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Abstract

We develop an optimization method for constructing investment port-

folios that dominate a given benchmark portfolio in terms of third-degree

stochastic dominance. Our approach relies on the properties of the semi-

variance function, a refinement of an existing ‘super-convex’ dominance

condition and quadratic constrained programming. We apply our method

to historical stock market data using an industry momentum strategy. Our

enhanced portfolio generates important performance improvements com-

pared with alternatives based on mean-variance dominance and second-

degree stochastic dominance. Relative to the CSRP all-share index, our

portfolio increases average out-of-sample return by almost seven percent-

age points per annum without incurring more downside risk, using quar-

terly rebalancing and without short selling.
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1 Introduction

Portfolio optimization based on stochastic dominance (SD) considers the

entire probability distribution of investment returns. This approach is theoreti-

cally more appealing but analytically more demanding than mainstream mean-

variance (MV) analysis, which considers only expected return and standard

deviation. Interestingly, modern-day computer hardware and solver software

bring SD optimization within reach of practical application.

The original, first-degree stochastic dominance (FSD) criterion by Quirk

and Saposnik (1962) relies on the minimal assumption that investors prefer

more to less, without restricting the attitude towards risk. Not surprisingly,

this criterion can not rank most portfolios and often leads to indecision or sub-

optimal solutions. Indeed, most applications of SD to portfolio choice are based

on the more powerful second-degree stochastic dominance (SSD) criterion by

Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz

(1970), which assumes that investors are risk averse.

Shalit and Yitzhaki (1994), Kuosmanen (2004), Roman, Darby-Dowman and

Mitra (2006), Scaillet and Topaloglou (2010), Kopa and Post (2015), Armbruster

and Delage (2015) and Longarela (2016) develop various linear programming

(LP) and mixed integer linear programming (MILP) problems to construct an

enhanced portfolio that dominates a given benchmark portfolio in terms of SSD.

Clark, Jokung and Kassimatis (2011), Roman, Mitra and Zverovich (2013) and

Hodder, Jackwerth and Kolokolova (2015) apply SSD optimization to active

stock selection and asset allocation.

SSD leads to vast performance improvements over FSD. Nevertheless, SSD

often trails MV dominance by allowing for unrealistic preferences over higher-

order moment risk. Notably, SSD allows for investors whose risk aversion

(−u′′(x)) increases with wealth and who, consequently, prefer negative skewness

to positive skewness. A given pair of portfolios will be deemed incomparable by

SSD if these hypothetical ‘skewness haters’ disagree with ‘standard’ investors

about the ordering of the portfolios.

To avoid this problem, we develop a portfolio optimization method based

on Whitmore’s (1970) third-degree stochastic dominance (TSD). TSD is less

restrictive than SSD, because it requires a preference ordering only for ‘skewness

lovers’, or those risk averters who exhibit decreasing risk aversion (Menezes,

Geiss and Tressler (1980)). This assumption is accepted by financial economists

based on compelling theoretical and empirical arguments.
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The relaxation of the dominance restriction improves the feasible combi-

nations of return and risk. In particular, TSD is well suited for constructing

enhanced portfolios with less downside risk and more upside potential than the

benchmark. The SSD criterion ignores these solutions if they are sub-optimal

for some skewness haters.

In related work, Porter, Wart and Ferguson (1973), Bawa (1975), Bawa,

Lindenberg and Rafsky (1979) and Bawa et al. (1985) provide algorithms for

TSD comparisons between a finite number of given investment alternatives.

Gotoh and Konno (2000) develop mean-risk models that are consistent with

TSD. We extend these earlier works by accounting for all (infinitely many)

feasible portfolios formed from a discrete set of base assets and for all (infinitely

many) relevant utility functions and risk measures.

Post (2003, Eq. (20)) and Post and Versijp (2007, Section IV) develop

linearizations of the first-order optimality conditions for TSD preferences. We

can test whether a given portfolio obeys these conditions using a small linear

program. In portfolio management, this approach can be used for in-sample

back testing and out-of-sample performance evaluation of a given portfolio. Our

study goes one step further by also covering the active portfolio construction

phase.

Section 2 presents our analytical framework. Our strategy relies on the prop-

erties of the semivariance function, a refinement of an existing ‘super-convexity’

dominance condition and quadratic constrained programming.

Section 3 applies our optimization method to active industry-based asset al-

location, following Hodder, Kolokolova and Jackwerth (2015). Since we use an

intermediate formation period and a short holding period, the investment strat-

egy in effect exploits known price momentum patterns (Jegadeesh and Titman

(1993), Moskowitz and Grinblatt (1999)). Momentum strategies typically use

an heuristic approach to portfolio formation. The explicit use of decision theory

and optimization seems an interesting addition to the momentum literature.

2 Methodology

2.1 Analytical Strategy

Kopa and Post (2015), Armbruster and Delage (2015) and Longarela (2016)

implement SD optimization by searching simultaneously over portfolio weights

and piecewise-linear utility functions. Although this approach is exact for SSD,

it can provide only an approximation for TSD, because decreasing risk aversion
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does not allow for local linearity. High precision for all return levels and admis-

sible utility functions requires an ultra-fine discretization of the return range.

Unfortunately, the problem size explodes as one refines the partition, because

the number of model variables and constraints grows at a quadratic rate with

the number of grid points.

This study uses an alternative strategy based on the formulation of TSD in

terms of semivariance, or the second-order lower partial moment (Bawa’s (1975),

Fishburn (1977)). At first sight, this route appears analytically challenging, be-

cause it requires the evaluation of the semivariance function at a continuum

of threshold levels, and, in addition, computing the semivariance involves bi-

nary variables to indicate whether portfolio return falls below a given threshold

level in a given scenario. Nevertheless, we present tractable solutions to these

challenges and the resulting approach is more convenient than searching over

piecewise-linear utility functions.

Our strategy employs the ‘super-convex’ TSD (SCTSD) approach of Bawa

et al. (1985), which requires a reduction of the semivariance at a discrete num-

ber of return levels. SCTSD provides a tight sufficient condition for TSD. We

modify the original SCTSD approach to get an even tighter sufficient condi-

tion based on a piecewise-linear approximation to the semivariance function.

In contrast to piecewise-linear approximations of admissible utility functions,

our approximation does not require an ultra-fine partition, because the relevant

semivariance function is known and simple.

