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Outline

� Introduction
� Outline
� Original results

� Structure of risk-averse multistage stochastic models
� Studied less than the risk-neutral case
� Risk measures bring multiple modeling possibilities

� Nested models
� Multiperiod risk measures
� Sum of stage risks

� Stochastic Dual Dynamic Programming Algorithm
� Originated in 1991 by Pereira & Pinto
� Well-studied for risk-neutral case
� Cut generation in risk-averse case is straightforward
� Upper bound estimation is challenging in risk-averse case



Outline

� Variance reductions schemes
� Monte Carlo methods are widely applied, but they usually bring high

variance
� Many variance reduction schemes have been proposed: importance

sampling, stratified sampling, Quasi Monte Carlo, etc.
� Application of such schemes could be hard in practice, the proposals

usually focus on the method and toy examples, not on large-scale real
world applications

� Contamination technique for multistage problems
� Captures various changes in the probability distribution
� First results applied to two-stage setups
� In multistage case, contamination was studied and applied for smaller

problems
� Extension to large-scale setups requires advanced algorithms

and techniques



Original results

� New estimator for the policy value under the nested model setup
with CVaR
� Provides better results than the state-of-the-art estimators
� Can be used to build valid stopping rules for the SDDP algorithm
� General importance sampling scheme for mean-CVaR objectives

� Closed-form solution provided for normal distribution
� Sampling algorithm presented for any general distribution to get the

suitable parameter of the variance reduction scheme

� Contamination technique for large-scale multistage programs
� We provide an extension which accounts for the fact, that we can

never compute precise optimal solution
� Based on lower bounds from cutting-plane algorithms and upper

bounds from policy value estimators

� Numerical study and comparison of two multi-stage
models based on CVaR



Multistage stochastic optimization

� Consider T stage stochastic program:
� Data process ξ = (ξ1, ξ2, . . . , ξT )
� Decision process x = (x1, . . . , xT )
� Stages should reflect the timing of decisions, steps can be unequal
� Filtration Ft generated by the projection Πtξ = ξ[t] := (ξ1, . . . , ξt)
� Probability distribution of ξ: P
� Pt denotes the marginal probability distribution of ξt
� Pt

[
·|ξ[t−1]

]
denotes the conditional probability distribution

� The decision process is nonanticipative:
� Decisions taken at any stage of the process do neither depend on

future realizations of stochastic data nor on future decisions
� xt is Ft-measurable
� The sequence of decisions and observations is:

x1, ξ2, x2(x1, ξ2), . . . , xT (xT−1, ξ2, . . . , ξT )

� its random outcome f (x, ξ)



Scenario tree
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Multistage stochastic optimization

� Nested form of multistage stochastic linear program (MSLP):

min
x1∈X1

c>1 x1 + EP [Q2(x1, ξ2)] with X1 := {x1|A1x1 = b1, x1 ≥ 0}

� With Qt(xt−1, ξ[t]), t = 2, . . . ,T , defined recursively as

Qt(xt−1, ξ[t]) = min
xt

ct(ξ[t])
>xt + EPt+1[·|ξ[t]]

[
Qt+1(xt , ξ[t+1])

]
� Xt(xt−1, ξ[t]): At(ξ[t−1])xt = bt(ξ[t−1])− Bt(ξ[t−1])xt−1, xt ≥ 0 a.s.,

� In the case of stagewise independence the conditional distributions
boil down to marginal distributions Pt of ξt

� We assume:
� Constraints involving random elements hold almost surely
� All optimal solutions exist, which is related with the

relatively complete recourse
� All conditional expectations exist



Risk-averse multistage programs

� In the risk-neutral programs possible risks are not reflected

� Risk measure is a functional which assigns a real value to the
random outcome f (x, ξ)

� Risk measures depend on decisions and probability distribution P.
� Filtration F1 ⊂ · · · ⊂ Ft · · · ⊆ F should be taken into account

� Risk monitoring in individual stages should be incorporated

min
x1

c>1 x1+ρ2

(
min
x2

c2(ξ[1])
>x2 + · · ·+ ρT

(
min
xT

cT (ξ[T−1])
>xT

))

� Different risk measures ρt can be applied in each stage

� Coherence of ρ is mostly expected [Artzner et al., 2007]



Time consistency

� Many different definitions

� Need to distinguish between time consistency of the risk measure
and time consistency of the model

� TC1 [Carpentier, et al., 2012] The sequence of dynamic
optimization problems is dynamically consistent if the optimal
strategies obtained when solving the original problem remain
optimal for all subsequent problems.

