Descriptive Polynomial Time Complexity

Tutorial Part 3

Anuj Dawar University of Cambridge

Prague Fall School, 22 September 2011

Recapitulation

By Fagin's theorem, a class of finite structures is definable in *existential second-order logic* if, and only if, it is in NP.

It is an open question whether there is similarly a logic for PTime.

This is equivalent to the question of whether there is a problem in PTime that is complete under *first-order reductions*.

Recapitulation II

IFP extends first-order logic with *inflationary fixed-points*.

By the theorem of Immerman and Vardi, it captures PTime on *ordered structures*, but is too weak without order.

IFP + C extends IFP with *counting*.

It forms a natural expressivity class *properly* contained in PTime.

Note: If there is a PTime-complete problem under IFP + C-reductions, then there is a logic for PTime.

Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs $G_k, H_k (k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k.
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

Still, IFP + C is a *natural* level of expressiveness within PTime.

Restricted Graph Classes

If we restrict the class of structures we consider, IFP + C may be powerful enough to express all polynomial-time decidable properties.

- 1. IFP + C captures PTime on *trees*. (Immerman and Lander 1990).
- 2. IFP + C captures PTime on any class of graphs of *bounded treewidth*.

(Grohe and Mariño 1999).

- 3. IFP + C captures PTime on the class of *planar graphs*. (Grohe 1998).
- 4. IFP + C captures PTime on any proper minor-closed class of graphs.
 (Grohe 2010).

In each case, the proof proceeds by showing that for any G in the class, a *canonical, ordered* representaton of G can be interpreted in G using IFP + C.

Constructing G_k and H_k

Given any graph G, we can define a graph X_G by replacing every edge with a pair of edges, and every vertex with a gadget.

The picture shows the gadget for a vertex v that is adjacent in G to vertices w_1, w_2 and w_3 . The vertex v^S is adjacent to a_{vw_i} ($i \in S$) and b_{vw_i} ($i \notin S$) and there is one vertex for all even size S. The graph \tilde{X}_G is like X_G except that at one vertex v, we include v^S for odd size S.

Properties

If G is *connected* and has *treewidth* at least k, then:

- 1. $X_G \not\cong \tilde{X}_G$; and
- 2. $X_G \equiv^{C^k} \tilde{X}_G$.

(1) allows us to construct a polynomial time property separating X_G and \tilde{X}_G . (2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of balanced separators in G. The characterisation in terms of treewidth is from (D., Richerby 07).

Undefinability Results for IFP + C

Other undefinability results for IFP + C have been obtained:

- Isomorphism on *multipedes*—a class of structures defined by (Gurevich-Shelah 96) to exhibit a *first-order definable* class of *rigid* structures with no order definable in IFP + C.
- 3-colourability of graphs.

(D. 1998)

Both proofs rely on a construction very similar to that of Cai-Fürer-Immerman.

Question: Is there a natural polynomial-time computable property that is not definable in IFP + C?

Solvability of Linear Equations

More recently it has been shown that the problem of solving linear equations over the two element field \mathbb{Z}_2 is not definable in IFP + C. (Atserias, Bulatov, D. 09)

The question arose in the context of classification of *Constraint Satisfaction Problems*.

The problem is clearly solvable in polynomial time by means of Gaussian elimination.

We see how to represent systems of linear equations as *unordered* relational structures.

Systems of Linear Equations

Consider structures over the domain $\{x_1, \ldots, x_n, e_1, \ldots, e_m\}$, (where e_1, \ldots, e_m are the equations) with relations:

- unary E_0 for those equations e whose r.h.s. is 0.
- unary E_1 for those equations e whose r.h.s. is 1.
- binary M with M(x, e) if x occurs on the l.h.s. of e.

 $Solv(\mathbb{Z}_2)$ is the class of structures representing solvable systems.

Undefinability in IFP + C

Take \mathcal{G} a 3-regular, connected graph with treewidth > k.

Define equations $\mathbf{E}_{\mathcal{G}}$ with two variables x_0^e, x_1^e for each edge *e*.

For each vertex v with edges e_1, e_2, e_3 incident on it, we have eight equations:

 $E_v: \qquad x_a^{e_1} + x_b^{e_2} + x_c^{e_3} \equiv a + b + c \pmod{2}$

 $\mathbf{\tilde{E}}_{\mathcal{G}}$ is obtained from $\mathbf{E}_{\mathcal{G}}$ by replacing, for exactly one vertex v, E_v by:

$$E'_v: \qquad x_a^{e_1} + x_b^{e_2} + x_c^{e_3} \equiv a + b + c + 1 \pmod{2}$$

We can show: $\mathbf{E}_{\mathcal{G}}$ is satisfiable; $\tilde{\mathbf{E}}_{\mathcal{G}}$ is unsatisfiable; $\mathbf{E}_{\mathcal{G}} \equiv^{C^k} \tilde{\mathbf{E}}_{\mathcal{G}}$

Satisfiability

Lemma \mathbf{E}_G is satisfiable.

by setting the variables x_i^e to i.