We characterize SCTSD by means of an exact and finite system of linear

and convex quadratic constraints. Using this system, we can construct an

SCTSD enhanced portfolio by means of convex quadratic constrained program-

ming (QCP). To reduce the computational burden in large-scale applications,

we propose an effective method to reduce the number of model variables and

constraints using vertex enumeration. Using the reduced problem, we are able

to perform large-scale applications in less than a minute of run time using a

retail desktop computer and standard solver software.

2.2 Definitions

We consider K distinct base assets with random investment returns x ∈ XK ,

X := [a, b], −∞ < a < b < +∞. The portfolio possibility set is represented

by the unit simplex Λ :=
{
λ ∈ RK : λ ≥ 0K ;λ′1K = 1

}
. Importantly, the base
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assets are not restricted to individual securities. In general, the base assets are

defined as the most extreme feasible combinations of the individual securities.

This formulation allows for general linear weight constraints, including short

sales constraints, position limits and restrictions on risk factor loadings. To

allow for dynamic intertemporal investment problems, these combinations may

be periodically rebalanced based on a conditioning information set. In our

application, the base assets are stock portfolios that are formed based on the

industry classification of individual stocks.

The returns of the base assets are treated as random variables with a discrete

joint probability distribution with T mutually exclusive and exhaustive scenarios

with realizations Xs := (X1,s · · ·XK,s)
T

and probabilities ps : =P[x = Xs],

s = 1, · · · , T . The cumulative distribution function for portfolio λ ∈ Λ is given

by Fλ(x):=
∑T
t=1 ptDλ,t(x), where Dλ,s(x), s = 1, · · · , T , is a binary variable

that takes a value of one if XT
s λ ≤ x and zero otherwise. Our application

analyzes empirical distributions with equally likely, historical scenarios, ps = 1
T ,

s = 1, · · · , T .

We evaluate a given and feasible benchmark portfolio τ ∈ Λ. To simplify the

notation, we use ys := XT
s τ , s = 1, · · · , T , and we assume that the scenarios

are ranked in ascending order by the benchmark returns: y1 ≤ · · · ≤ yT .
There exist several equivalent formulations of SD criteria. Our analysis uses a

common formulation in terms of lower partial moments (Bawa (1975), Fishburn

(1977)). For SSD, the first-order lower partial moment (LPM), or expected

shortfall, is the relevant risk measure. We use the following definition of the

expected shortfall for portfolio λ ∈ Λ and threshold return x ∈ X :

Eλ(x) :=

T∑
t=1

pt(x−XT
t λ)Dλ,t(x). (1)

In general, expected shortfall is a continuous, non-negative, non-decreasing

and convex function. Under our discrete distribution, Eλ(x) takes a piecewise-

linear form with discontinuous increases in its slope at XT
s λ, s = 1, · · · , T. The

relation between Eλ(x) and Fλ(x) is that Eλ(x) =
´ x
a
Fλ(z)dz and (∂Eλ(x)/∂x) =

Fλ(x).

We use the term ‘expected shortfall’ here to refer to the first-order LPM

rather than the Conditional Value at Risk (CVaR). CVaR is the conditional

expectation of outcomes below a given percentile; see, for example, Scaillet

(2004). These two concepts are closely related. Specifically, (Eλ(x)/Fλ(x)− x)
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equals the CVaR for the Fλ(x) percentile, or a confidence level of (1−Fλ(x)).

Not surprisingly, we can formulate SSD equivalently in terms of the first-order

LPM or the CVaR.

Definition 2.2.2: Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by

second-degree stochastic dominance (SSD), or λ �SSD τ , if

Eλ(ys) ≤ Eτ (ys), s = 1, · · · , T. (2)

SSD is a mathematical preorder on the portfolio set Λ: it possesses reflexivity

and transitivity but not anti-symmetry, as two distinct portfolios are equivalent

if their return vectors are identical (XT
s λ = ys, s = 1, · · · , T ). The economic

meaning of the preorder can be explained using the following set of increasing

and concave utility functions:

U2:=
{
u ∈ C2(X ) : u′(x) ≥ 0;u′′(x) ≤ 0 ∀x ∈ X

}
. (3)

It is known that λ �SSD τ if and only if
∑T
t=1 ptu

(
XT
t λ
)
≥
∑T
t=1 ptu (yt)

for all u ∈ U2; see Hadar and Russell (1969), Hanoch and Levy (1969) and

Rothschild and Stiglitz (1970).

For TSD, the second-order LPM, or semivariance, is the relevant risk mea-

sure. We use the following definition of the semivariance for portfolio λ ∈ Λ

and threshold return x ∈ X :

S2λ(x):=

T∑
t=1

pt(x−XT
t λ)2Dλ,t(x). (4)

In general, semivariance is a continuously differentiable, non-negative, non-

decreasing and convex function of the threshold return x ∈ X (see Gotoh and

Konno (2000, Thm 3.1)). For our discrete distribution, S2λ(x) takes a piecewise-

quadratic form with jumps in its curvature at XT
s λ, s = 1, · · · , T. Also rele-

vant for our analysis is that S2λ(x) is a convex function of the portfolio weights

λ. Other useful results are S2λ(x) = 2
´ x
a
Eλ(y)dy = 2

´ x
a

´ y
a
Fλ(z)dzdy and(

∂S2λ(x)/∂x
)

= 2Eλ(x).

Definition 2.2.1: Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by

third-degree stochastic dominance (TSD), or λ �TSD τ , if
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S2λ(x) ≤ S2τ (x), ∀x ∈ X ; (5)

T∑
t=1

ptX
T
t λ ≥

T∑
t=1

ptyt.

The economic meaning of TSD can be explained using the following set of

utility functions:

U3:=
{
u ∈ C3(X ) : u′(x) ≥ 0;u′′(x) ≤ 0;u′′′(x) ≥ 0 ∀x ∈ X

}
. (6)

U3 imposes the accepted assumption of decreasing risk aversion or skewness

love (u′′′(x) ≥ 0) in addition to non-satiation and risk aversion. It is known

that λ �TSD τ if and only if
∑T
t=1 ptu

(
XT
t λ
)
≥
∑T
t=1 ptu (yt) for all u ∈ U3;

see Whitmore’s (1970).

