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Data Depth

Consider a random variable X ∼ P ∈ P
(

R
d
)
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How to define ordering of these data?
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Consider a random variable X ∼ P ∈ P
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Depth Generally

According to Zuo and Serfling [13], Statistical depth is a function
possessing:

affine transformation invariance

maximality at the center of symmetry of the distribution for the
class of symmetric distributions

monotonicity relative to the point with the highest depth

vanishing at infinity
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Depth Generally

According to Zuo and Serfling [13], Statistical depth is a function
possessing:

affine transformation invariance

maximality at the center of symmetry of the distribution for the
class of symmetric distributions

monotonicity relative to the point with the highest depth

vanishing at infinity

We obtain a function recognizing “typical” and “outlier” observations, a
generalization of quantiles for multivariate data.
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Halfspace Depth

Halfspace depth (Tukey [11]) HD of an observation from R
d

HD(x ;P) = inf
H∈H (x)

P (X ∈ H)
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Halfspace depth (Tukey [11]) HD of an observation from R
d

HD(x ;P) = inf
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P (X ∈ H)
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Halfspace Depth

HD (x ;X1, . . . ,Xn) = least ratio of observations in a halfspace containing x
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Simplicial Depth

Simplicial depth (Liu [7]) SD of an observation from R
d

SD(x ;P) = P
(

x ∈ SX1,...,Xd+1

)
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Simplicial Depth

Simplicial depth (Liu [7]) SD of an observation from R
d

SD(x ;P) = P
(

x ∈ SX1,...,Xd+1
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SD (x ;X1, . . . ,Xn) =
number of simplices containing x

total number of simplices
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Characterization of Distribution

Is P ∈ P
(

R
d
)

characterized by
{

HD (x ;P)
∣

∣x ∈ R
d
}

?
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Characterization of Distribution

Is P ∈ P
(

R
d
)

characterized by
{

HD (x ;P)
∣

∣x ∈ R
d
}

?
Yes, if

P is an empirical measure (Struyf and Rousseeuw 1999),

P is a.c. with a compact support (Koshevoy 2001),

P is atomic (Koshevoy 2002)

P has a C (2) density (Hassairi and Regaieg 2008),

the HD contours are smooth (Kong and Zuo 2010).
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Characterization of Distribution

Is P ∈ P
(

R
d
)

characterized by
{

HD (x ;P)
∣

∣x ∈ R
d
}

?
Yes, if

P is an empirical measure (Struyf and Rousseeuw 1999),

P is a.c. with a compact support (Koshevoy 2001),

P is atomic (Koshevoy 2002)

P has a C (2) density (Hassairi and Regaieg 2008),

the HD contours are smooth (Kong and Zuo 2010).

When are HD contours smooth?
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When are Halfspace Depth Contours Smooth?

Theorem:

Let P ∈ P
(

R
d
)

be contiguous and x ∈ R
d . Then the halfspace depth

contours are smooth at x if and only if there exists a unique halfspace
H ∈ H (x) such that

HD (x ;P) = P (X ∈ H) .
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When are Halfspace Depth Contours Smooth?

Theorem:

Let P ∈ P
(

R
d
)

be contiguous and x ∈ R
d . Then the halfspace depth

contours are smooth at x if and only if there exists a unique halfspace
H ∈ H (x) such that

HD (x ;P) = P (X ∈ H) .

As a corollary, a point x from the hyperspace of reflectional symmetry
R of P is depth regular (depth contours at at x are smooth) if and only
if HD is attained only at a halfspace orthogonal to R.
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Example 1: Gaussian Distributions Mixture

A strictly unimodal distribution and non-smooth HD contours.
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Another strictly unimodal distribution.
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Example 2: Gaussian Distributions Mixture

Another strictly unimodal distribution.

Is non-smooth only for σ2
1 > σ2

2(2+
√

3).
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Example 3: Rectangle

A distribution with non-smooth HD contours.
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Smoothness of Halfspace Depth Contours

Example 4: L4 symmetrical distribution

An L4 symmetrical distribution with non-smooth HD contours.
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Example 4: L4 symmetrical distribution

An L4 symmetrical distribution with non-smooth HD contours.
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Example 5: quasi-concave distribution 1

A quasi-concave distribution with non-smooth HD contours.
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Example 6: quasi-concave distribution 2

A strictly quasi-concave distribution with non-smooth HD contours.
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Smooth Halfspace Depth Contours: Conclusions

Conclusion

Not even the density smoothness, strict quasi-concavity and
reflectional symmetry suffices for the halfspace depth contours to be
smooth at every point of Rd .
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Smooth Halfspace Depth Contours: Conclusions

Conclusion

Not even the density smoothness, strict quasi-concavity and
reflectional symmetry suffices for the halfspace depth contours to be
smooth at every point of Rd .