� TC2 [Shapiro, 2009] At each state of the system, optimality of a
decision policy should not involve states which cannot happen in
the future.

� Risk-neutral stochastic programs are time consistent

� In general, time consistency for risk-averse stochastic programs
does not hold true



Nested CVaR risk measure

� Consider sequence of random costs Z = (Z1, . . . ,ZT )

� Nested CVaR risk measure is given by:

ρn (Z) = CVaRα [·|F1] ◦ · · · ◦ CVaRα [·|FT−1]

(
T∑
t=1

Zt

)

� The interpretation is not straightforward
� can be viewed as the cost we would be willing to pay at the first stage

instead of incurring the sequence of random costs Z1, . . . ,ZT

� cf. Ruszczyński [2010]



Nested CVaR model

� Risk measures are usually combined with expectation to get
efficient solutions

� Given risk coefficients λt and random loss variable Z we define:

ρt,ξ[t−1]
[Z ] = (1− λt)E

[
Z |ξ[t−1]

]
+ λt CVaRαt

[
Z |ξ[t−1]

]
� Nested model can be written:

min
A1x1=b1,x1≥0

c>1 x1 + ρ2,ξ[1]

[
min

B2x1+A2x2=b2,x2≥0
c>2 x2 + · · ·

· · ·+ ρT ,ξ[T−1]

[
min

BT xT−1+AT xT =bT ,xT≥0
c>TxT

]]
� Time consistent w.r.t. [TC1] and [TC2]



Nested CVaR model

� Allows to develop dynamic programming equations, using:

CVaRα [Z ] = min
u

[
u +

1

α
E [Z − u]+

]
� Denote Qt(xt−1, ξ[t]), t = 2, . . . ,T as the optimal value of:

Qt(xt−1, ξ[t]) = min
xt ,ut

c>t xt + λt+1ut +Qt+1(xt , ut , ξ[t])

s.t. Atxt = bt − Btxt−1

xt ≥ 0,

� Recourse function Qt+1(xt , ut , ξ[t]) is given by (QT+1(·) ≡ 0):

EPt+1[·|ξ[t]]

[
(1− λt+1) Qt+1(xt , ξ[t+1]) +

λt+1

αt+1

[
Qt+1(xt , ξ[t+1])− ut

]
+

]
.



Multiperiod CVaR risk measure

� Based on the following risk measure:

ρm (Z) =
T∑
t=2

µtE [CVaRαt [Zt |Ft−1]] .

� The difference between this risk measure and the nested CVaR risk
measure is that here we apply expectation instead of the nesting

� Easier interpretation
� Averaging of the risks in future stages

� Polyhedral risk measure
� Solution of a multi-stage stochastic linear program of a special form
� Optimization of the original problem can be combined with

the optimization problem which defines the risk measure



Multiperiod CVaR model

� Stochastic programming model:

min
x1,...,xT

c>1 x1 + µ2E
[
ρ2,ξ[1]

[
c>2 x2

]]
+ · · ·+ µTE

[
ρT ,ξ[T−1]

[
c>TxT

]]
s.t. A1x1 = b1

A2x2 = b2 − B2x1

...

ATxT = bT − BTxT−1

xt ≥ 0, xt ∈ Lp (Ω,Ft ,P) t = 1, . . . ,T .