Since TSD does not require a preference ordering for ‘skewness haters’, it is

easier to establish a TSD relation than an SSD relation. SSD is a sufficient but

not necessary condition for TSD:(λ �SSD τ ) ⇒ (λ �TSD τ ). This entailment

can be derived from U3 ⊂ U2 or, equivalently, from S2λ(x) = 2
´ x
a
Eλ(y)dy. It

follows that the set of portfolios that dominate the benchmark by TSD is larger

than the set of portfolios that dominate it by SSD.

To illustrate the potential improvements, consider gross benchmark returns

in three equally likely scenarios (p1 = p2 = p3 = 1
3 ) with y1 = 0.90, y2 = 1.10

and y3 = 1.30. A hypothetical example of a TSD enhancement is XT
1 λ = 0.97,

XT
2 λ = 1.00 and XT

3 λ = z, z ≥ 1.34. Every plausible investor will chose

this enhancement for its attractive combination of downside risk and upside

potential. Nevertheless, the SSD rule does not detect dominance, because the

enhanced portfolio increases expected shortfall, without increasing semivariance,

for some threshold levels. For example, we have Eλ(1.1) = 0.077 > 0.067 =

Eτ (1.1), but S2λ(1.1) = 0.009 < 0.013 = S2τ (1.1). MV dominance also does not

occur, because the enhanced portfolio has a higher variance than the benchmark

for every z ≥ 1.34.
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2.3 Super-Convex TSD

The SSD criterion (2) is formulated using a finite number of threshold levels,

because Eλ(ys) ≤ Eτ (ys), s = 1, · · · , T, implies Eλ(x) ≤ Eτ (x) for all x ∈ X , due

to the convex and piecewise-linear shape of expected shortfall. By contrast, the

TSD criterion (5) requires the evaluation of S2λ(x) at a continuum of threshold

levels x ∈ X .

Following Bawa et al. (1985), our analysis uses a tight sufficient condition

for TSD that is based on a discretization of the return range X . Our default

specification sets the threshold values equal to the realizations of benchmark:

x = ys, s = 1, · · · , T , just as in formulation (2) of SSD. The sufficient condition

requires minimum levels of slack for the semivariance inequalities (5) at these

threshold levels. We pay special attention to the tolerance parameters that

control the minimum slack levels.

More specifically, we refine the definition of Bawa et al. (1985, Section C.2)

in the following way:

Definition 2.3.1: Let εs ≥ 0, s = 1, ..., T , a series of data-dependent toler-

ance parameters that are defined as ε1, ε2 := 0 and

εs :=

(
S2τ (ys)

S2τ (ys−1) + 2Eτ (ys−1)(ys − ys−1)
− 1

)
, s = 3, · · · , T. (7)

Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by super-convex third-degree

stochastic dominance (SCTSD), or λ �SCTSD τ , if

(1 + εs)S2λ(ys) ≤ S2τ (ys), s = 1, · · · , T ; (8)

T∑
t=1

ptX
T
t λ ≥

T∑
t=1

ptyt.

Some remarks on terminology seem in order. Bawa et al. (1985) use the

term ‘super-convex’ to indicate that their dominance condition is stronger than

Fishburn’s (1974) condition of ‘convex stochastic dominance’. In turn, convex

TSD is stronger than pairwise TSD, at least for the analysis of a discrete choice

set. For our analysis, which uses a convex portfolio possibility set Λ, convex TSD

is equivalent to pairwise TSD by some feasible portfolio λ ∈ Λ. Nevertheless,
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super-convex TSD is stronger than pairwise TSD.

How does our definition differ from the original definition of SCTSD? Bawa

et al. (1985, Section C.2) use the same value for all tolerance parameters, or

εs = ε, s = 1, ..., T , where the value of ε is selected to ensure (1 + ε)S2τ (ys) ≥
S2τ (ys+1), s = 1, ..., T − 1. By contrast, our refinement uses a different value for

every tolerance, depending on the expected shortfall and semivariance for the

relevant threshold level. Our restrictions give a tighter sufficient condition for

TSD and can achieve a given level of accuracy using a rougher partition and

hence a smaller problem size.

The following result tightens Theorem 7 of Bawa et al. (1985, p. 425):

Proposition 2.3.1: If portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by SCTSD,

then λ also dominates τ by TSD: (λ �SCTSD τ )⇒ (λ �TSD τ ) .

Proof: We need to show that the SCTSD conditions imply S2λ(x) ≤ S2τ (x)

for all threshold levels x ∈ X . We provide a separate analysis for various sub-

intervals of X .

First, consider x ∈ [a, y2]. Since ε1 = 0, (8) implies S2λ(y1) ≤ S2τ (y1) = 0 and,

therefore, S2λ(x) ≤ S2τ (x) = 0 for all x ∈ [a, y1], because S2λ(x) and S2τ (x) are

non-decreasing. Since ε2 = 0, (8) also implies S2λ(y2) ≤ S2τ (y2). This entailment,

together with S2λ(y1) = 0, implies S2λ(x) ≤ S2τ (x) for all x ∈ [y1, y2). We can

demonstrate this with a contradiction. If S2λ(z) > S2τ (z) for some z ∈ [y1, y2)

and S2λ(y1) = 0, then Eλ(z) > Eτ (z), or
(
∂S2λ(x)/∂x

)
|x=z >

(
∂S2τ (x)/∂x

)
|x=z.

It follows that S2λ(x) grows faster than S2τ (x) on [z, y2], which implies S2λ(x) >

S2τ (x) for all x ∈ [z, y2] and contradicts S2λ(y2) ≤ S2τ (y2).

Next, consider x ∈ (ys−1, ys] for any s = 3, · · · , T. Consider the linear line

t(x) := S2τ (ys−1) + 2Eτ (ys−1)(x − ys−1). The crux of the proof is that, under

the SCTSD conditions, S2λ(x) ≤ t(x) ≤ S2τ (x) for all x ∈ (ys−1, ys]. Since(
∂S2τ (x)/∂x

)
= 2Eτ (x), it follows that t(x) is the tangency line at ys−1. Since

S2τ (x) is convex, the tangency line supports S2τ (x) from below. Furthermore,

given εs−1 > 0, (8) implies S2λ(ys−1) ≤ S2τ (ys−1) = t(ys−1), and, given (7), (8)

also implies S2λ(ys) ≤ S2τ (ys−1) + 2Eτ (ys−1)(ys − ys−1) = t(ys). Since S2λ(x) is

convex, and t(x) is linear, the combined results that S2λ(ys−1) ≤ t(ys−1) and

S2λ(ys) ≤ t(ys) imply that t(x) envelops S2λ(x) from above on the entire interval.

