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Recapitulation

By Fagin’s theorem, a class of finite structures is definable in existential

second-order logic if, and only if, it is in NP.

It is an open question whether there is similarly a logic for PTime.

This is equivalent to the question of whether there is a problem in PTime that is

complete under first-order reductions.
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Recapitulation II

IFP extends first-order logic with inflationary fixed-points.

By the theorem of Immerman and Vardi, it captures PTime on ordered structures,

but is too weak without order.

IFP + C extends IFP with counting.

It forms a natural expressivity class properly contained in PTime.

Note: If there is a PTime-complete problem under IFP + C-reductions, then there

is a logic for PTime.
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Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in

IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs Gk, Hk(k ∈ ω)

such that:

• Gk ≡Ck

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all Gk and

excludes all Hk .

Still, IFP + C is a natural level of expressiveness within PTime.
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Restricted Graph Classes

If we restrict the class of structures we consider, IFP + C may be powerful

enough to express all polynomial-time decidable properties.

1. IFP + C captures PTime on trees. (Immerman and Lander 1990) .

2. IFP + C captures PTime on any class of graphs of bounded treewidth.

(Grohe and Mari ño 1999) .

3. IFP + C captures PTime on the class of planar graphs. (Grohe 1998) .

4. IFP + C captures PTime on any proper minor-closed class of graphs.

(Grohe 2010) .

In each case, the proof proceeds by showing that for any G in the class, a

canonical, ordered representaton of G can be interpreted in G using IFP + C.
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Constructing Gk and Hk

Given any graph G, we can define a graph XG by replacing every edge with a

pair of edges, and every vertex with a gadget.

The picture shows the gadget for a ver-

tex v that is adjacent in G to vertices

w1, w2 and w3.

The vertex vS is adjacent to avwi
(i ∈

S) and bvwi
(i 6∈ S) and there is one

vertex for all even size S.

The graph X̃G is like XG except that

at one vertex v, we include vS for odd

size S.

avw1
bvw1

avw2

bvw2
avw3

bvw3

v∅ v{1,2} v{1,3}v{2,3}
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Properties

If G is connected and has treewidth at least k, then:

1. XG 6∼= X̃G; and

2. XG ≡Ck

X̃G.

(1) allows us to construct a polynomial time property separating XG and X̃G.

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of

balanced separators in G. The characterisation in terms of treewidth is

from (D., Richerby 07) .
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Undefinability Results for IFP + C

Other undefinability results for IFP + C have been obtained:

• Isomorphism on multipedes—a class of structures defined by

(Gurevich-Shelah 96) to exhibit a first-order definable class of rigid

structures with no order definable in IFP + C.

• 3-colourability of graphs. (D. 1998)

Both proofs rely on a construction very similar to that of Cai-Fürer-Immerman.

Question: Is there a natural polynomial-time computable property that is not

definable in IFP + C?
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Solvability of Linear Equations

More recently it has been shown that the problem of solving linear equations over

the two element field Z2 is not definable in IFP + C. (Atserias, Bulatov, D. 09)

The question arose in the context of classification of Constraint Satisfaction

Problems.

The problem is clearly solvable in polynomial time by means of Gaussian

elimination.

We see how to represent systems of linear equations as unordered

relational structures.
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Systems of Linear Equations

Consider structures over the domain {x1, . . . , xn, e1, . . . , em}, (where

e1, . . . , em are the equations) with relations:

• unary E0 for those equations e whose r.h.s. is 0.

• unary E1 for those equations e whose r.h.s. is 1.

• binary M with M(x, e) if x occurs on the l.h.s. of e.

Solv(Z2) is the class of structures representing solvable systems.
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Undefinability in IFP + C

Take G a 3-regular, connected graph with treewidth > k.

Define equations EG with two variables xe
0, x

e
1 for each edge e.

For each vertex v with edges e1, e2, e3 incident on it, we have eight equations:

Ev : xe1

a + xe2

b + xe3

c ≡ a + b + c (mod 2)

ẼG is obtained from EG by replacing, for exactly one vertex v, Ev by:

E′
v : xe1

a + xe2

b + xe3

c ≡ a + b + c + 1 (mod 2)

We can show: EG is satisfiable; ẼG is unsatisfiable; EG ≡Ck

ẼG
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Satisfiability

Lemma EG is satisfiable.

by setting the variables xe
i to i.