� Time consistent w.r.t. [TC1] and [TC2]

� Dynamic programming equations are developed,
similarly to the nested case



Sum of CVaR model

� The weighted sum of CVaR model is based on the following risk
measure:

ρs (Z) =
T∑
t=2

µt CVaRαt [Zt ]

with
∑T

t=2 µt = 1, µt ≥ 0 ∀t.
� No nesting or averaging is present
� Easy interpretation - weighted sum of CVaR for all stages
� Related to multi-criteria optimization

� “We want to hedge against risk in all stages separately”

� Dynamic programming equations show that all ut are decided in
the first stage

� Corresponding model is time consistent w.r.t. [TC1],
but not w.r.t. [TC2]



Asset allocation model

� At stage t we observe the price ratio between the new price and
the old price rt

� xt contains the optimal allocation (in USD, say)

� The total portfolio value is tracked as a multiple of the initial value

� Dynamic programming equations are very simple:

min
xt ,ut

− 1>xt + λt+1ut +Qt+1(xt , ut)

s.t. r>t xt−1 − 1>xt = 0

xt ≥ 0

� Transaction costs of ft1
>|xt − xt−1| can be included

� We solve problems up to 15 stages with 1024 scenarios,
using SDDP with importance sampling



SDDP algorithm

� Starts with SAA of the problem - scenario tree, given or sampled
� Forward iteration

� Samples ξ1, . . . , ξJ sample paths
� Policy is evaluated using all the cuts collected so far
� Value of the policy gives the upper bound

� Backward iteration
� Subset of the scenarios from the forward iteration is chosen
� For every chosen node the Benders’ cut is calculated

� Using all of its immediate descendants
� Optimal value of the root problem gives the lower bound

� The bounds are compared and the process is repeated
� Relies on the stage-independence assumption

� Cuts are valid for all nodes from given stage
� Low memory requirements to store scenarios
� Linear complexity w.r.t. number of stages

� CPLEX and COIN-OR used as solvers for the LPs



Upper bound overview

� Risk-neutral problems
� The value of the current optimal policy can be estimated easily
� Expectation at each node can be estimated by single chosen

descendant
� Risk-averse problems

� To estimate the CVaR value we need more descendants in practice
� Leads to intractable estimators with exponential computational

complexity, denoted by Ue

� Current solution (to our knowledge)
� Run the risk-neutral version of the same problem and determine the

number of iterations needed to stop the algorithm, then run the same
number of iterations on the risk-averse problem

� Inner approximation scheme proposed by Philpott et al. [2013]
� Works with different policy than the outer approximation
� Probably the best alternative so far
� Does not scale well with the dimension of x



Upper bound enhancements

� State-of-the-art estimator runs with exponential complexity
� We need an estimator with linear complexity to build valid bounds
� Ideally it should be unbiased, or in practice, have small bias
� We start with the linear estimator from the risk-neutral case

and include:
� Importance sampling, with an additional assumption needed
� Further enhancements to reduce bias and volatility

Assumption

Let at(xt−1, ξt) approximate the recourse value of our decisions xt−1

after the random parameters ξt have been observed, and let
at(xt−1, ξt) be cheap to evaluate.

� For example in our portfolio model:
at(xt−1, ξt) = −ξ>t xt−1 = −r>t xt−1



Importance sampling

� We start with standard pmf, all probabilities equal for Dt scenarios:

gt(ξt) =
1

Dt
I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
� This is not required by SDDP and can be easily relaxed

� Denote ua = VaRα [at(xt−1, ξt)]
� We change the measure to put more weight to the CVaR nodes:

ht(ξt |xt−1) =


βt
αt

gt I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
, if at(xt−1, ξt) ≥ ua

1− βt
1− αt

gt I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
, if at(xt−1, ξt) < ua,

� We select forward nodes according to this measure

� Egt [Z ] = Eht

[
Z gt

ht

]
� We start with βt = 1

2 and optimize its value later



Linear estimators

� The nodes can be selected randomly from the standard i.i.d.
measure or from the importance sampling measure

� For stages t = 2, . . . ,T is given by:

v̂t(ξ
jt−1

t−1) = (1− λt)
(

(cjtt )>xjtt + v̂t+1(ξjtt )
)

+

+ λtu
jt−1

t−1 +
λt
αt

[
(cjtt )>xjtt + v̂t+1(ξjtt )− u

jt−1

t−1

]
+

� v̂T+1(ξjTT ) ≡ 0

� Along a single path for scenario j the cost is estimated by:

v̂(ξj) = c>1 x1 + v̂2



Linear estimators

� For scenarios selected via the original pmf we have the naive
estimator

Un =
1

M

M∑
j=1

v̂(ξj)

� With weights again defined via

w(ξj) =
T∏
t=2

gt(ξt)

ht(ξt |xt−1)

� For scenarios selected via the IS pmf we have the IS estimator

U i =
1∑M

j=1 w(ξj)

M∑
j=1

w(ξj)v̂(ξj)



Linear estimators - validity

Function U i provides an asymptotic upper bound estimator for the
SAA version of the presented optimization problem.