Finally, consider x ∈ (yT , b]. εT > 0 and (8) imply that S2λ(yT ) ≤ S2τ (yT ).

The SCTSD condition on the means
∑T
t=1 ptX

T
t λ ≥

∑T
t=1 ptyt can be rewritten

as
(
∂S2λ(x)/∂x

)
≤
(
∂S2τ (x)/∂x

)
for all x ∈ (yT , b]. Hence, S2λ(yT ) − S2τ (yT )

cannot increase and must remain non-positive on x ∈ (yT , b].�
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SCTSD is intended as an approximation of TSD rather than as an alternative

SD criterion. In fact, SCTSD is not even a preorder as it does not obey reflex-

ivity, as λ �SCTSD λ for all λ ∈ Λ. SCTSD does however obey transitivity:

(λ2 �SCTSD λ1 �SCTSD τ ) ⇒ (λ2 �SCTSD τ ).

As discussed in Section 2.2, (λ �SSD τ ) ⇒ (λ �TSD τ ) due to U3 ⊂ U2.

By contrast, SCTSD is not a necessary condition for SSD: (λ �SSD τ ) ;
(λ �SCTSD τ ). SSD and SCTSD are two non-nested sufficient conditions for

TSD. A distinguishing feature of SCTSD is that it approximates TSD as we

refine the discretization of the return range X , whereas SSD is not affected by

refinements.

In empirical applications with long time-series, our default specification for

the threshold values, x = ys, s = 1, · · · , T , generally yields a tight approxima-

tion. However, if the distribution is sparse in the tails, we may further tighten

the approximation by locally refining the discretization. To reduce the compu-

tational burden, we may also locally lessen the partition, for threshold levels

x = ys, 1 � s � T, in the center of the support, where the data tend to be

dense and S2λ(ys) ≈ S2λ(ys−1) for every λ ∈ Λ.

Figure 1 illustrates our approach using the historical distribution of daily

excess returns to the benchmark index used in our application from January 1

through December 31, 2013, our most recent formation period. The solid line

gives the semivariance of the benchmark as a function of the threshold level.

The dotted line in Panel A represents the approximation of Bawa et al.

(1985) using a partition based on the T = 252 daily observations. This ap-

proximation in effect multiplies the original semivariance levels by a factor of

(1+ε)−1 ≈ 0.40. We can establish TSD if the semivariance of an enhanced port-

folio lies below this line for all threshold levels. The approximation is poor due

to the sparsity of data in the left tail, where the semivariance makes relatively

large jumps, leading to a relatively high value of ε ≈ 1.48. In order to lower ε,

we would have to refine the partition and increase the number of constraints.

The dotted line in Panel B gives the approximation based on our tolerance

specification (7). This approach in effect uses a piecewise-linear lower envelope

for the semivariance function based on local linear approximation. Using this

approach, SCTSD and TSD are hardly distinguishable. A modest deviation

occurs in the right tail, where the data is sparse and the curvature of the semi-

variance function is highest. It is easy to iron out this wrinkle by adding a few

additional threshold values between 1.5 and 2.5 percentage points.
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[Insert Figure 1 about here.]

Our approach does not require an ultra-fine partition of the return range.

Using a rough partition based on just 25 equally spaced grid points yields results

that are not materially different from the partition based on the T = 252 daily

observations. This approach leads to a vast reduction of the computational

burden. By contrast, the original formulation of SCTSD does not allow for a

rough partition without compromising accuracy. It is also not possible with a

rough partition to achieve high accuracy using piecewise linear approximations

for all admissible utility functions u ∈ U3.

2.4 QCP formulation

Thus far, we have taken a candidate portfolio λ ∈ Λ as given. In this case, we can

directly check the SCTSD conditions (8) without numerical optimization by sim-

ply computing all the relevant semivariance levels S2λ(ys), s = 1, · · · , T . Search-

ing over the portfolio set for an SCTSD enhanced portfolio however requires nu-

merical optimization. At first sight, the binary variables Dλ,s(x), s = 1, · · · , T ,

in our definition of semivariance (4) seem to require integer programming if

the portfolio weights λ ∈ Λ are treated as model variables. However, we may

avoid integer programming by using the following linearly constrained convex

quadratic minimization problem for the semivariance of portfolio λ ∈ Λ and

threshold x ∈ X :

S2λ(x) = min
θ

T∑
t=1

ptθ
2
t (9)

θt ≥ x−XT
t λ, t = 1, · · · , T ;

θt ≥ 0, t = 1, · · · , T.

The problem is designed such that θ∗t = (x−XT
t λ)Dλ,t(x), t = 1, · · · , T , is

an optimal solution, which removes the need to use binary variables.

We can apply this quadratic formulation to every threshold x = ys, s =

1, · · · , T , in our SCTSD conditions (8). For this purpose, we introduce the

model variables θs,t, s, t = 1, · · · , T, to capture the terms (ys −XT
t λ)Dλ,t(ys),
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s, t = 1, · · · , T . In addition, we treat the portfolio weights λ ∈ Λ as model vari-

ables, which does not introduce further complications, because the constraints

of problem (9) are linear in the portfolio weights.

Combining these insights, we can identify SCTSD enhanced portfolios as

solutions to the following system of linear and convex quadratic constraints:

(1 + εs)

T∑
t=1

ptθ
2
s,t ≤ S2τ (ys), s = 1, · · · , T ; (10)

−θs,t −XT
t λ ≤ −ys, s, t = 1, · · · , T ;

−
T∑
t=1

ptX
T
t λ ≤ −

T∑
t=1

ptyt;

1T
Kλ = 1;

θs,t ≥ 0, s, t = 1, · · · , T ;

λk ≥ 0, k = 1, · · · ,K.

Any feasible solution λ∗ to this system dominates the benchmark portfolio τ

by SCTSD (and hence by TSD).

