λ) ‖x − y‖2

= 0.
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Semiconvex functions

A function f : R
n → R

∗ is called semiconvex function with
linear modulus if

◮ Dom (f ) is an open set.

◮ f is continuous on Dom (f ).

◮ For all x , h ∈ R
n, [x − h, x + h] ⊂ Dom (f )

2f (x) ≤ f (x − h) + f (x + h) + C ‖h‖2
.

for an appropriate constant C ≥ 0.

Constant C is called a semiconvex constant for f in Dom (f ).

This definition is frequently used as a definition of “semiconvex
functions” in literature. Here we accept a more general concept.
Therefore, we added the second prefix “with linear modulus”. Latter, we
will see why.
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Semiconvex functions

Let Dom (f ) be an open set. Hence,

f : R
n → R

∗ is semiconvex function with linear modulus and a
semiconvex constant C ≥ 0
iff
For all x , y ∈ Dom (f ), [x , y ] ⊂ Dom (f ) and 0 < λ < 1

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) +
C

2
λ(1 − λ) ‖x − y‖2

.
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Semiconvex functions - equivalences

Let Dom (f ) be an open convex set. Hence,

f : R
n → R

∗ is semiconvex function with linear modulus and a
semiconvex constant C ≥ 0
iff
Function x 7→ f (x) + C

2 ‖x‖2
is convex.

iff
There are u, v : Dom (f ) → R such that f = u + v , u is convex,
v ∈ C 2(Dom (f )) and ∀ x ∈ Dom (f ) :

∥

∥∇2
x,xv (x)

∥

∥

∞
≤ C.
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Semiconvex functions - verification

We verify that g (x) = f (x) + C
2 ‖x‖2

is a convex function:

λg (x) + (1 − λ)g (y) − g (λx + (1 − λ)y) =

= λf (x) + (1 − λ)f (y) − f (λx + (1 − λ)y) +

+
C

2

(

λ‖x‖2
+ (1 − λ) ‖y‖2 − ‖λx + (1 − λ)y‖2

)

≥ −
C

2
λ(1 − λ) ‖x − y‖2

+
C

2

(

λ‖x‖2
+ (1 − λ) ‖y‖2 −

−λ2‖x‖2 − (1 − λ)2 ‖y‖2 − 2λ(1 − λ)x⊤y
)

= −
C

2
λ(1 − λ) ‖x − y‖2

+
C

2
λ(1 − λ)

(

‖x‖2
+ ‖y‖2 − 2x⊤y

)

= −
C

2
λ(1 − λ) ‖x − y‖2

+
C

2
λ(1 − λ) ‖x − y‖2

= 0.
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Semiconvex functions - general definition

General definition is taken from the book

Cannarsa, Piermarco; Sinestrari, Carlo:
Semiconcave Functions, HamiltonJacobi Equations, and Optimal Control.
Birkhuser, Boston, 2004.
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Semiconvex functions - general definition

A function f : R
n → R

∗ is called semiconvex function with modulus ω if

◮ ω : R+,0 → R+,0 is a nondecreasing upper semicontinuous function
with ω (0) = 0.

◮ For all x , y ∈ Dom (f ), [x , y ] ⊂ Dom (f ) and 0 < λ < 1

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) +

+λ(1 − λ) ‖x − y‖ω (‖x − y‖) .

A function f : R
n → R

∗ is called semiconcave iff −f is semiconvex .
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Semiconvex functions - general definition

A function f : R
n → R

∗ is called locally semiconvex function
if
it is semiconvex function on every compact subset of R

n.

A function f : R
n → R

∗ is called locally semiconcave iff −f is
locally semiconvex .
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Consequences

◮ ω (0+) = limt→0+ ω (t) = 0.

◮ If ω (t) = C
2 t then f is semiconvex function with linear modulus and

semiconvexity constant C.

◮ If v ∈ C1 and Dom (v) is an open convex set then both v , −v are
semiconvex with modulus
ω (t) = max {‖∇xv (x) −∇xv (y)‖ : ‖x − y‖ ≤ t} .

◮ If Dom (f ) is an open convex set, f = u + v , u is convex,
v ∈ C1(Dom (f )) then f is locally semiconvex.
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Consequences

◮ For each 0 < α < 1 there exists a function fα : [0, 1] → R which is
semiconvex with modulus ω (t) = Ctα, C > 0 and cannot be written
as fα = u + v , where u is convex, v ∈ C1([0, 1]).

◮ If fλ, λ ∈ Λ is a family of semiconvex functions with the same
modulus ω then supλ∈Λ fλ is a semiconvex function with the
modulus ω.

◮ Each semiconvex function f is locally Lipschitz continuous in
int (Dom (f )).

◮ Each locally semiconvex function f is locally Lipschitz continuous in
int (Dom (f )).
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Quasi-convex functions

Here we refer from the paper

Prékopa, András; Yoda, Kunikazu; Subasi, Munevver Mine:
Uniform Quasi-Concavity in Probabilistic Constrained Stochastic
Programming.
Operations Research Letters, 39,1(2011), 188-192.
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Quasi-convex functions

A function f : R
n → R

∗ is called quasi-convex if all its level sets are
convex sets, i.e. for each α ∈ R

lev[≤α] (f ) = {x : f (x) ≤ α, x ∈ R
n} ,

lev[<α] (f ) = {x : f (x) < α, x ∈ R
n} .

