Similarities and differences between stochastic programming, dynamic programming and optimal control

Václav Kozmík

Faculty of Mathematics and Physics Charles University in Prague

11 / 1 / 2012

Stochastic Optimization

- Different communities focus on special applications in mind
 - Therefore they build different models
 - Notation differs even for the terms that are in fact same in all communities
- The communities are starting to merge
 - Ideas and algorithms may be useful in all communities
- We will focus on:
 - Stochastic programming
 - Dynamic programming
 - Optimal control

Stochastic programming

Basic model (Shapiro et al., 2009)

$$\min_{x_1 \in \mathcal{X}_1} f_1(x_1) + \mathbb{E} \left[\inf_{x_2 \in \mathcal{X}_2(x_1,\xi_2)} f_2(x_2,\xi_2) + \mathbb{E} \left[\inf_{x_3 \in \mathcal{X}_3(x_2,\xi_3)} f_3(x_3,\xi_3) + \cdots \right. \right. \\ \left. + \cdots \mathbb{E} \left[\inf_{x_T \in \mathcal{X}_T(x_{T-1},\xi_T)} f_T(x_T,\xi_T) \right] \right] \right]$$

Decisions x_t are typically real-valued vectors
 Integer values are possible, but significantly harder to solve

- Decisions x_t do not influence probability distributions of $\xi_{t'} \forall t'$
- We require nonanticipativity: x_t is measurable w.r.t. $\sigma(\xi_{[t]})$

Stochastic programming

We can develop dynamic programming equations

$$\min_{x_1} f_1(x_1) + \mathbb{E} \left[Q_2(x_1, \xi_2) \right]$$

s.t. $x_1 \in \mathcal{X}_1$

$$Q_t(x_{t-1},\xi_t) = \inf_{x_t} f_t(x_t,\xi_t) + \mathbb{E} \left[Q_{t+1}(x_t,\xi_{t+1}) | \xi_{t} \right]$$

s.t. $x_t \in \mathcal{X}_t(x_{t-1},\xi_t)$

Dynamic programming

- Basic model (Puterman, 1994)
 - \Box Decision epochs $t = 1, \ldots, N$ or $t = 1, 2, \ldots$
 - \square Set of possible system states: S
 - $\ \ \square$ Set of possible actions in the state $s \in S$: A_s
 - \square Reward function for choosing an action $a \in A_s$ in the state s: $r_t(s, a)$
 - \Box Transition probabilities for the next state of the system $p_t(\cdot|s,a)$
 - $\hfill\square$ We maximize the expected value of all rewards
- Set of states *S* is usually finite
- Sets of actions A_s are usually finite
- Extensions to countable, compact or complete spaces S and A_s are possible
- We usually seek Markov decision rules $d_t: S
 ightarrow A_s$
 - $\hfill\square$ Decisions can be also random and history dependent
- Rewards and transition probabilities are typically stationary

Dynamic programming

- Denote random sequence of states X_t
 - $\hfill\square$ X_1 deterministic or specified by a probability distribution
- Following a decision rule d_t we select sequence of actions $Y_t = d_t(X_t)$
- Decisions affect the transition probabilities for following period
- We seek policy π consisting of decision rules d_t :

$$max_{\pi} \mathbb{E}\left[\sum_{1}^{\infty} \lambda^{t-1} r_t(X_t, Y_t)\right]$$

- \Box Discount factor $\lambda_t \in (0, 1]$
- □ In the finite case we have salvage value $r_N(s)$ and maximize $\mathbb{E}\left[\sum_{1}^{N} r_t(X_t, Y_t) + r_N(X_N)\right]$

Optimal control

- Initial state $X(0) = x_0$
- State evolves according to stochastic differential equation:

$$dX(t) = f(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dW(t)$$

- Set of possible controls U
- Basic model (Fleming, Soner (2006))

$$\min_{u \in U} \mathbb{E} \int_0^T L(t, X(t), u(t)) dt + \psi(X(T))$$

or infinite horizon discounted cost problem $\beta \geq 0$

$$\min_{u\in U} \mathbb{E} \int_0^\infty \exp^{-\beta t} L(X(t), u(t)) dt$$

Discontinuous control u can be also admitted

Decision epochs

Stochastic programming

- Discrete time steps
- Two-stage problems or problems with modest number of stages (hundreds) are usual

Dynamic programming

- Discrete time steps
- Usually infinite horizon problems with discount
- \square Also finite horizon problems with large number of stages can be solved

Optimal control

- Continuous time
- Both finite horizon and infinite horizon problems
 - Random horizon (Markov time) also possible = Optimal stopping

State variable

 Usually models resource state, information state or knowledge about unknown parameters

Definition (Powell (2011))

A state variable s is the minimally dimensioned function of history that is necessary to compute the decision function, the transition function and the contribution function.