Can this be guaranteed at least for even smaller classes of
distributions ?

angularly symmetrical and strictly quasi-concave, or merely

Lp symmetrical and strictly quasi-concave?

For further discussion, see Nagy [9].
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Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Functional Data

X ∼ P ∈ P (C ([0,1])) and X1, . . . ,Xn a r.s. from P. Consider the depth
of functional observations w.r.t. P (or Pn)

D : C ([0,1])×P (C ([0,1])) → [0,1].
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Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Band Depth

López-Pintado and Romo [8] for J = 2,3, . . .

BD J) (x ;P) =
1

J −1

J

∑
j=2

P [G(x)⊂ B (X1,X2, . . . ,Xj)] ,

where G(x) is the graph of a function x and B (x1,x2, . . . ,xj) is a
band of functions x1,x2, . . . ,xj

10 % of deepest functions

10 % of least deep functions
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Band Depth

The sample version is a U-statistic of order J .

BD J) (x ;Pn)=
1

J −1

J

∑
j=2

(

n

j

)−1

∑
1≤i1<i2<...<ij≤n

I
[

G(x)⊂ B
(

Xi1 ,Xi2 , . . . ,Xij

)]

.
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∑
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)]

.

Stanislav Nagy Depth



Depth Measure and its Smoothness for Multivariate Data
Functional Data Depth: Theory

Functional Data Depth: Practice
Conclusions

Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Strong Consistency

Depth D is on a set S ⊂ C ([0,1]) consistent
pointwise if

D (x ;Pn)−D (x ;P)
a.s.−−−→

n→∞
0 for all x ∈ S,
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Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Strong Consistency

Depth D is on a set S ⊂ C ([0,1]) consistent
pointwise if

D (x ;Pn)−D (x ;P)
a.s.−−−→

n→∞
0 for all x ∈ S,

uniformly if

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0,

Stanislav Nagy Depth



Depth Measure and its Smoothness for Multivariate Data
Functional Data Depth: Theory

Functional Data Depth: Practice
Conclusions

Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Strong Consistency

Depth D is on a set S ⊂ C ([0,1]) consistent
pointwise if

D (x ;Pn)−D (x ;P)
a.s.−−−→

n→∞
0 for all x ∈ S,

uniformly if

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0,

universally if

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0 for all P ∈ P (C ([0,1])) ,
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Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Strong Consistency

Depth D is on a set S ⊂ C ([0,1]) consistent
pointwise if

D (x ;Pn)−D (x ;P)
a.s.−−−→

n→∞
0 for all x ∈ S,

uniformly if

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0,

universally if

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0 for all P ∈ P (C ([0,1])) ,

P -uniformly if

sup
P∈P (C([0,1]))

sup
x∈S

|D (x ;Pn)−D (x ;P)| a.s.−−−→
n→∞

0.

Stanislav Nagy Depth



Depth Measure and its Smoothness for Multivariate Data
Functional Data Depth: Theory

Functional Data Depth: Practice
Conclusions

Functional Band Depths
Consistency
Counterexample
Fixing the Continuousness
Integral and Vector Depths

Band Depth

Band Depth (L-P López-Pintado, R Romo):

L-P, R: Depth-based classification for functional data (DIMACS
2006)

L-P, R: Depth-based inference for functional data (CSDA 2007)

L-P, Jornsten: Functional analysis via extensions of the band
depth (IMS Lecture Notes, 2007)

L-P, R: On the Concept of Depth for Functional Data (JASA
2009)

L-P, R: Robust depth-based tools for the analysis of gene
expression data (Biostatistics 2010)

L-P, R: A half-region depth for functional data (CSDA 2011)

. . .
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Functional Band Depths
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Band Depth Consistency

López-Pintado and Romo [8, Thm 4]

Theorem:

Let P ∈ P (C ([0,1])) with a.c. marginals. Then BD J) is uniformly
consistent on every equi-continuous set S, i.e.

sup
x∈S

∣

∣

∣
BD J) (x ;Pn)−BD J) (x ;P)

∣

∣

∣

a.s.−−−→
n→∞

0.
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Band Depth Consistency: Proof

Proof: As lim‖x‖→∞ BD J) (x ;P) = 0, consider only {‖x‖< M} for
M > 0. According to Arzéla-Ascoli’s Theorem, a uniformly bounded
set of equi-continuous functions is totally bounded.
Because BD J) (.;P) is for P with a.c. marginals a continuous
functional, it is enough to prove for N ∈ N fixed

max
{xi}N

i=1⊂S

∣

∣

∣
BD J) (xi ;Pn)−BD J) (xi ;P)

∣

∣

∣

a.s.−−−→
n→∞

0.

This holds, since BD J) (.;Pn) is a bounded U-statistic. �
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Why the Proof Does Not Work?

BD J) (.;P) is continuous, but BD J) (.;Pn) is not !
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Why the Proof Does Not Work?

max
{xi}N

i=1⊂S

∣

∣

∣
BD J) (xi ;Pn)−BD J) (xi ;P)

∣

∣

∣

a.s.−−−→
n→∞

0

does not give uniform convergence !
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Is Band Depth Consistent?

Starting from the theory of empirical processes (for J = 2):

The validity of

dimVC {(x1,x2)|G(x)⊂ B (x1,x2)}x∈S = ∞

for S ⊂ C ([0,1]) compact suggests, that the depth is not
P -uniformly consistent (Assouad’s Thm - [3, Thm 6.4.5]).

The existence of boolean σ-independent sequence of functions
in the class

{(x1,x2)|G(x)⊂ B (x1,x2)}x∈S

suggest, that the depth is not universally consistent (van
Handel’s Thm - [12, Thm 1.3]).
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Band Depth Consistence: Counterexample

Define X ∼ P ∈ P (C ([0,1])) as follows:
P (X(t) = 0 for all t ∈ [0,1]) = 0.5.

0
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Band Depth Consistence: Counterexample

Define X ∼ P ∈ P (C ([0,1])) as follows:
Divide the interval [0,1] “diadically” into disjoint subintervals Ij of
lengths

{

2−j
}

j∈N.

0
.0

0
.5
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Band Depth Consistence: Counterexample

Define X ∼ P ∈ P (C ([0,1])) as follows:
If X 6≡ 0, set X zero on every Ij with probability 0.5 or have a jump
with probability 0.5. The jumps occur independently.
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Band Depth Consistence: Counterexample

Let xj be a function with a single jump on the interval Ij , 0 otherwise.
Then:

BD 2) (xj ;P) = 0.25 for all j ∈ N
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Band Depth Consistence: Counterexample

Let xj be a function with a single jump on the interval Ij , 0 otherwise.
Then:

BD 2) (xj ;P) = 0.25 for all j ∈ N

Let n be even. If there exists jn ∈ N such that exactly n/2
functions have a jump on Ijn and n/2 functions is zero at [0,1],
then xjn lies in

(

n

2

)

−2

(

n/2

2

)

=
n2

4

bands.
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Band Depth Consistence: Counterexample

Let xj be a function with a single jump on the interval Ij , 0 otherwise.
Then:

BD 2) (xj ;P) = 0.25 for all j ∈ N

Let n be even. If there exists jn ∈ N such that exactly n/2
functions have a jump on Ijn and n/2 functions is zero at [0,1],
then xjn lies in

(

n

2

)

−2

(

n/2

2

)

=
n2

4

bands.
For such a jn we have

BD J) (xjn ;Pn) =
n2

4
(n

2

) =
n

2(n−1)
−−−→
n→∞

0.5.
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Then:
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Let n be even. If there exists jn ∈ N such that exactly n/2
functions have a jump on Ijn and n/2 functions is zero at [0,1],
then xjn lies in
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BD J) (xjn ;Pn) =
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) =
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Band Depth Consistence: Counterexample

Let xj be a function with a single jump on the interval Ij , 0 otherwise.
Then:

BD 2) (xj ;P) = 0.25 for all j ∈ N

Let n be even. If there exists jn ∈ N such that exactly n/2
functions have a jump on Ijn and n/2 functions is zero at [0,1],
then xjn lies in

(

n

2

)

−2

(

n/2

2

)

=
n2

4

bands.
For such a jn we have

BD J) (xjn ;Pn) =
n2

4
(n

2

) =
n

2(n−1)
−−−→
n→∞

0.5.

