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REVIEWS

The Association for Symbolic Logic publishes analytical reviews of selected books and
articles in the field of symbolic logic. The reviews were published in The Journal of Symbolic
Logic from the founding of the Journal in 1936 until the end of 1999. The Association
moved the reviews to this Bulletin, beginning in 2000.
The Reviews Section is edited by Steve Awodey (Managing Editor), John Burgess, Mark

Colyvan, Anuj Dawar, Noam Greenberg, Rahim Moosa, Ernest Schimmerling, Alex Simp-
son, Kai Wehmeier, and Matthias Wille. Authors and publishers are requested to send, for
review, copies of books toASL, Box 742, Vassar College, 124 RaymondAvenue, Poughkeepsie,
NY 12604, USA.

In a review, a reference “JSL XLIII 148,” for example, refers either to the publication
reviewed on page 148 of volume 43 of the Journal, or to the review itself (which contains
full bibliographical information for the reviewed publication). Analogously, a reference
“BSL VII 376” refers to the review beginning on page 376 in volume 7 of this Bulletin, or
to the publication there reviewed. “JSL LV 347” refers to one of the reviews or one of the
publications reviewed or listed on page 347 of volume 55 of the Journal, with reliance on
the context to show which one is meant. The reference “JSL LIII 318(3)” is to the third item
on page 318 of volume 53 of the Journal, that is, to van Heijenoort’s Frege and vagueness,
and “JSL LX 684(8)” refers to the eighth item on page 684 of volume 60 of the Journal,
that is, to Tarski’s Truth and proof.
References such as 495 or 2801 are to entries so numbered in A bibliography of symbolic

logic (the Journal, vol. 1, pp. 121–218).

Jan Krajı́ček. Forcing with random variables and proof complexity. London Math-
ematical Society Lecture Note Series, vol. 232. Cambridge University Press, 2011, xvi +
247 pp.
Bounded arithmetic has many intimate connections with feasible computational complex-

ity and questions related to the P versus NP problem. Indeed, the original definition of
bounded arithmetic, in the form of I∆0, by R. Parikh was motivated by connections with lin-
ear space computation. It was subsequently recognized that the ∆0-definable sets are exactly
the sets computable in the linear time hierarchy (a subclass of linear space, but not known
to be a proper subclass). The early research by C. Dimatracopoulos, J. Paris, A. Wilkie, and
others found many connections between bounded arithmetic and computational complexity.
With the definition of the bounded arithmetic theories PV by S. Cook, and S i2 and T

i
2 by

this reviewer, and many subsequent works, the connections between bounded arithmetic and
computational complexity became central. In these theories, the core motivations were to
characterize the provably total functions of logical theories in terms of computational com-
plexity: the complexity classes considered are feasible, or near-feasible, such as log space,
polynomial time, non-deterministic polynomial time, polynomial space, etc.
Bounded arithmetic is also closely connected to propositional proof complexity. There

are two primary connections. First, J. Paris and A. Wilkie showed that certain proofs in
bounded arithmetic can be translated into polynomial size, or quasipolynomial size, constant
depth propositional proofs. A different kind of correspondence between PV (and S12 ) and
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extended Frege proof systems was found by S. Cook. Extended Frege proofs are the usual
“textbook style” proof systems based on modus ponens with proof length measured in terms
of number of inferences. Under both translations, propositional proofs turn out to be non-
uniform versions of proofs in theories of bounded arithmetic. This is analogous to the way
that Boolean circuits are essentially non-uniform versions of algorithms. This has been a
useful analogy in some ways, as concepts and tools from complexity theory have been used to
establish lower bounds in proof complexity. In other ways, however, it has been a frustrating
analogy, as there has been less success in establishing lower bounds on proof complexity than
in proving lower bounds on circuit complexity. A particularly important and tantalizing
problem of this type is to prove a super-polynomial lower bound on the lengths of proofs
of constant depth Frege systems for a Boolean language enlarged with unbounded fanin
parity gates or, more generally, gates for modular counting mod p. There is hope that this
might be achievable as there are lower bounds, due to R. Smolensky and A. Razborov, on
the expressive power of formulas in these proof systems for fixed primes p.
It has beena long-standinggoal tousemodel-theoretic techniques for theories of arithmetic