The system involves (T 2+K) variables and (T 2+T+2) constraints, excluding

(T 2 + K) non-negativity constraints. The T quadratic inequality constraints

are convex, which reflects that semivariance is a convex function of the portfolio

weights. The convexity of the constraints in the weights implies that the set of

SCTSD enhanced portfolios is convex.

To find an SCTSD enhanced solution, we can develop mathematical pro-

gramming problems that optimize an objective function given these constraints.

Examples of objective functions that are consistent with the TSD criterion are

maximizing the expected portfolio return and minimizing the portfolio semivari-

ance for a given threshold level. These objective functions are convex functions

of the portfolio weights, and hence we end up with a convex QCP problem.

System (10) ensures that the enhanced portfolio dominates the benchmark.

We may ask whether the portfolio is also efficient in the sense that it is not

possible to further improve any of the relevant performance criteria without

worsening other criteria. The portfolio will be efficient if the objective function

assigns a strictly positive weight to increasing the mean and reducing all rele-

vant semivariance levels. Kopa and Post (2015, Section 5) show how to specify

criterion weights based on a given utility function.
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However, if the objective function assigns a zero weight to some of the cri-

teria, then inefficiency may occur. To avoid this outcome, we may define a sec-

ondary objective function that does cover all criteria and solve a second problem

that optimizes the secondary objective function given the SCTSD constraints

and the optimal value of the primary objective function.

The goal in our application section is to maximize the expected portfolio

return. This orientation allows for an easy comparison with heuristic portfo-

lio construction rules and with MV optimization based on the same objective

function. Although the enhanced portfolio may not always be fully efficient, the

remaining improvement possibilities are negligible in our application: we find

no material effects on the in-sample and out-of-sample performance from using

a secondary objective function based on semi-variance reductions.

2.5 Problem reduction

Practical applications may involve hundreds of (historical or simulated) scenar-

ios and, in these cases, the raw QCP problem would involve tens or hundreds

of thousands of variables and constraints. In order to reduce the memory re-

quirements and run time, problem reduction seems desirable. As discussed in

Section 2.3, one way to reduce the problem size is to use less grid points than

the number of scenarios. Our refinement of the original SCTSD condition is de-

signed to allow for a relatively rough partition without compromising accuracy.

Below, we discuss an alternative reduction method.

The bulk of the problem size stems from the T 2 variables θs,t, s, t = 1, · · · , T ,

and T 2 constraints −θs,t −XT
t λ ≤ −ys, s, t = 1, · · · , T , which endogenize the

binary variables Dλ,t(ys), s, t = 1, · · · , T . Using a preliminary analysis, we can

establish unambiguously whether Dλ∗,t(ys) = 0 or, alternatively, Dλ∗,t(ys) =

1, for all solutions λ∗ to system (10), for many, if not most, scenarios and

thresholds. Fixing the values of the binary variables for these scenarios and

thresholds leads to a potentially large reduction of the number of variables and

constraints.

By construction, a solution portfolio λ∗ must have a higher mean return and

a higher minimum return than the benchmark. Consequently, the solution is an

element of the following subset of the portfolio choice set:
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Λ̃ :=

{
λ∈Λ :

T∑
t=1

ptX
T
t λ ≥

T∑
t=1

ptyt;X
T
1 λ ≥ y1

}
. (11)

The constraint XT
1 λ ≥ y1 is a necessary condition for mint

(
XT
t λ
)
≥ y1. If

the base assets are highly positively correlated, as is the case in our application,

then XT
1 λ ≈ mint

(
XT
t λ
)

and the necessary condition is tight.

Importantly, Λ̃ is a convex polytope and we may therefore reformulate it as

the convex hull of its V vertices, or its most extreme portfolios. One practical

way to identify the vertices is the vertex enumeration algorithm by Avis and

Fukuda (1992). The computational complexity of this algorithm is limited in

our case, because Λ has relatively low dimensions (K) and Λ̃ includes only

two additional constraints. We assume here that the extreme portfolios are

known and label their portfolio weights as νi, i = 1, · · · , V , and their investment

returns as Zi,t := XT
t νi, t = 1, · · · , T .

An optimal solution for θs,t is θ∗s,t =
(
ys −XT

t λ
∗
)
Dλ∗,t(ys), s, t = 1, · · · , T .

Since λ∗ ∈ Λ̃, it follows that (mini Zi,t) ≤ XT
t λ
∗ ≤ (maxi Zi,t), t = 1, · · · , T .

This insight allows us to fix the value of Dλ∗,t(ys) when either (mini Zi,t) ≥ ys
(which implies Dλ∗,t(ys) = 0) or (maxi Zi,t) ≤ ys (which implies Dλ∗,t(ys) = 1).

Define the following three index sets to partition T := {1, · · · , T} for any

given s = 1, · · · , T :

T −s :=

{
t ∈ {1, · · · , T} :

(
min

i=1,··· ,V
Zi,t

)
≥ ys

}
; (12)

T 0
s :=

{
t ∈ {1, · · · , T} :

(
min

i=1,··· ,V
Zi,t

)
< ys <

(
max

i=1,··· ,V
Zi,t

)}
; (13)

T +
s :=

{
t ∈ {1, · · · , T} :

(
max

i=1,··· ,V
Zi,t

)
≤ ys

}
. (14)

Combining θ∗s,t =
(
ys −XT

t λ
∗
)
Dλ∗,t(ys), s, t = 1, · · · , T , and (mini Zi,t) ≤

XT
t λ
∗ ≤ (maxi Zi,t), t = 1, · · · , T , we find

θ∗s,t = 0 ∀s, t : t ∈ T −s ; (15)

θ∗s,t = ys −XT
t λ
∗ ∀s, t : t ∈ T +

s . (16)

Importantly, T −s and T +
s , s = 1, · · · , T , do not depend on the composition
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of λ∗ and these sets can therefore be determined prior to the optimization.

Substituting the optimal solutions (15)-(16) in (10), we arrive at the following

reduced system:

(1 + εs)

∑
t∈T 0

s

ptθ
2
s,t +

∑
t∈T +

s

pt

(
ys −XT

t λ
)2 ≤ S2τ (ys), s = 1, · · · , T ; (17)

−θs,t −XT
t λ ≤ −ys, s = 1, · · · , T ; t∈ T 0

s ;

−
T∑
t=1

ptX
T
t λ ≤ −

T∑
t=1

ptyt;

1T
Kλ = 1;

θs,t ≥ 0, s = 1, · · · , T ; t∈ T 0
s ;

λk ≥ 0, k = 1, · · · ,K.

