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unless LogSpace�pi = �pi+1 [8]. In particular, S2 is not �nitely axiomatizableprovided that the polynomial time hierarchy does not collapse [10].For the theory S2(�) these results imply (with some additional argu-ments) absolute results: Si+12 (�) is 8�bi+1(�)-conservative but not 8�bi+2(�)-conservative over T i2(�), and T i2(�) is not 8�bi+1(�)-conservative over Si2(�).Here � represents a new uninterpreted predicate symbol adjoined to thelanguage of arithmetic which may be used in induction formulas; from acomputer science perspective, � represents an oracle.In this paper we pursue this line of investigation further by showing thatT i2(�) is also not 8�bi(�)-conservative over Si2(�). This was known for i = 1; 2by [9, 17], see also [2], and our present proof uses a version of the pigeonholeprinciple similar to the arguments in [2, 9].Perhaps more importantly, we formulate a general method (Theorem2.6) which can be used to show the unprovability of other �bi(�)-formulasfrom Si2(�). We demonstrate this by showing that an iteration principle,a �bi(�)-formula, is also unprovable in Si2(�). This iteration principle isprovable in T i2(�).Our methods are analogous in spirit to the proof strategy of [8]: prove awitnessing theorem to show that provability of a �bi+1(�)-formula A in Si2(�)implies that it is witnessed by a function of certain complexity and thenemploy techniques of boolean complexity to construct an oracle � such thatthe formula A cannot be witnessed by a function of the prescribed complexity.Our formula A shall be �bi (�) and thus we can use the original witnessingtheorem of [2]. The boolean complexity used is the same as in [8], namelyHastad's switching lemmas [6].Johnson, Papadimitriou and Yannakakis [7] introduced a class of poly-nomial local search (PLS) problems. In the �nal section of this paper, weprovide a characterization of the �b1 -de�nable (multivalued) functions of T 12 ,by showing that for any PLS problem L, the existence of local optima for Lcan be expressed as a 8�b1 formula provable in T 12 , and conversely, by showingthat every 8�b1 -formula provable in T 12 can be witnessed by a function whichis a projection of a PLS problem.We assume the reader is familiar with bounded arithmetic and with thebasics of boolean complexity. A reference on boolean complexity is [6] and onbounded arithmetic is [2] or the broader survey in the monograph [5]. Theboolean circuits used in this paper are always constructed with unboundedfanin AND's and OR's in alternating levels; NOT gates are not used, instead2



input signals p may be negated (denoted p).1 SomeBoolean Complexity(1.1) For k , m � 1, i � 0 we shall consider the set Bk;i(m) of mk+iBoolean variables px1;:::;xk;y1;:::;yi , where 0 � x1; : : : ; xk; y1; : : : ; yi < m.The set Bk;i(m) is partitioned into mk+i�1 blocks (Bk;i(m))j of theform (Bk;i(m))j = fpx1;:::;xk;y1;:::;yi�1;zjz < mg; where j is the tuplehx1; : : : ; xk; y1; : : : ; yi�1i. We shall henceforth use ~x as an abbreviation forx1; : : : ; xk . Note that Bk;0(m) is the set of variables p~x with ~x < m.(1.2) A restriction � is a partial truth evaluation of propositional variables,i.e., a partial map into f0; 1g. Instead of saying that �(p) is unde�ned weshall write �(p) = �.(1.3) �S;tj is the class of depth (j + 1) circuits with arbitrary variables,with top gate (level j + 1) OR and at most S gates in each of the levels2; 3; : : : ; j + 1, and with bottom gates (level 1) of arity at most t. Recallour convention that all circuits have unbounded fanin ANDs and ORs inalternating levels.(1.4) R+k;i;m(q), 0 < q < 1, is the probability space of restrictions � de�nedon Bk;i(m) as follows: for any j and for any p 2 (Bk;i(m))j , �(p) = sjwith probability q and �(p) = 1 with probability 1 � q , where sj = � withprobability q and sj = 0 with probability 1� q .The probability space R�k;i;m(q) is de�ned in the same way as R+k;i;m(q)except that the values 0 and 1 of � are interchanged.(1.5) For i � 1, �i is the map from Bk;i(m) onto Bk;i�1(m) de�ned by:�i(p~x;y1;:::;yi) = p~x;y1;:::;yi�1 :3



For � in R+k;i;m(q), g(�) is a restriction assigning value 1 to every variablep~x;y1 ;:::;yi�1 ;s which was given � by � such that for some s < t < m, thevariable p~x;y1;:::;yi�1 ;t was also assigned � by �. Thus g(�) changes all butone � in every block (Bk;i(m))j into 1 (if there were any �'s). If � is fromR�k;i;m(q), then the map g(�) is de�ned identically using 0 instead of 1.�i(�) is abbreviation for the composition of restrictions � g(�) � �i . Thee�ect of the restriction �i(�) is, in each block of variables, to rename one(if any) �'ed variable p~x;y1;:::;yi to p~x;y1;:::;yi�1 . If there are multiple �'edvariables in a block then only one is renamed and the rest are mapped to 1(respectively, 0).(1.6) The next lemma is Hastad's second switching lemma, see [6].Lemma(Hastad) Let C be a �S;tj+1 circuit with variables from Bk;i(m),i; j � 1 , and 0 < q < 1. Assume that a restriction � is randomly chosen fromR+k;i;m(q) or R�k;i;m(q). Then the probability that the function (C � �) � �i(�)is not computable by a �S;tj circuit with variables from Bk;i�1(m) is at mostS � (6qt)t .The function (C � �) � �i(�) is de�ned in the obvious way: �rst partiallyevaluate and rename variables by � and �i and then compute as C .(1.7) Now we shall consider particular circuits Dì;m(~x) of depth i, one forevery choice of x1; : : : ; xk < m. These circuits compute modi�ed Sipserfunctions, see [6], and are de�ned byDì;m(~x) = ANDy1<m ORy2<m � � � Qi�1yi�1<m Qiyi<( 12 `m log(m))1=2 p~x;y1;:::;yi;where Qi�1 (resp. Qi ) is AND if i is even (resp. odd) and is OR otherwise.Our logarithms are always base 2. Note that for distinct tuples ~x, thecircuits Dì;m(~x) contain distinct propositional variables. The parameter `is introduced for technical reasons and its value will be �xed in the proof ofLemma 1.8. 4