to prove lower bounds in computational complexity or proof complexity. Influential early
work includes M. Ajtai’s work giving lower bounds on the complexity of constant depth
formulas for counting: this, along with the work of Furst–Saxe–Sipser was later improved
by Yao–Håstad style switching lemmas. Ajtai’s work suggested that forcing methods might
allow lower bounds to be proved bymodel-theoretic methods. Another intriguing early work
giving model-theoretic constructions of models of arithmetic was the restricted ultraproduct
construction of nonstandard models of arithmetic by S. Kochen and S. Kripke; however, this
never found application to bounded arithmetic.
The goal of the book under review is to develop model-theoretic methods to attack

problems in proof complexity and in bounded arithmetic. One of the main goals was
to establish lower bounds for constant depth Frege proofs with parity gates or gates for
modular counting mod p. Although this remains an open problem, the book describes a
new set of tools for creating models of bounded arithmetic with forcing, and contains many
new techniques that are not available elsewhere in the literature.
The first five chapters of the book introduce a forcing method for constructing Boolean-

valued models of arithmetic. (Five chapters may sound like a lot, but the chapters are quite
short, and five chapters takes one only up to page 46.) The forcing construction starts
with an ℵ1-saturated modelM of true arithmetic, and a set Ω ∈ M, and selects a set F
of functions f: Ω 7→ |M|. This forms the first-order universe of a structure; measure-
theoretic considerations, using Loeb’s measure, give a Boolean valuation for sentences over
this structure. After the basic definitions and theorems, there are some striking results on
how quantifiers can be witnessed (approximately) with elements of F . The fifth chapter
concludes by extending these definitions to second order structures.
The next four short chapters develop models of arithmetic created from functions f which

are computable with small decision trees (these functions are called “rudimentary”), establish
induction and comprehension principles, and discuss a general framework for quantifier
elimination. The subsequent three chapters develop a “tree model” that corresponds to
models built from functions that are computable with a special type of Boolean decision
trees. This incorporates a novel and ingenious construction: the functions are computed
by decision trees which are stratified into k levels for some natural number k, plus have
small rudimentary decision trees at the bottom level. (Krajı́ček does not use the terminology
“stratified”, however.) This is a crucial innovation that makes it possible exploit the switching
lemma and a lower bound for parity to prove quantifier elimination properties and to give a
witnessing theorem for the second order bounded arithmetic theory V 01 . The theory V

0
1 can

be viewed as an analogue of the theory I∆0(R) where R is a second order predicate.
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Chapters 13–16 take the reader to page 98, and give constructions of models of bounded
arithmetic based on functions computable by decision trees based on evaluation of low degree
(subpolynomial degree) polynomials mod 2. Algebraic models of arithmetic are defined
using these algebraically defined functions and a first-order mod 2 quantifier is introduced.
Then, with the aid of the Razborov–Smolensky construction, induction, comprehension,
and elimination of quantifiers are proved to hold, a witnessing theorem is proved, and an
independence result is obtained.
Chapters 17–22 next address the question of lower bounds for constant depth proofs of

the pigeonhole principle. For constant depth Frege systems, exponential lower bounds are
known already due to work by M. Ajtai, by S. Bellantoni, T. Pitassi, and A. Urquhart, by
J. Krajı́ček, by T. Pitassi, P. Beame, and R. Impagliazzo, and by J. Krajı́ček, P. Pudlák,
and A. Woods based on random restrictions and switching lemmas. These chapters give
a model-theoretical construction for nonstandard models where the pigeonhole fails using
decision trees with nodes that query values of the pigeonhole principle. (Here again, Krajı́ček
uses the technique of adding small rudimentary circuits to the leaves of the decision tree.)
These models, along with a reflection principle and an appeal to the switching lemma, then
establish exponential lower bounds for constant depth Frege proofs. Chapter 22 discusses
the prospects for establishing superpolynomial lower bounds for proofs of the pigeonhole
principle in constant depth Frege systems augmented with parity gates.
The next chapters take up several short topics about independence results for fragments

of bounded arithmetic, oracles, and pseudorandom number generators. It is particularly
striking how well the model-theoretic approach can accommodate pseudorandom number
generators in a natural way. The final part of the book takes up the subject of ô-tautologies,
also known as “proof complexity generators”. The ô-tautologies have been introduced ear-
lier by Krajı́ček and independently by M. Alekhnovich, E. Ben-Sasson, A. Razborov and
A. Wigderson. These tautologies were inspired in part by the Nisan–Wigderson pseudoran-
dom number generators, and are often conjectured to be examples of tautologies that are
hard for strong propositional proof systems such as extended Frege. Chapters 29 and 30
give a survey of prior work on ô-tautologies that can be read independently of the rest of
the book. The final chapter then discusses how to formulate some of the central results
about ô-tautologies in the model-theoretic forcing framework. There is a technical error in
one of the core proofs; however, the applications of the theorem in the second part of the
chapter are all correct. Corrections to this part can be found on the book’s errata page and
a detailed correction in a 2012 preprint by Krajı́ček entitled Pseudo-finite hard instances for
a student-teaching game with a Nisan–Wigderson generator.
The book is arranged into very short chapters, which may be a little disconcerting at first,