But does exist infinitely many of such couples (n, jn)?
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Band Depth Consistence: Counterexample

But does exist infinitely many of such couples (n, jn)? Yes!

Almost surely there is infinitely many n such that exactly n/2
functions if zero on [0,1] (state 0 is permanent in a symmetric
random walk) .
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Band Depth Consistence: Counterexample

But does exist infinitely many of such couples (n, jn)? Yes!

Almost surely there is infinitely many n such that exactly n/2
functions if zero on [0,1] (state 0 is permanent in a symmetric
random walk) .

For every such n a.s. exists jn such that all the n/2 functions with
jumps have on the interval Ijn a jump (Borel-Cantelli) .
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Band Depth Consistence: Counterexample

But does exist infinitely many of such couples (n, jn)? Yes!

Almost surely there is infinitely many n such that exactly n/2
functions if zero on [0,1] (state 0 is permanent in a symmetric
random walk) .

For every such n a.s. exists jn such that all the n/2 functions with
jumps have on the interval Ijn a jump (Borel-Cantelli) .

We get infinitely many n such that for each of them there exists a
function {xj}j∈N for which BD 2) (xjn ;Pn)≈ 0.5. Hence, for every
ε > 0 and infinitely many n ∈ N a.s. holds

sup
j∈N

∣

∣

∣
BD 2) (xj ;Pn)−BD 2) (xj ;P)

∣

∣

∣
> 0.25− ε
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Band Depth Consistence: Counterexample

But does exist infinitely many of such couples (n, jn)? Yes!

Almost surely there is infinitely many n such that exactly n/2
functions if zero on [0,1] (state 0 is permanent in a symmetric
random walk) .

For every such n a.s. exists jn such that all the n/2 functions with
jumps have on the interval Ijn a jump (Borel-Cantelli) .

We get infinitely many n such that for each of them there exists a
function {xj}j∈N for which BD 2) (xjn ;Pn)≈ 0.5. Hence, for every
ε > 0 and infinitely many n ∈ N a.s. holds

sup
j∈N

∣

∣

∣
BD 2) (xj ;Pn)−BD 2) (xj ;P)

∣

∣

∣
> 0.25− ε
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Band Depth Consistence: Counterexample

But does exist infinitely many of such couples (n, jn)? Yes!

Almost surely there is infinitely many n such that exactly n/2
functions if zero on [0,1] (state 0 is permanent in a symmetric
random walk) .

For every such n a.s. exists jn such that all the n/2 functions with
jumps have on the interval Ijn a jump (Borel-Cantelli) .

We get infinitely many n such that for each of them there exists a
function {xj}j∈N for which BD 2) (xjn ;Pn)≈ 0.5. Hence, for every
ε > 0 and infinitely many n ∈ N a.s. holds

sup
j∈N

∣

∣

∣
BD 2) (xj ;Pn)−BD 2) (xj ;P)

∣

∣

∣
> 0.25− ε

Thus, BD 2) is not uniformly consistent w.r.t. P.
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Fixing the Continuousness

The problem of López-Pinado and Romo’s proof was that the depth
BD J) (.;Pn) was not (uniformly) continuous. Instead of measuring the
outlyingness of a function from a band by an indicator, let’s measure
distance from a band , i.e. for a metric d on C ([0,1]) use

E [1−w (d (x ;B (X1,X2)))]

instead of

P [G(x)⊂ B (X1,X2)] = E [I [G(x)⊂ B (X1,X2)]] ,

where w : [0,∞)→ [0,1], w(0) = 1, limt→∞ w(t) = 0 is
equi-continuous smoothing function , e.g. e−t .
Consider supremum and L1 metric for simplicity.
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Fixing the Continuousness

Theorem:

Let w be a smoothing function and S ⊂ C ([0,1]) relatively compact.
Then the band depths smoothed by w

BD J) (.; .,w ,d) : C ([0,1])×P (C ([0,1])) → [0,1]

are for supremum norm, as well as for L1 norm P -uniformly consistent
on S.