Proposition

Assume finite optimal value, relatively complete recourse and
interstage independence. Let ϕ denote the optimal value. Let ξ
denote a sample path selected under the empirical distribution, and
let v̂(ξ) be defined for that sample path. Then Eg [v̂(ξ)] ≥ ϕ.
Furthermore if ξj , j = 1, . . . ,M, are i.i.d. and generated by the IS
pmfs then U i → Eg [v̂(ξ)], w.p.1, as M →∞.



Upper bound enhancements

� Linear estimator still degrades for problems with 10 or 15 stages
� The reason for the bias of the estimator comes from poor

estimates of CVaR
� Once the cost estimate for stage t exceeds ut−1 the difference is

multiplied by α−1
t

� When estimating stage t − 1 costs in the nested model we sum stage
t − 1 costs and stage t estimate which means that we usually end up
with costs greater than ut−2 so another multiplication occurs

� This brings both bias and large variance

Assumption

For every stage t = 2, . . . ,T and decision xt−1 the approximation
function at satisfies:

Qt ≥ VaRαt [Qt ] if and only if at ≥ VaRαt [at ] .



Improved estimator

� Provided that the equivalence assumption holds we can reduce the
bias of the estimator
� The positive part operator in the equation is used only in the case of

CVaR node

� For stages t = 2, . . . ,T we have

v̂at (ξ
jt−1

t−1) = (1− λt)
(

(cjtt )>xjtt + v̂at+1(ξjtt )
)

+ λtu
jt−1

t−1+

+ I[at > VaRαt [at ]]
λt
αt

[
(cjtt )>xjtt + v̂at+1(ξjtt )− u

jt−1

t−1

]
+

� v̂aT+1(ξjTT ) ≡ 0
�

Ua =
1∑M

j=1 w(ξj)

M∑
j=1

w(ξj)v̂a(ξj)



Improved estimator - validity

Function Ua provides an asymptotic upper bound estimator for the
SAA version of the presented optimization problem.

Proposition

Assume finite optimal value, relatively complete recourse and
interstage independence. Let ϕ denote the optimal value Let ξ denote
a sample path selected under the empirical distribution and let the
“perfect ordering” assumption hold. Then Eg [v̂a(ξ)] ≥ ϕ. If ξj ,
j = 1, . . . ,M, are i.i.d. and generated by the IS pmfs then
Ua → Eg [v̂a(ξ)], w.p.1, as M →∞. Furthermore, if the subproblems
induce the same policy for both v̂(ξ) and v̂a(ξ) then
Eg [v̂(ξ)] ≥ Eg [v̂a(ξ)] .



Improved estimator results

� Comparison with exponential estimator Ue from the literature:

T z Un (s.d.) U i (s.d.) Ua (s.d.) Ue (s.d.)

2 -0.9518 -0.9515 (0.0020) -0.9517 (0.0012) -0.9517 (0.0011) -0.9518 (0.0019)

3 -1.8674 -1.8300 (0.0145) -1.8285 (0.0108) -1.8656 (0.0060) -1.8013 (0.0302)

4 -2.7811 -2.4041 (0.1472) -2.3931 (0.1128) -2.7764 (0.0126) -2.6027 (0.0883)

5 -3.6794 -3.4608 (0.1031) -3.4963 (0.1008) -3.6731 (0.0303) -2.9031 (0.5207)

10 -7.6394 9.3× 104 (1.4× 104) 9.0× 104 (8.7× 104) -7.5465 (0.2562) 1.5× 107 (1.3× 106)

15 -11.5188 NA NA -11.0148 (0.6658) NA

� For T = 2, . . . , 5 variance reduction of Ua relative to Ue:
3 to 25 to 50 to 300.

� Computation time for Un for T = 5, 10, 15:
8.7 sec. to 31.6 sec. to 67.4 sec.