- Every dynamic program is Markovian provided that the state variable is complete
- In stochastic programming, the decision vector x is the state variable
 - $\hfill\square$ Decisions and states are coupled together
- State vector x in optimal control

Decisions / Actions / Controls

Different notations:

- \Box Stochastic programming: decision x
- Dynamic programming: action a
- Optimal control: control u
- Typical shape differs (provided by different applications):
 - Decision x is usually high-dimensional vector
 - □ Action *a* refers to discrete (or discretized) actions
 - \Box Control *u* is used for low-dimensional (continuous) vectors
- Stochastic programming puts focus on the first stage decision x₁
- Optimal control community develop controls for the complete horizon
- Both cases are present in dynamic programming

Exogenous information

- Stochastic programming
 - □ Modeled by scenarios ξ
 - Scenarios influence the constraints of the model
 - \Box Usually ξ_t is assumed to be know at stage t
 - Scenario probabilities are not influenced by our decisions
 - Or: decisions determine when uncertainty is resolved (Grossman, 2006)
- Dynamic programming
 - Exogenous information is encoded in the transition function $p_t(\cdot|s, a)$
 - Called transition kernel in the continuous case
 - Direct observation of the exogenous inputs is possible by including them into the state variables
- Optimal control
 - \square Random variable W_t , usually Wiener process
 - Not known at time t
 - Natural due to the continuous nature of the problems
 - Not influenced by our decisions

Transition function

- Stochastic programming
 - Transition encoded into the program constraints
 - Usually linear equations of the form

$$B_t x_{t-1} + A_t x_t = b_t$$

Dynamic programming

- Model-based problems the transition matrix is known
- Model-free problems complex systems
 - Transition function is known, but the probability law for the exogenous information is not known
- Optimal control
 - Generic transition functions
 - Too general to be used in stochastic programming
 - Usually in the form of stochastic differential equation

Objective function

- Stochastic programming
 - Objective function usually linear or convex

 $f_1(x_1) + \mathbb{E}\left[f_2(x_2,\xi_2) + \mathbb{E}\left[f_3(x_3,\xi_3) + \dots + \mathbb{E}\left[f_T(x_T,\xi_T)|\xi_{[T-1]}\right] \cdots |\xi_{[2]}\right]\right]$

- Does not have to be additive or linear
- Dynamic programming & Optimal Control
 - Usually infinite horizon discounted problem

$$\mathbb{E}\left[\sum_{1}^{\infty} \lambda^{t-1} r_t(X_t, Y_t)\right] \text{ or } \int_0^{\infty} \exp^{-\beta t} L(X(t), u(t)) dt$$

Alternatively finite horizon with a terminal cost
 Additivity is important

Stochastic programming - solution approach

- We usually solve SAA versions of the continuous problems
 - $\hfill\square$ Simple problems can be solved directly with simplex method
- Exploit the special problem structure
 - Recourse functions are polyhedral in the case of linear programs and finite number of scenarios
 - $\hfill\square$ More generally, we rely on the convexity property
 - Lower bounding cuts of the recourse function are constructed to obtain approximate solution
 - Benders' decomposition, L-shaped method
 - Stochastic decomposition
- Decompose the problem by scenarios
 - We solve the problem scenario by scenario and iteratively find solution by penalizing anticipative solutions
 - Progressive hedging (Lagrangian relaxation)
 - Well suited for mixed integer stochastic programs (nonconvex)

Stochastic programming - solution approach

- For multistage programs we have extensions to the classic algorithms:
 - $\hfill\square$ Nested Benders' decomposition
 - Multistage Stochastic decomposition
- But we usually hit the curse of dimensionality
 - □ Number of scenarios grows exponentially with the number of stages
 - $\hfill\square$ Special algorithms usually rely on stage independence assumption
 - Exogeneous inputs are supposed independent
 - Stochastic Dual Dynamic Programming algorithm

- Focus on deterministic Markov policies
 - $\hfill\square$ They are optimal under various conditions
- Finite horizon problems
 - Backward induction algorithm
 - Enumerates all system states
- Infinite horizon problems
 - Bellmann's equation for value function v

$$v^*(s) = \max_{a \in A_s} \left\{ r(s, a) + \lambda \sum_{s' \in S} p(s'|s, a) v^*(s') \right\}$$

Optimal solution guaranteed by fixed-point theorems:

$$v = \max_{d \in D} \left\{ r_d + \lambda P_d v \right\} = L v$$

- Value iteration
 - \Box Start with arbitrary v^0
 - □ Iterate while the value function improves significantly

$$v^{n+1}(s) = \max_{a \in A_s} \left\{ r(s,a) + \lambda \sum_{s' \in S} p(s'|s,a) v^n(s') \right\}$$