Proof: A strengthened version of López-Pintado and Romo’s proof is
used. It is proved that the class

{

BD J) (x ;P,w ,d)
∣

∣

∣
x ∈ C ([0,1]),P ∈ P (C ([0,1]))

}

is uniformly continuous and the properties of U-statistics are utilized
(Borovskich a Koroljuk [6, Thm 2.1.4]). �
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Fraiman-Muniz Type of Depth

Fraiman and Muniz [4]

ID (x ;P) =
∫ 1

0
D (x(t);Pt) dt,

where D is univariate “depth” like

halfspace depth

D (x(t);Pt) = min{Ft(x(t)),1−Ft(x(t))} ,

simplicial depth

D (x(t);Pt) = Ft(x(t))(1−Ft(x(t))) .
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Generalization of Fraiman-Muniz Type of Depth

The idea of Fraiman and Muniz may be easily generalized to
vector-valued functions

ID (x ;P) =
∫ 1

0
D (x(t);Pt) dt,

where D is usual multivariate depth,

x = (x1, . . . ,xK ), where xk : [0,1]→ R

and P ∈ P
(

C ([0,1])K
)

.
This is how we define K -vector depths and by application to
differentiable functions also K -derivatives depths (Hlubinka and
Nagy [5]).
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Integral Depths Consistency

Theorem:

Let the sample version of a depth D : Rd ×P
(

R
d
)

→ [0,1] have a
form of a U-statistic and be universally consistent. Then the depth for
vector-valued functions

ID (x ;P) =
∫ 1

0
D (x(t);Pt) dt

is universally consistent on C ([0,1])d , under some measurability
assumptions.

Proof: Utilizing Lebesgue dominated convergence Theorem we obtain
weak universal consistency, which is for U-processes equivalent to
(strong) universal consistency (cf. de la Peña a Giné [2, p.227]). �

The Theorem can be applied for example for simplicial depth as D.
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Other Properties of Integral Depths

A range of other properties of integral depth for vector-valued
functions can be proved (Nagy and Hlubinka [10]):

measurability as a functional on C ([0,1])K ×P
(

C ([0,1])K
)

,
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Other Properties of Integral Depths

A range of other properties of integral depth for vector-valued
functions can be proved (Nagy and Hlubinka [10]):

measurability as a functional on C ([0,1])K ×P
(

C ([0,1])K
)

,

functional version of affine invariance for ID and dID,
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Other Properties of Integral Depths

A range of other properties of integral depth for vector-valued
functions can be proved (Nagy and Hlubinka [10]):

measurability as a functional on C ([0,1])K ×P
(

C ([0,1])K
)

,

functional version of affine invariance for ID and dID,

monotonicity relative to the deepest point ,
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Other Properties of Integral Depths

A range of other properties of integral depth for vector-valued
functions can be proved (Nagy and Hlubinka [10]):

measurability as a functional on C ([0,1])K ×P
(

C ([0,1])K
)

,

functional version of affine invariance for ID and dID,

monotonicity relative to the deepest point ,

continuity (or semicontinuity ) as functional of x ∈ C ([0,1])K ,
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Other Properties of Integral Depths

A range of other properties of integral depth for vector-valued
functions can be proved (Nagy and Hlubinka [10]):

measurability as a functional on C ([0,1])K ×P
(

C ([0,1])K
)

,

functional version of affine invariance for ID and dID,

monotonicity relative to the deepest point ,

continuity (or semicontinuity ) as functional of x ∈ C ([0,1])K ,

qualitative robustness , i.e. continuity as a functional of
P ∈ P

(

C ([0,1])K
)

in the weak convergence sense.
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K-Vector Depth

Integral depths for vector functions

ID (x ;P) =
∫ 1

0
D ((x1(t),x2(t)) ;(P1,t ,P2,t)) dt,

10 % of deepest functions
10 % of least deep functions
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K-Derivatives Depth

Integral depths for differentiable functions

dID (x ;P) =
∫ 1

0
D
((

x(t),x ′(t)
)

;
(

Pt ,P
′
t

))

dt,

10 % of deepest functions

10 % of least deep functions

10 % of deepest functions

10 % of least deep functions
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Contaminated Dataset

Consider now the contaminated functional dataset . Does the depth
recognize the outlier?
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K-Derivatives Depth Again

Integral depths for differentiable functions

dID (x ;P) =
∫ 1

0
D
((

x(t),x ′(t)
)

;
(

Pt ,P
′
t

))

dt,

10 % of deepest functions

10 % of least deep functions

10 % of deepest functions

10 % of least deep functions
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Future Challenges

Generalization of van Handel’s (Assouad’s) Theorem for
U-processes.