but quickly becomes very comfortable. If nothing else, one feels like one is making good
progress in reading through multiple chapters in one sitting. More importantly, the chapter
lengths are appropriate for introducing topics and results incrementally.
My overall opinion of the book is highly positive. The book is a research-level exposition

of new topics that have not appeared in the literature. It gives a fundamentally new approach
to model-theoretic forcing, as well as to independence results in bounded arithmetic and
proof complexity. The author’s goal for the book was to use these methods to establish
new proof complexity lower bounds. This has not yet come to fruition; but nonetheless,
the directions are highly intriguing as an new approach for attacking fundamental problems
in proof complexity. The first parts of the book should be interesting to anyone working
in model theoretic constructions for non-standard models of arithmetic. The book as a
whole will be interesting to researchers working on the common interface between bounded
arithmetic, model theory, and proof complexity.

Sam Buss

Department of Mathematics, University of California, San Diego, La Jolla, California
92093-0112, USA. sbuss@math.ucsd.edu.
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Jeffrey Shallit and Ming-wei Wang. Automatic complexity of strings. Journal of
Automata, Languages and Combinatorics, vol. 6 (2001), pp. 537–554.
Cristian S. Calude, Kai Salomaa and Tania K. Roblot. Finite-state complexity and

randomness. Theoretical Computer Science, vol. 412 (2011), no. 41, pp. 5668–5677.
Cristian S. Calude, Kai Salomaa and Tania K. Roblot. State-size hierarchy for finite-

state complexity. International Journal of Foundations of Computer Science, vol. 23 (2012),
no. 1, pp. 37–50.
Algorithmic randomness works to capture what it means for an individual object to be

structured or predictable. An extremely active branch of computability theory has risen out
of interpreting “algorithmic” in terms of Turing machines. Downey and Hirschfeldt’s recent
book, Algorithmic randomness and complexity, BSL XVIII 126, is an encyclopedic treatment
of the developments of algorithmic randomness. A central theme in this field is that an object
being random is correlated with it being hard to describe.
It is natural to ask whether insights from this subject could be applied in practice. How-

ever, the central tool in calibrating algorithmic randomness, Kolmogorov complexity, is an
uncomputable function on finite strings. Attempts to approximate this complexity have
led to resource bounded notions of randomness, where we cap the computation time of
the underlying Turing machines. Interesting recent work has connected resource bounded
Kolmorgorov complexity with compression algorithms, including Lempel–Ziv codes.
Imposing a more stringent restriction, randomness could be defined in terms of finite state

machines. Finite automata are good models of linear time, on-line computation. Moreover,
many questions about languages recognized and generated by finite automata are decidable
and sometimes lead to feasible algorithms.
The first paper under review defines a notion of descriptive complexity (or randomness) in

terms of finite-state machines, translating Sipser’s 1983 (resource-bounded) CD complexity
to this context. The automaton complexity of x, A(x), is defined to be the number of
states in the smallest automaton such that the only string of length |x| that is accepted
by the automaton is x itself. An automaton which has this property is said to uniquely
accept x. Shallit and Wang prove that the string x is efficiently recoverable from (knowledge
of |x|) and any automaton which uniquely accepts it. Thus, uniquely accepting automata
give encodings of the corresponding strings. Moreover, they may have significantly shorter
descriptions than the string itself: for each n, the string 0n is uniquely accepted by a single-
state automaton. (This property suggests that A(x) is an analogue to length-conditional
Kolmogorov complexity rather than the usual Kolomogorov complexity.)
As one might expect, A(x) is a computable function. A crude upper bound is given by

observing that for each string of length n, there is a trivial automaton of size n + 1 which
uniquely accepts it. Shallit andWang give a somewhat tighter upper bound for the complexity
(using the ratio between the length of the string and the size of the alphabet), proved by
reference to longest repeated subwords of the string. The computability of A(x) follows
immediately from the existence of an upper bound: we can enumerate all automata which
have fewer than the upper-bound many states and check whether each uniquely accepts x.
Many of the results proved in the paper draw on techniques from combinatorics on words