� Computation time for Ua for T = 5, 10, 15:
6.8 sec. to 30.0 sec. to 66.5 sec.

� Can be extended to handle more complex models, for
instance asset allocation with transaction costs



Variance reduction

� We consider a functional from our model:

Qα [Z ] = (1− λ)E [Z ] + λCVaRα [Z ]

� We define:

Qs = (1− λ) Z + λ

(
uZ +

1

α
[Z − uZ ]+

)
Q i =

g

h

(
(1− λ) Z + λ

(
uZ +

1

α
[Z − uZ ]+

))
� It clearly holds Q = Eh

[
Q i
]

= Eg [Qs ]

� Our aim is to find suitable parameter β for our importance
sampling scheme, so that varh

[
Q i
]
< varg [Qs ]



Example - normal distribution
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Other distributions

� We can also estimate the suitable β by sampling
� We choose a mesh of possible values, e.g. B = {0.01, 0.02, . . . , 0.99}
� For each of them, we sample prescribed number of scenarios, Z j

� We compute the mean and variance of the values Q j given by Z j

� The lowest variance is selected as a suitable choice of β

� Even though we start with log-normal distribution, convolution and
nested structure of our model brings complex transformations

� Different values of β should be selected for every stage, as the
parameters of the distributions also vary

� We have values β estimated by the algorithm for general
distributions on 100, 000 scenarios

� An alternative would be β = 0.3 which provides
low variance for most of our charts



Optimal beta for the asset allocation model
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Results

� Standard Monte Carlo setup Q̂s (βt = αt = 0.05)

� Improved estimator Q̂i with variable βt based on our analysis

� Lower bound z

T total scenarios z Q̂s (s.d.) Q̂i (s.d.)

5 6, 250, 000 -3.5212 -3.5166 (0.0168) -3.5170 (0.0111)

10 ≈ 1015 -7.3885 -7.2833 (0.2120) -7.2838 (0.0303)

15 ≈ 1024 -10.4060 -10.1482 (0.8184) -10.1245 (0.1355)

� For T = 5, 10, 15 we achieved roughly 35%, 85% and 85%
reduction of standard deviation

� Negligible effect on computation times



Contamination for multistage risk-averse problems

� Captures various changes in the probability distribution
� Assume that it’s possible to reformulate the stochastic program as:

min
x∈X

F (x,P) := min
x∈X

∫
Ω

f (x, ξ)P(dξ)

� Simplest case of contamination, we obtain global bounds
� It’s possible to reformulate our CVaR model with auxiliary variable u

in this way
� Let Q be another fixed probability distribution and define

contaminated distributions

Pk := (1− k)P + kQ, k ∈ [0, 1]

� Suppose that the stochastic program has a solution
ϕ(k) := minx∈X F (x,Pk) for all these distributions



Contamination for multistage risk-averse problems

� Suppose nonempty, bounded set of optimal solutions X ∗(P) of the
initial stochastic program

� Then the directional derivative is given by:

ϕ′(0+) = min
x∈X ∗(P)

F (x ,Q)− ϕ(0)

� ϕ(k) concave on [0, 1]

� The contamination bounds follow:

(1− k)ϕ(0) + kϕ(1) ≤ ϕ(k) ≤ ϕ(0) + kϕ′(0+), k ∈ [0, 1]



Contamination for multistage risk-averse problems

� For large-scale problems we cannot compute a precise solution
� We apply SDDP to the sampled distributions P̂ and Q̂
� We have deterministic lower bound ϕ for problems under P̂ and Q̂
� We use our estimator to obtain upper bound ϕ under P̂

� Let x̃∗ be the approximate solution of the initial problem
� We compute upper estimate F̄ (x̃∗, Q̂) of F (x̃∗, Q̂) in the similar

manner as we compute our improved upper bound
� The solution of the initial problem is represented by the sets of cuts
� We sample the scenarios from Q̂
� We calculate the solution using the cuts from the initial problem and the

scenario from the contaminating problem
� This solution is used in the upper bound calculation

� The approximate contamination bounds are given by:

(1− k)ϕ(P̂) + kϕ(Q̂) ≤ ϕ(P̂k) ≤ (1− k)ϕ(P̂) + kF̄ (x̃∗, Q̂)