The number of model variables falls from (T 2 + K) to (
∑T
s=1 card(T 0

s ) +

K) and the number of constraints (excluding non-negativity constraints) from

(T 2 + T + 2) to (
∑T
s=1 card(T 0

s ) + T + 2). In case of a positive correlation

between the base assets, we find card(T 0
s ) � T for the bulk of the threshold

levels, s = 1, · · · , T , which significantly reduces the problem size.

We can illustrate the magnitude of the potential reduction using our appli-

cation. The application uses K = 49 base assets and, in a typical formation

period, T ≥ 250, historical scenarios. We deliberately start with a fine parti-

tion to analyze the computational burden of large-scale applications, the effect

of lessening the partition and the effect of the above problem reduction. For

T = 250, system (10) has more than 62, 500 variables and 62, 500 constraints.

By comparison, the reduced system (17) typically has less than 15,625 variables

and 15,625 constraints.

Our computations are performed on a desktop PC with a quad-core Intel i7

processor with 2.93 GHz clock speed and 16GB of RAM and using the IPOPT

3.12.3 solver in GAMS. The median run time (using the reduced system (17))

was about four minutes per formation period. Lessening the partition using 100

equally spaced grid points reduces the run time to less than one minute without

loss of accuracy; using 25 grid points reduces the run time to just seconds with

only a minimal loss of accuracy.
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3 Application

3.1 Industry momentum strategy

We implement an industry momentum strategy in the spirit of Moskowitz and

Grinblatt (1999) and Hodder, Kolokolova and Jackwerth (2015) and compare

the performance improvements from portfolio optimization based on MV dom-

inance, SSD and SCTSD.

The benchmark is the all-share index from the Center for Research in Secu-

rity Prices (CRSP) at the Booth School of Business at the University of Chicago,

a value-weighted average of common stocks listed on the NYSE, AMEX and

NASDAQ stock exchanges. The base assets are 49 value-weighted stock port-

folios that are formed by grouping individual stocks based on their four-digit

Standard Industrial Classification (SIC) codes (K = 49).

Since the base assets are diversified industry portfolios, we do not allow

for concentrated positions in individual stocks. In addition, the analysis does

not allow for short sales, because the base assets include only long positions

in individual stocks. Our strategy can be implemented at lower transactions

costs than a typical stock-level long-short strategy. One cost-effective way to

implement our strategy would be to buy exchange-traded funds (ETFs) that

track specific sector indices.

The joint return distribution is estimated using the empirical distribution

in a moving window of historical returns. Our data set consists of daily excess

returns from January 3, 1927, through December 31, 2014. We analyze returns

in excess of the daily yield to the one-month US government bond index. The

nominal returns are from Kenneth French’ online data library and the Treasury

yields from Ibbotson and Associates. At the start of every quarter from 1928Q1

through 2014Q4, we form four different enhanced portfolios based on the excess

returns in a trailing 12-month window. The typical window includes more than

250 trading days (T ≥ 250).

The first enhanced portfolio is based on a heuristic rule. It is an equal-

weighted combination of the 15 industries with the highest average return among

the 49 industries. This portfolio captures a large part of the industry momen-

tum effect by simply buying past winner industries in equal proportion. In

addition, it is well-diversified and hence will show a comparable risk level as the

benchmark. The other three enhanced portfolios are constructed through opti-

mization. The objective is to maximize the mean subject to the restriction that
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the enhanced portfolio dominates the benchmark by a given decision criterion

(MV dominance, SSD or SCTSD).

The choice for a 12-month formation period and a three-month holding pe-

riod is motivated by earlier studies of industry momentum. Moskowitz and

Grinblatt (1999, Table III) show that buying winner industries is most profitable

for an intermediate formation period and a short holding period. Since we do

not allow for short selling, we can ignore the fact that selling loser industries

works better for a short formation period. Furthermore, industry momentum

strategies can use shorter holding periods than stock momentum strategies, be-

cause industries, in contrast to individual stocks, do not show short-term price

reversals.

An unreported robustness analysis confirms that our specification of the es-

timation period and holding period is optimal and that our results are driven

by the industry momentum effect. Increasing the length of the estimation

and/or holding period substantially worsens the out-of-sample performance in

our analysis in the same way as in Moskowitz and Grinblatt (1999, Table III).

This pattern is also consistent with the performance deterioration that Hod-

der, Kolokolova and Jackwerth (2015, Section 5.2) report for a long estimation

period.

We report in-sample performance and out-of-sample performance for N = 87

annual non-overlapping evaluation periods from January 1 through December 31

in every year from 1928 through 2014. For in-sample performance, the evalua-

tion period coincides with the formation period; for out-of-sample performance,

the evaluation period consists of four consecutive three-month holding periods,

each of which starts at the end of a 12-month formation period. By construc-

tion, out-of-sample analysis is not possible for the first year, 1927. For the sake

of comparability, our in-sample evaluation also excludes 1927.

Clearly, the in-sample results are based on hindsight and the out-of-sample

results are more relevant for portfolio managers. The in-sample results are

used here to illustrate the features of our SCTSD optimization method and the

differences between the various decision criteria.

3.2 Performance summary

Table I summarizes the performance of the market index (‘Bench’), the heuristic

portfolio (‘Top15’) and the three optimized portfolios (MV, SSD and SCTSD).
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Also shown is a decomposition of the outperformance (SCTSD-minus-Bench)

into components of (Top15-minus-Bench), (MV-minus-Top15), (SSD-minus-MV)

and (SCTSD-minus-SSD). The first three columns show the average, across all

N = 87 formation periods, of the sample mean (X), standard deviation (sX)

and skewness (skX) of daily returns. The next three columns summarize the an-

nual in-sample returns and the last three columns focus on annual out-of-sample

returns.

We measure outperformance using the spread (X−XBench) rather than the

residual of a risk factor model. The market betas of the enhanced portfolios

are substantially smaller than 1, due to the benchmark risk constraints. In

addition, the exposures to the Fama and French (1996) size factor (‘SMB’) and

value factor (‘HML’) are small, due to the dynamic nature of our strategy and

the diversified nature of the industry portfolios. Indeed, the ‘three-factor alpha’

of the portfolios is even larger than (X̄ − X̄Bench). Even the exposures to the

Carhart (1997) momentum factor (‘MOM’) are limited, because our strategy

relies on industry-level rather than stock-level momentum and on buying winners

rather than selling losers.