Lemma $\tilde{\mathbf{E}}_{G}$ is unsatisfiable.

Consider the subsystem consisting of equations involving only the variables x_0^e .

The sum of all *left-hand sides* is

 $2\sum_{e} x_0^e \equiv 0 \pmod{2}$

However, the sum of *right-hand sides* is 1.

Bijection Games

 \equiv^{C^k} is characterised by a *k*-pebble *bijection game*. (Hella 96). The game is played on structures A and B with pebbles a_1, \ldots, a_k on A and b_1, \ldots, b_k on B.

- Spoiler chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a bijection $h : A \to B$ such that for pebbles a_j and $b_j (j \neq i)$, $h(a_j) = b_j$;
- Spoiler chooses $a \in A$ and places a_i on a and b_i on h(a).

Duplicator loses if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. *Duplicator* has a strategy to play forever if, and only if, $\mathbb{A} \equiv^{C^k} \mathbb{B}$.

TreeWidth

The *treewidth* of a graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.

TreeWidth

Formal Definition:

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v,t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *treewidth* of *G* is the least *k* such that there is a tree *T* and a tree-decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

Cops and Robbers

A game played on an undirected graph G = (V, E) between a player controlling k cops and another player in charge of a *robber*.

At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.

A move consists in the cop player removing some cops from $X' \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \setminus X'$.

The new position is $(X \setminus X') \cup Y$ and *s*. If a cop and the robber are on the same node, the robber is caught and the game ends.

Strategies and Decompositions

Theorem (Seymour and Thomas 93):

There is a winning strategy for the *cop player* with k cops on a graph G if, and only if, the tree-width of G is at most k - 1.

It is not difficult to construct, from a tree decomposition of width k, a winning strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Cops, Robbers and Bijections

If G has treewidth k or more, than the *robber* has a winning strategy in the k-cops and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the k-pebble bijection game on $\mathbf{E}_{\mathcal{G}}$ and $\tilde{\mathbf{E}}_{\mathcal{G}}$.

- A bijection $h : \mathbf{E}_{\mathcal{G}} \to \tilde{\mathbf{E}}_{\mathcal{G}}$ is *good bar* v if it is an isomorphism everywhere except at the variables $x^e a$ for edges e incident on v.
- If h is good bar v and there is a path from v to u, then there is a bijection h' that is good bar u such that h and h' differ only at vertices corresponding to the path from v to u.
- Duplicator plays bijections that are good bar *v*, where *v* is the robber position in *G* when the cop position is given by the currently pebbled elements.

Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the expressive power of IFP + C.

It may also be a possible source of new operators to extend the logic.

For a set I, and binary relation $A \subseteq I \times I$, take the matrix M over the two element field \mathbb{Z}_2 :

 $M_{ij} = 1 \quad \Leftrightarrow \quad (i,j) \in A.$

Most interesting properties of M are invariant under permutations of I.

Matrix Multiplication

We can write a formula prod(x, y, A, B) that defines the *product* of two matrices:

$$(\exists \nu_2 < t)(t = 2 \cdot \nu_2 + 1)$$
 for $t = \# z(A(x, z) \wedge B(z, y))$

A simple application of **ifp** then allows us to define $upower(x, y, \nu, A)$ which gives the matrix A^{ν} :

$$\begin{split} [\mathrm{ifp}_{R,uv\mu} & (\mu=0 \wedge u=v \lor \\ & (\exists \mu' < \mu) \, (\mu=\mu'+1 \wedge \mathrm{prod}(u,v,B/R(\mu'),A))](x,y,\nu), \end{split}$$

where $prod(u, v, B/R(\mu'), A)$ is obtained from prod(u, v, A, B) by replacing the occurrence of B(z, v) by $R(z, v, \mu')$.

Matrix Exponentiation

We can, instead, represent numbers up to $2^{|A|}$ in *binary*.

That is, a unary relation Γ interpreted over the number domain (using numbers up to |A|) codes the number $\sum_{\gamma \in \Gamma} 2^{\gamma}$.

Repeated squaring then allows us to define $power(x, y, \Gamma, A)$ giving A^N where Γ codes a value N which may be exponential.

Non-Singularity

(Blass-Gurevich 04) show that *non-singularity* of a matrix over \mathbb{Z}_2 can be expressed in IFP + C.

 $GL(n, \mathbb{Z}_2)$ —the *general linear group* of degree n over \mathbb{Z}_2 —is the group of non-singular $n \times n$ matrices over \mathbb{Z}_2 .

The order of $GL(n, \mathbb{Z}_2)$ divides

$$N = \prod_{i=0}^{n-1} (2^n - 2^i).$$

Thus, A is *non-singular* if, and only if, $A^N = \mathbf{I}$ Moreover, the inverse A^{-1} is given by A^{N-1} .

Summary

IFP + C cannot express some *natural* problems in PTime, such as definability of equations over \mathbb{Z}_2 .

Still, IFP + C forms a natural expressivity class within PTime. It captures all of PTime on many natural classes of graphs.

Linear Algebra possibly provides a new source of extensions of IFP + C.