Lemma ẼG is unsatisfiable.

Consider the subsystem consisting of equations involving only the

variables xe
0
.

The sum of all left-hand sides is

2
∑

e

xe
0 ≡ 0 (mod 2)

However, the sum of right-hand sides is 1.
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Bijection Games

≡Ck

is characterised by a k-pebble bijection game. (Hella 96) .

The game is played on structures A and B with pebbles a1, . . . , ak on A and

b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A → B such that for pebbles aj and

bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡Ck

B.
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TreeWidth

The treewidth of a graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes

in a tree-like fashion.
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TreeWidth

Formal Definition:

For a graph G = (V, E), a tree decomposition of G is a relation D ⊂ V × T

with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of T ;

and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a

tree-decomposition D ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Cops and Robbers

A game played on an undirected graph G = (V, E) between a player

controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the robber on

a node r ∈ V .

A move consists in the cop player removing some cops from X ′ ⊆ X nodes and

announcing a new position Y for them. The robber responds by moving along a

path from r to some node s such that the path does not go through X \ X ′.

The new position is (X \ X ′) ∪ Y and s. If a cop and the robber are on the

same node, the robber is caught and the game ends.
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Strategies and Decompositions

Theorem (Seymour and Thomas 93) :

There is a winning strategy for the cop player with k cops on a graph G if, and

only if, the tree-width of G is at most k − 1.

It is not difficult to construct, from a tree decomposition of width k, a winning

strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.
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Cops, Robbers and Bijections

If G has treewidth k or more, than the robber has a winning strategy in the

k-cops and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the k-pebble bijection

game on EG and ẼG .

• A bijection h : EG → ẼG is good bar v if it is an isomorphism everywhere

except at the variables xea for edges e incident on v.

• If h is good bar v and there is a path from v to u, then there is a bijection h′

that is good bar u such that h and h′ differ only at vertices corresponding to

the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the robber position

in G when the cop position is given by the currently pebbled elements.
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Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the expressive

power of IFP + C.

It may also be a possible source of new operators to extend the logic.

For a set I , and binary relation A ⊆ I × I , take the matrix M over the two

element field Z2:

Mij = 1 ⇔ (i, j) ∈ A.

Most interesting properties of M are invariant under permutations of I .
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Matrix Multiplication

We can write a formula prod(x, y, A, B) that defines the product of two

matrices:

(∃ν2 < t)(t = 2 · ν2 + 1) for t = #z(A(x, z) ∧ B(z, y))

A simple application of ifp then allows us to define upower(x, y, ν, A) which

gives the matrix Aν :

[ifp R,uvµ (µ = 0 ∧ u = v∨

(∃µ′ < µ) (µ = µ′ + 1 ∧ prod(u, v, B/R(µ′), A))](x, y, ν),

where prod(u, v, B/R(µ′), A) is obtained from prod(u, v, A, B) by replacing

the occurrence of B(z, v) by R(z, v, µ′).
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Matrix Exponentiation

We can, instead, represent numbers up to 2|A| in binary.

That is, a unary relation Γ interpreted over the number domain (using numbers up

to |A|) codes the number
∑

γ∈Γ
2γ .

Repeated squaring then allows us to define power(x, y, Γ, A) giving AN where

Γ codes a value N which may be exponential.
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Non-Singularity

(Blass-Gurevich 04) show that non-singularity of a matrix over Z2 can be

expressed in IFP + C.

GL(n, Z2)—the general linear group of degree n over Z2—is the group of

non-singular n × n matrices over Z2.

The order of GL(n, Z2) divides

N =
n−1∏

i=0

(2n − 2i).

Thus, A is non-singular if, and only if, AN = I

Moreover, the inverse A−1 is given by AN−1.
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Summary

IFP + C cannot express some natural problems in PTime, such as definability of

equations over Z2.

Still, IFP + C forms a natural expressivity class within PTime. It captures all of

PTime on many natural classes of graphs.

Linear Algebra possibly provides a new source of extensions of IFP + C.
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