and word equations to give lower bounds on the automatic complexity of strings. For
example, for almost every string x, the automatic complexity of x is proved to be at least
|x|/C (the paper proves the result for C = 13 but mentions an improvement to C = 7). A
similar analysis proves that there are many automatically-incompressible strings.
The last main section of the paper extends the definition of automatic complexity to

infinite strings. Results in this vein would present interesting parallels to what is known in
algorithmic randomness about random and far-from-random reals. Moreover, the study of
automatic complexity of infinite strings would continue the tradition of automatic structures
(as introduced by Khoussainov and Nerode in 1995) to analyze presentations of infinite
objects using automata. Two candidate measures of complexity are given by the limsup
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and the liminf of the ratio A(x)/|x|. If an infinite string is ultimately periodic then a single
finite automaton can uniquely accept infinitely many of its initial segments. In this case, the
infinite string has automatic complexity equal to zero (in both these measures). However,
the converse does not hold: Shallit and Wang give an example of an infinite string which
is not ultimately periodic but which has automatic complexity equal to zero. This suggests
many open questions, such as classifying the infinite strings which have automatic complexity
equal to zero or those which are maximally complicated in some sense.
More recent contributions to finite-state randomness are found in the papers by Calude,

Salomaa, and Roblot. Their definition of finite-state complexity follows more closely the no-
tions of algorithmic randomness à la Downey-Hirschfeldt; the finite state machines generate
the strings they describe rather than accept them. They use transducers, finite state machines
which realize input-output functions. Transducers are specified by a finite set of states, a tran-
sition function, and an output function which assigns to each state and input symbol an out-
put word. The output generated by an input string is the concatenation of the output words
produced at each state visited while reading the input. A pair (T, p) consisting of a transducer
and a finite string describes x if x is the output ofT when running on input p. The finite-state
complexity of a string, C (x), is defined as the infimum of |T |+ |p| over all descriptions of x.
However, |T |must be defined in terms of an encoding (and enumeration) of all transducers.
A main focus of this paper is to analyse the properties of enumerations of transducers

that make C (x) computable. In particular, |T | is defined by encoding transducers as finite
strings such that the set of encodings of transducers is regular. Calude, Salomaa, and Roblot
prove that such an enumeration exists and can even be made regular. The rest of their
results fix such an enumeration; it is important to remember that the complexity measures
associated to different choices for the enumeration may be very different. As in the case
of automatic complexity, there is a simple upper bound: C (x) ≤ |x| + 8 (the additive
constant would be different if we choose a different enumeration from the fixed one), which
comes from combining the size of the identity transducer with the Invariance Theorem,
one of the main theorems in the paper. This theorem says that for every transducer, T ,
C (x) ≤ CT (x) + |T |, where CT (x) is the finite-state complexity restricted to descriptions
which useT . In particular,C (x) is computable. It is noteworthy that the Invariance Theorem
holds even though there is no universal transducer: for any regular enumeration of all the
transducers, no single transducer is able to simulate all others.
The paper includes several upper and lower bounds on C (x) for natural classes of strings.

For example, C (0n) = Θ(
√
n). The proofs involve balancing the number of states in the

transducer and the length of the input description. Analogously with the notion of random
strings, finite-state incompressible strings are defined and exhibited. The proof uses a nice
combination of de Bruijn strings and grammar compression techniques.
Calude, Salomaa, and Roblot continue to explore the connection between the encoding of

transducers and finite-state complexity in their second paper under review. This paper defines
the state-size hierarchy: classifying strings based on the number of states in a transducerwhich
is associated with a minimal description of the string. In particular, the authors prove that
there is no upper bound for the number of states in transducers which give minimal descrip-
tions. This distinguishes finite-state complexity from an earlier proposal (by Charikar et al.,
STOC 2002) in which the transducers involved could always be assumed to have one state.
A central open question for both automatic complexity (Shallit–Wang) and finite-state

complexity (Calude, Salomaa, Roblot) is whether the functions A(x) and C (x) are NP-
complete. Beyond that, the results in these papers suggest many lines of research that
could serve as parallels for algorithmic randomness and sharpen our understanding of the
descriptive strength of finite-state machines.

Mia Minnes

Department of Mathematics, University of California San Diego, La Jolla, CA 92093-
0112, USA. minnes@math.ucsd.edu.