The t-statistic tX = X/(sX/
√
N) is included to measure the level of statisti-

cal significance. We may compute the Sharpe ratio by dividing the t-statistic of

(X−XBond) by a factor of
√
N . Similarly, we may compute the information ra-

tio by dividing the t-statistic of (X−XBench) by
√
N . The usual interpretation

of these ratios however does not apply here, as it is not possible to ‘scale’ the

enhanced portfolio without violating the constraints on short sales and bench-

mark risk. In addition, the ratios do not penalize negative skewness and reward

positive skewness.

A more meaningful risk-adjusted performance measure is the certainty equiv-

alent (CE) for a representative utility function. There exist convincing theoreti-

cal and empirical arguments to assume that relative risk aversion (RRA) for the

average investor is approximately constant and close to the value of one (Meyer

and Meyer (2005)). Hence, we report the CE for a logarithmic utility function:

CEλ := exp
(∑T

t=1 pt ln
(

1 +XT
t λ
))
− 1.

The average annual excess return to the benchmark is 8.16% in our sam-

ple period. The negative skewness of daily returns reflects elevated correlation

between stocks during market downswings. Skewness lovers will dislike this

unintended side-effect of broad diversification.

The Top15 portfolio outperforms the benchmark by 21.00% per annum in

the formation period and by 4.50% in the evaluation period. Further perfor-
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mance improvements can be achieved by assigning higher weights to the best

performing industries. It is however not possible to form an equal-weighted com-

bination of a smaller number of industries without exceeding the benchmark risk

levels. The optimization methods address this issue using explicit benchmark

risk constraints.

The MV approach requires that the enhanced portfolio does not exceed the

variance of the benchmark. Relative to the Top15 strategy, the optimal solu-

tion increases the annual mean by 12.37% in-sample and 1.88% out-of-sample.

The improvements are even larger in terms of the CE, because the variance

constraint reduces the portfolio risk level. Although the MV portfolio achieves

the best return-to-variability ratio, its negative skewness suggests that further

return enhancement is possible without exceeding the downside risk levels of the

benchmark.

The SSD approach imposes restrictions on expected shortfall rather than

variance. Although the return-to-variability deteriorates, the mean and skew-

ness of daily returns improve. These improvements are achieved by a stronger

concentration in the best-performing industries. Compared with the MV strat-

egy, the average annual return increases by 1.15% in-sample and 0.24% out-of-

sample.

The SCTSD constraints on semivariance are less restrictive than the SSD

constraints on expected shortfall. Although the resulting portfolio is often sim-

ilar to the SSD portfolio, the differences systematically lead to further improve-

ments of the mean and skewness of daily returns. The average annual return in-

creases by an additional 1.04% in-sample and 0.19% out-of-sample. The average

spread (SCTSD-MV) is almost twice as high as the average spread (SSD-MV).

The relative improvement over SSD is even larger in terms of the t-statistic and

CE.

Not surprisingly, the incremental effect of the above strategy refinements is

diminishing. The largest improvement stems from simply buying the highest-

yielding base assets using a proper formation period and holding period. Op-

timization with benchmark risk constraints further enhances return for a given

risk level. Replacing variance with decision-theoretical risk measures is the icing

on the cake. The combined effect of these refinements is that the SCTSD port-

folio outperforms the benchmark by 35.56% per annum in-sample and 6.81%

out-of-sample.
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[Insert Table I about here.]

3.3 Close-up of 2013

Figure 2 illustrates the differences between the three optimized portfolios using

the empirical distribution of daily returns in the last formation period, January

1 through December 31, 2013. Panel A shows the achieved reduction in expected

shortfall relative to the benchmark (Eτ (x)− Eλ(x)) for every threshold level x;

similarly, Panel B shows the achieved reduction in semivariance (S2τ (x)−S2λ(x)).

In this formation period, the MV portfolio dominates the benchmark by

SSD and TSD, as it reduces expected shortfall and semivariance for all x. The

portfolio enhances the full-year return by 12.92%. The variance constraint is

binding, that is, the portfolio has the same variance level as the benchmark.

Due to the negative skewness of the benchmark, this constraint is however not

required for managing downside risk.

The SSD portfolio increases the full-year return by a further 4.20%. The

restriction on expected shortfall is binding for x ≈ −0.5. Since SSD is a suf-

ficient condition for TSD, the portfolio also reduces the semivariance for all x.

Nevertheless, further return enhancements seem possible for all skewness lovers,

because the TSD restrictions are not binding.

Indeed, the SCTSD portfolio raises the full-year return by another 1.01%.

The portfolio does not dominate the benchmark by MV dominance, as it has a

higher standard deviation. SSD also does not occur, as the portfolio violates the

expected shortfall constraint for roughly x ∈ [−0.7, 0.2]. However, the portfolio

does reduce the semivariance for all x and hence it dominates the benchmark

by TSD.

In the year 2014, all three portfolios, formed using 2013 data, continue to

outperform the benchmark. The realized annual return of the MV, SSD and

SCTSD portfolios exceeds that of the benchmark by 6.43%, 7.51% and 7.61%,

respectively.

[Insert Figure 2 about here.]

To further illustrate the differences between the various decision criteria, we

map the enhanced indexing problem to the mean-standard deviation space. In
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addition to the CRSP all-share index, we now also consider 20 other benchmark

portfolios with different levels of standard deviation: the Minimum-Variance

Portfolio (MVP); nine different mixtures of the MVP and the index; the Max-

imum Mean Portfolio (MMP); nine different mixtures of the MMP and the

index. For each of these 21 benchmark portfolios, we construct enhanced port-

folios based on MV dominance, SSD and SCTSD. Again, our objective is to

maximize the mean subject to the benchmark risk restriction.

Figure 3 plots the means of the three enhanced portfolios (MV, SSD and

SCTSD) against the standard deviation of the benchmark. The three portfolios

that dominate the index (‘CSRP’) are the same ones as shown in Figure 2. The

improvement possibilities are largest for the MVP. This portfolio by construc-

tion is MV efficient. However, SD optimization can build portfolios that have

substantially higher means and more positive skewness. By contrast, it is not

possible to improve the mean of the MMP. For the 20 other portfolios, SCTSD

leads to larger improvements than MV and SSD. We also applied FSD using

the combinatorial optimization method of Kopa and Post (2009) but found no

improvement possibilities for any of the 21 benchmark portfolios.