Numerical results

� Monthly data from Prague Stock Exchange, January 2009 to
February 2012

� Risk aversion coefficients set to λt = 10%

� Contaminating distribution Q was obtained by increasing the
variance by 20%

� 3 and 5 stage problems with 1, 000 descendants per node

� We have calculated the derivative values for 10 times and used
their mean as well as empirical statistical upper bound



Results - 3 stages without transaction costs
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Results - 5 stages without transaction costs
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Model comparison

� Monthly data from Prague Stock Exchange, January 2009 to
February 2012

asset mean std. deviation
AAA 1.0290 0.1235

CETV 0.9984 0.2469

ČEZ 0.9990 0.0647

ERSTE GROUP BANK 1.0172 0.1673

KOMERČŃI BANKA 1.0110 0.1157

ORCO 1.0085 0.2200

PEGAS NONWOVENS 1.0221 0.0863

PHILIP MORRIS ČR 1.0213 0.0719

TELEFÓNICA C.R. 0.9993 0.0595

UNIPETROL 1.0079 0.0843

VIENNA INSURANCE GROUP 1.0074 0.1100



Model comparison

� Two different models, nested and multi-period CVaR risk measure
� Two different distributions:

� P based on the input data
� Q constructed from P by increasing the variance by 20% to test the

stability

� We have repeated the sampling for 10 times

� The CVaR levels αt were always set to 5%

� No transaction costs, ft = 0%

� Three-stage model with 1, 000 descendants per node, total of
1, 000, 000 scenarios

� Best performing assets - AAA, PEGAS and PHILLIP MORRIS



Model comparison

� Both models relatively stable with respect to variance of the
underlying distribution

� Nested model has more stable solutions and better diversification

� When increasing λt , solutions become more stable in both models

λt model distr. AAA PEGAS PHILIP M.

0.1 nested P̂ 0.2388 (0.1133) 0.3893 (0.1109) 0.3720 (0.1011)

0.1 nested Q̂ 0.2718 (0.1600) 0.3582 (0.0902) 0.3700 (0.1565)

0.1 multiper. P̂ 0.6034 (0.3681) 0.2262 (0.2084) 0.1704 (0.2000)

0.1 multiper. Q̂ 0.6032 (0.3453) 0.1660 (0.1562) 0.2308 (0.2369)

0.2 nested P̂ 0.1774 (0.0681) 0.4132 (0.0774) 0.4032 (0.0907)

0.2 nested Q̂ 0.1730 (0.0541) 0.3471 (0.0566) 0.4545 (0.0429)

0.2 multiper. P̂ 0.3081 (0.1472) 0.2993 (0.1757) 0.3926 (0.0990)

0.2 multiper. Q̂ 0.3127 (0.1776) 0.3963 (0.0975) 0.2910 (0.1781)



Future research

� Statistical properties of the proposed upper bound estimators

� Approximation functions applicable in importance sampling
schemes for various practical problems

� Application in hydroelectric scheduling under inflow uncertainty
� Develop analogous schemes and estimators for other risk measures

� Spectral risk measures based on CVaR

� Scenario reduction techniques under stage-wise independence
� More general structures without the stage-wise independence

assumption
� Markov chains
� Additive dependence models

� Implement parallel processing for SDDP



Conclusion

Thank you!

Václav Kozḿık
vaclav@kozmik.cz
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� RUSZCZYŃSKI, A. and SHAPIRO, A. (2006): Conditional risk
mappings, Mathematics of Operations Research vol. 31, pp.
544–561.

� SHAPIRO, A. (2011): Analysis of stochastic dual dynamic
programming method, European Journal of Operational Research
209, pp. 63-72.

� SHAPIRO, A. (2009): On a time consistency concept in risk averse
multistage stochastic programming, Operations Research Letters
vol. 37, pp. 143–147



Publications
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� KOZMÍK, V. (2014): On Variance Reduction of Mean-CVaR
Monte Carlo Estimators
� Accepted in Computational Management Science, doi:

10.1007/s10287-014-0225-7
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� DUPAČOVÁ, J. (2013): Ways and means with scenarios, Bulletin
of the Czech Econometric Society, vol. 20, pp. 112–123.
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