A function f : R
n → R

∗ is called quasi-concave iff −f is quasi-convex .
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Examples

f (x) = log(x) ∀x > 0,

= +∞ ∀x ≤ 0,

f (x) = arctan(x) ∀x ∈ R,

f (x) =
√

|x | ∀x ∈ R.
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Properties

If a function f : R
n → R

∗ is quasi-convex and ϕ : R
∗ → R

∗ is
non-decreasing then ϕ ◦ f is also quasi-convex.
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Example (Kataoka 1963, de Panne & Popp 1963)

Let b ∈ R be deterministic and row T ∈ R
1×n be random and normally

distributed.
Then the function h (x) = P (Tx ≤ b) is a quasi-concave function on
{

y ∈ R
n : h (y) ≥ 1

2

}

.

Petr Lachout

Stochastic Programming and Convexity



Background Convex sets Convex functions Stronger cases Semiconvex functions Quasi-convex functions References

Proof 1)

If x⊤var (T ) x = 0 then Tx = E [T ] x a.s. and

h (x) = P (Tx ≤ b) = P (E [T ] x ≤ b) = 1 whenever E [T ] x ≤ b,

= 0 whenever E [T ] x 6≤ b.
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Proof 2)

If x⊤var (T ) x 6= 0 then

h (x) = P (Tx ≤ b) = Φ

(

b − E [T ] x
√

x⊤var (T ) x

)

.

Therefore,

h (x) ≥ ∆

m

b − E [T ] x
√

x⊤var (T ) x
≥ Φ−1 (∆)

m

Φ−1 (∆)
√

x⊤var (T ) x + E [T ] x ≤ b.
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Proof

The left-hand side of the inequality is a convex function in x iff
Φ−1 (∆) ≥ 0.
Consequently, if ∆ ≥ 1

2 then

{x ∈ R
n : h (x) ≥ ∆} =

=

{

x ∈ R
n : Φ−1 (∆)

√

x⊤var (T ) x + E [T ] x ≤ b

}

is a convex set.

We have proved that h is quasi-concave on the set
{

x ∈ R
n : h (x) ≥ 1

2

}

.
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Example (Prékopa 1974)

Let b ∈ R
m be deterministic and matrix T ∈ R

m×n be random.
Rows T1,•, . . . ,Tm,• are independent normally distributed and
var (T1,•) = σ2

1D,. . . ,var (Tm,•) = σ2
m
D.

Then the function h (x) = P (Tx ≤ b) is a quasi-concave function on
{

y ∈ R
n : h (y) ≥ 1

2

}

.

Let b ∈ R
m be deterministic and matrix T ∈ R

m×n be random.
Columns T•,1, . . . ,T•,n are independent normally distributed and
var (T•,1) = σ2

1D,. . . ,var (T•,n) = σ2
n
D.

Then the function h (x) = P (Tx ≤ b) is a quasi-concave function on
{

y ∈ R
n : h (y) ≥ 1

2

}

.
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Uniformly quasi-convex functions

Let E ⊂ R
n and fi : E → R

∗, i = 1, 2, . . . ,m be given.
We say fi : E → R

∗, i = 1, 2, . . . ,m are uniformly quasi-concave if

1. E is convex.

2. For each i = 1, 2, . . . ,m the function fi is quasi-concave on E .

3. For each x , y ∈ E either

∀i = 1, 2, . . . ,m min{fi (x), fi (y)} = fi (x)

or

∀i = 1, 2, . . . ,m min{fi (x), fi (y)} = fi (y).
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Properties

Sum of uniformly quasi-concave functions is quasi-concave.

Product of uniformly quasi-concave functions which are nonnegative is
quasi-concave.
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Example (Prékopa 2010)

Let for each i = 1, 2, . . . ,m be given bi > 0 deterministic and row
Ti ∈ R

1×n be random with normal probability distribution.
We set functions hi (x) = P (Tix ≤ bi ) for all i = 1, 2, . . . ,m.
We suppose to have a given set E with properties

1. E is convex.

2. 0 ∈ int (E ).

3. For each i = 1, 2, . . . ,m the function hi is quasi-concave on E .
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Example (Prékopa 2010)

Then
The family of functions hi , i = 1, 2, . . . ,m is uniformly quasi-concave on
E .
iff
There are constants γ ∈ R, c1, c2, . . . , cm ∈ R+,0 and positive
semidefinite matrix Γ such that

E [T1] = b1γ, E [T2] = b2γ, . . . , E [Tm] = bmγ,

var (T1) = c1Γ, var (T2) = c2Γ, . . . , var (Tm) = cmΓ.

For example E =
⋂

m

i=1

{

y ∈ R
n : hi (y) ≥ 1

2

}

.
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