[Insert Figure 3 about here.]

3.4 Cumulative performance

Figure 4 illustrates the cumulative performance of the three optimization strate-

gies for the entire sample period from 1928 through 2014. Shown is the relative

value of each enhanced portfolio, or the ratio of cumulative gross return of the

portfolio to the cumulative gross return of the benchmark. Not surprisingly,

the return enhancements of six to seven percent per annum translate into ex-

ponential value growth over time. In 2014, after 87 years, the MV portfolio is

127.38 times more valuable than the benchmark. The SCTSD portfolio shows

the strongest value growth and exceeds the benchmark by a factor of 171.58 in

2014. The benchmark risk of these strategies manifests itself during ‘momen-

tum crashes’, such as the prolonged period of underperformance during the late

1980s and early 1990s. Nevertheless, the SCTSD portfolio leads the other two

portfolios during the entire 87-year period. In addition, its relative performance
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improves in recent years, after the momentum crash of 1998. The maximum

drawdown of the SCTSD portfolio in this sample period is only 36.6%, which is

much lower than the maximum drawdown of 68.8% for the benchmark.

[Insert Figure 4 about here.]

4 Conclusions

Our application illustrates the potential improvements from portfolio optimiza-

tion based on TSD instead of MV dominance or SSD. Benchmark risk restric-

tions on semivariance allow for a higher mean and skewness than restrictions on

variance or expected shortfall. These improvements reflect that concentration in

past winner industries creates positive skewness, whereas broad diversification

creates negative skewness. The improvements increase the appeal of portfolio

construction based on decision theory and optimization compared with heuristic

rules.

Despite the pleasing out-of-sample performance in this application, further

improvements may come from better estimates for the joint return distribution

during the holding period. For example, conditioning on the business cycle and

market conditions could help to mitigate crashes of the momentum strategy.

Another approach combines the historical returns in the formation period with

a prior view about the efficiency of the benchmark index to derive a Bayesian

posterior distribution. Our method can be applied to random samples from any

given parametric probability distribution or dynamic process. Narrowing the

cross-section (K) and lengthening the formation period (T ) may also help to

reduce estimation error, but this effect has to be balanced against a possible

loss of portfolio breadth and signal strength.

Robust optimization methods can reduce the sensitivity to (inevitable) esti-

mation error. The tolerances εs, s = 1, ..., T , in (8) seem particularly useful for

this purpose. We have tuned these parameters for the exact definition of dom-

inance. Using higher tolerance values can reduce the risk of detecting spurious

dominance patterns. By contrast, lower tolerance values can reduce the risk of

overlooking dominance relations that are obscured by estimation error.
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The latter approach is reminiscent of Almost Stochastic Dominance (Leshno

and Levy (2002)), or ASD. Despite the merits of ASD, the current literature

offers little guidance for the specification of ‘epsilon’, or the admissible violation

area. Post and Kopa (2013, p. 324-325) develop a linearization of ASD and

their empirical application casts doubt on the relevance of existing experimental

estimates of ‘epsilon’ for portfolio analysis. Without an agreed specification for

‘epsilon’, we prefer to use higher-degree SD rules rather than approximate lower-

degree ones.

In a follow-up project, we are developing portfolio optimization based on

decreasing absolute risk aversion stochastic dominance (DSD; Vickson’s (1975,

1977) and Bawa (1975)), arguably the most appealing of all SD criteria. TSD is

a sufficient but not necessary condition for DSD, suggesting further improvement

possibilities for investment performance. For base assets with a limited return

range X and/or with comparable means, the two criteria are often indistin-

guishable. However, Basso and Pianca (1997) demonstrate that the distinction

is important for derivative securities and Post, Fang and Kopa (2015) report

important consequences for small-cap stocks.
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Figure 1: Refinement of the SCTSD condition

Shown are two alternative SCTSD approximations. The solid line in both panels
represents the semivariance of the benchmark index as a function of the thresh-
old return in percentage points (%). The figure is based on the daily excess
returns in the formation period from January 1 through December 31, 2013
(T = 252). The dotted line in Panel A represents the approximation of Bawa
et al. (1985) using a partition based on the 252 daily observations. The dotted
line in Panel B gives the approximation based on our tolerance specification (7).
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Figure 2: Risk profiles of optimized portfolios

Shown are the risk profiles of the three optimized portfolios (MV, SSD and
SCTSD) based on the empirical distribution of daily excess returns in the for-
mation period from January 1 through December 31, 2013. Panel A shows the
reduction in expected shortfall (Eτ (x)−Eλ(x)) for every threshold level x; simi-
larly, Panel B shows the reduction in semivariance (S2τ (x)−S2λ(x)). The returns
are in percentage points (%).
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Figure 3: Mean-standard deviation diagram

We analyze 21 benchmark portfolios with different levels of standard devia-
tion: the CRSP all-share index; the Minimum-Variance Portfolio (MVP); nine
different mixtures of the MVP and the index; the Maximum Mean Portfolio
(MMP); nine different mixtures of the MMP and the index. The weight that
the mixed portfolios assign to the index changes with steps of ten percent. For
each of the 21 benchmarks, we construct enhanced portfolios based on MV dom-
inance, SSD and SCTSD. In every case, the objective is to maximize the mean
subject to the benchmark risk restriction. The figure plots the means of the
three enhanced portfolios (MV, SSD and SCTSD) against the standard devia-
tion of the benchmark. The figure is based on the daily excess returns in the
formation period from January 1 through December 31, 2013 (T = 252).

30



Figure 4: Cumulative performance

Shown is, for each of the three optimized portfolios (MV, SSD, SCTSD), the
development of the relative portfolio value over the entire sample period from
1928 through 2014. We measure the relative value as the ratio of cumulative
gross return of the enhanced portfolio to the cumulative gross return of the
benchmark index. For example, a ratio of 100 in a given year means that the
enhanced portfolio has become 100 times more valuable than the benchmark
since January 1, 1928. The graph uses a logarithmic scale.
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