P -uniform consistency of integral depths.

Pγ −dim{λ [t|x(t) ∈ B (x1(t),x2(t))]}x∈S = ∞ ∀γ > 0

for S ⊂ C ([0,1]) compact suggests, that the depth is not
P -uniformly consistent (Alon’s Thm) [1, Thm 2.2]).
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Determining the Distribution: Children’s Growth Data

Let P1,P2 ∈ P (C ([0,1])) and X ∼ Pm, m ∈ {1,2} is unknown. What
is the distribution of X?
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Determining the Distribution: a More Difficult Example

Let P1,P2 ∈ P (C ([0,1])) and X ∼ Pm, m ∈ {1,2} is unknown. What
is the distribution of X?
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Nearest Neighbor Rule

The k-nearest neighbor rule KNN with respect to a particular metric
on space C ([0,1]) (e.g. L2, k = 5):
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Classification – DD-plot

For given training samples X1, X2 and depth D, the
DD-transformation of data can be computed as

DD : C ([0,1]) → R
2 : x 7→ (D(x ;X1),D(x ;X2))

T
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DD-plot and Highest Depth Rule

The function is assigned to the sample with highest depth value
arg maxi=1,2 D(x ;Xi ) (Cuevas et al. 2007)
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DD-plot and Li’s Rule

An increasing best separating function (linear, or polynomial) is
utilized to classify the DD-transformations (Li et al. 2010)
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Location-shifted Model: Functions

m1 (t) = 30(1− t) t1.2, m2 (t) = 30t (1− t)1.2
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Location-shifted Model: BD
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Location-shifted Model: IDn
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Location-shifted Model: aIDn
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Location-shifted Model: dIDn
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Location-shifted Model: Results 1

.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

BD
2)
nH BD

3)
nH BD

2)
nL BD

3)
nLIDnH aIDnH dIDnH IDnL aIDnL dIDnL KNN

Stanislav Nagy Depth



Depth Measure and its Smoothness for Multivariate Data
Functional Data Depth: Theory

Functional Data Depth: Practice
Conclusions

Problem of Functional Data Classification
Using Depth for Classification
Simulation Study

Location-shifted Model: Results 2
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Shape-shifted Model: Functions

m1 (t) = 30(1− t) t1.2, m2 (t) = 30(1− t) t1.2 + sin(20πt)
3
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Shape-shifted Model: IDn
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Shape-shifted Model: aIDn
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Shape-shifted Model: dIDn
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Shape-shifted Model: Results
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Variance Difference Model: Functions

m1 (t) = 30(1− t) t1.2, m2 (t) = 30(1− t) t1.2 + sin(20πt)
3
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Variance Difference Model: IDn
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Variance Difference Model: aIDn
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Variance Difference Model: dIDn
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Variance Difference Model: Results
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Depth-based Classification

How to choose a depth?

Band depths fail in the case of noisy observations.

Fraiman-Muniz depths are reasonable in the location-shifted
model, but fail in the case of shape shifted models .

Depths including derivatives with proper weights provide good
pattern recognition for the location-shifted models as well as for
the shape-shifted models.

In most of the non-trivial examples the K-derivative depths classify
better than the nearest neighbor methods .
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Depth-based Classification

How to choose a DD-plot analysis method?

Highest depth rule is reliable if the difference is caused by the
mean function, but fails in the variance difference setup .

Li’s rules identify the location and shape difference (if a proper
depth is used) as well as the variance structure difference.

The nearest neighbor rule appears to be weak in comparison with
Li’s rules, mainly in the variance difference models.
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Conclusions: Band Depths

As far as band depths are concerned, we have seen that:

they provide bad results in applications ,

are hard to be counted (O
(

nJ
)

against O (n) for integral
depths),

need not to be uniformly consistent .

Conclusion

Avoid using band depths, aim for integral alternatives!
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