- Policy iteration
 - \Box Start with arbitrary decision $d_0 \in D$
 - Policy evaluation obtain vⁿ

$$(I - \lambda P_{d_n})v = r_{d_n}$$

□ Policy improvement - find d_{n+1}

$$d_{n+1} \in \arg \max_{d \in D} \left\{ r_d + \lambda P_d v^n \right\}$$

Combination of above - modified policy iteration

- Generalized notation
 - □ Reward function $r(s, a, \omega)$
 - \Box Transition function $f(s, a, \omega)$
 - \Box For a given realization ω : $Y_t = d_t(X_t)$, $X_{t+1} = f(X_t, Y_t, \omega)$
- Q-factors
 - \square Bellman's equation with Q^* as the optimal Q-factor:

$$v^*(s) = \max_{a \in A_s} \left\{ Q^*(s, a)
ight\}$$

$$Q^*(s, a) = \mathbb{E}\left[r(s, a, \omega) + \lambda \max_{a' \in A_{s'}} Q^*(s', a')
ight]$$

Once Q-factors are known optimization is model-free

- Approximation in value space
 - □ Approximation architecture: consider only v(s) from a parametric class v(s, r)
 - \Box Training the architecture: determine optimal $r \in \mathbb{R}^m$
 - \Box Context-dependent features (basis functions) $\phi(s)$
 - Polynomial approximation, kernels, interpolation, ...
 - Special features, for example in chess: material balance, safety, mobility
 - \Box Linear architecture: $\phi(s)^{\top}r$
- Approximate Value iteration
 - □ Select small subset $S_n \subset S$ and compute $\forall s \in S_n$:

$$\tilde{v}^{n+1}(s) = \max_{a \in A_s} \left\{ r(s,a) + \lambda \sum_{s' \in S} p(s'|s,a) \tilde{v}^n(s') \right\}$$

 \square Fit the function $\tilde{v}^{n+1}(s) \ \forall s \in S$ to the set S_n

- Approximate Policy iteration
 - Guess initial policy
 - \Box Evaluate approximate cost using simulation, $\tilde{v}(s) = \phi(s)^{\top} r$
 - Cost samples obtained by simulation
 - Weights r optimized through least squares
 - $\hfill\square$ Generate improved policy using linear approx. of the value function
 - Exploration issue cost samples biased by current optimal policy
 - Randomization, mixture of policies
- Q-learning
 - □ Sampling: select pairs (s_k, a_k) and select s'_k according to $p(\cdot|s_k, a_k)$
 - \square Iteration: update just $Q(s_k, a_k)$ with $\gamma_k \sim 1/k$

$$Q(s_k, a_k) = (1 - \gamma_k)Q(s_k, a_k) + \gamma_k \left(r(s_k, a_k, s_k') + \lambda \max_{a' \in A_{s'}} Q(s_k', a') \right)$$

model-free: need only simulator to generate next state and cost

Optimal control - solution approach

Define cost-to-go function J(t, X(t))

$$J(t,X(t)) = \min_{u(t) \in U} \mathbb{E} \int_{t}^{T} L(t,X(t),u(t)) dt + \psi(X(T))$$

Hamilton-Jacobi-Bellman equation:

$$\frac{\partial J(t,x)}{\partial t} + \min_{u(t)\in U} \left\{ L(t,x,u) + \frac{\partial J(t,x)}{\partial x} f(t,x,u) + \frac{1}{2} \operatorname{tr} \left\{ \sigma(t,x,u) \sigma^{\top}(t,x,u) \frac{\partial^2 J(t,x)}{\partial x^2} \right\} \right\} = 0$$

$$U(T,X(T)) = \psi(X(T))$$

Explicit solutions are rarely found
 Numerical solutions for differential equations

Optimal control - solution approach

Differential of J(t, X(t)) is important only in values along the optimal path

$$p(t) = J_x^*(t, x^*(t))$$

Define Hamiltonian function H(t, x, u, p, p_x):

$$H(t, x, u, p, p_x) = L(t, x, u) + f(t, x, u)^{\top} p + \frac{1}{2} \operatorname{tr} \left\{ p_x \sigma(t, x, u) \sigma^{\top}(t, x, u) \right\}$$

Pontryagin principle:

$$\begin{cases} dx^* = H_p^* dt + \sigma dW \\ dp^* = -H_x^* dt + p_x \sigma dW \\ x^*(0) = x_0 \\ p^*(T) = \psi_x(T, X(T)) \\ H^*(t, X(t), u(t), p(t), p_x(t)) = \min_u H(t, X(t), u, p(t), p_x(t)) \end{cases}$$

We usually need to prove optimality

References

- Bertsekas, D. P. (2012): Dynamic Programming and Optimal Control, Vol. II, 4th Edition: Approximate Dynamic Programming. Athena Scientific, ISBN 1-886529-44-2.
- Fleming, W. H., Soner, H. M. (2006): Controlled Markov Processes and Viscosity Solutions
- Goel, V., Grossmann, I. (2006): A Class of Stochastic Programs with Decision Dependent Uncertainty
- Powell, W. B. (2012): AI, OR and Control Theory: A Rosetta Stone for Stochastic Optimization
- Puterman, M. L. (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming
- Shapiro, A., Dentcheva, D., Ruszczynski A. (2009): Lectures on Stochastic Programming: Modeling and Theory

Conclusion

Thank you for your attention!

Václav Kozmík vkozmik@gmail.com