(1.8) The next lemma is also due to Hastad [6]. As our parameters areslightly di�erent from those in [6] we include a brief proof-sketch.We say that circuit C contains circuit D if by renaming and/or erasingsome variables we can transform C into D .Lemma Let `;m; i � 1 and x1; : : : ; xk < m and D be Dì;m(~x). Let q =�2` log(m)m �1=2 and assume q � 1=5. For m su�ciently large, the followinghold:(a) Assume i � 2 and that a restriction � is randomly chosen fromR+k;i;m(q) if i is odd or from R�k;i;m(q) if i is even. Then the probability that(D � �) � �i(�) does not contain D`�1i�1;m(~x) is at most 13m�`+i�1 .(b) Assume i = 1 and that a restriction � is randomly chosen fromR+k;1;m(q). Then with probability at least 1� 16m�`+k all mk circuits D1̀;m(~x),for every choice of x1; : : : ; xk < m, are collapsed by � � � �1(�) to � or 0, andwith probability at least 1� 16m�`+k , at least ((`� 1) log(m))1=2mk�1=2 �'s areassigned.Proof (Sketch, see [6]): (a) assume that i � 2 is odd and � is chosenrandomly from R+k;i;m(q) (the case of i even is analogous). Then a depth 2subcircuit of D is an OR of m ANDs each of them of size �12`m log(m)�1=2 :ORyi�1<m ANDyi<( 12 `m log(m))1=2 px1;:::;xk ;y1;:::;yi:Each AND corresponds to one class (Bk;i(m))j of the decomposition ofBk;i(m). An AND gate takes value sj with probability at least1 � (1 � q)(12 `m log(m))1=2 = 1 � 0@1�  2` log(m)m !1=21A( 12 `m log(m))1=2> 1 � e�` log(m) > 1 � 16m�`;for m su�ciently large. Thus with probability at least 1 � 16m�`+i�1 this istrue of all mi�1 ANDs on level 1.For each depth two subcircuit (OR of ANDs), the expected num-ber of ANDs for which the value of sj is equal to � instead of 0 is:5



m � q = (2`m log(m))1=2, and, in fact, there are at least ( (`�1)m log(m)2 )1=2 �'samong sj 's with probability at least 1 � 16m�` . This is seen by the followingargument:Let ru be the probability that exactly u of the sj 's corresponding toANDs of the OR gate, are equal to �. Thenru =  mu! 2` log(m)m !u=20@1 �  2` log(m)m !1=21Am�u :For u � (`m log(m))1=2 it holds that ru=ru�1 � p2 and, as r(`m log(m))1=2 < 1,we get the estimate:( 12 `m log(m))1=2Xu=0 ru � r( 12 `m log(m))1=2 1Xu=0 2�u=2< 4 � r( 12 `m log(m))1=2� 4 �p2��(1�2�1=2)(`m log(m))1=2 � r(`m log(m))1=2� 4 �p2��(1�2�1=2)7` log(m)� 16m�`;for m su�ciently large. (The next-to-last inequality used m � 49` logmwhich follows from q � 1=5.)As there are mi�2 ORs on level 2 at D , the probability that every suchOR gets assigned at least �12(`� 1)m log(m)�1=2 �'s is at least 1� 16m�`+i�2 .This proves part (a). Part (b) is proved completely analogously.Q.E.D. Lemma 1.82 Oracle computationsofwitnessing functions(2.1) A polynomial time oracle machine M is a Turing machine running inpolynomial time and querying an oracle; for di�erent oracles the machinemay compute di�erent functions. Thus we think of the machine as describedindependently of a speci�c oracle. 6



(2.2) A �pi (�)-oracle machine is a pair (M;B(x)), where B(x) is a �bi(�)-formula and M is a polynomial-time oracle machine. For the rest of thissection, � is a (k + i)-ary predicate symbol.For a particular predicate � � Nk+i , B(x) de�nes a subset of N, i.e.,anoracle, and (M;B(x)) computes a particular function. We shall denote byM� machine M with the oracle B(x).(2.3) A circuit oracle is a function C assigning to each u 2 N a booleancircuit Cu with variables from some Bk;i(m), m = m(u) being a functionof u and k; i �xed. For a particular � � Nk+i , the circuit oracle C de�nesa subset C� of N of those u for which Cu computes 1 when propositionalvariables are assigned truth values according to:px1;:::;xk;y1;:::;yi = 1 i� (x1; : : : ; xk; y1; : : : ; yi) 2 �:For M an oracle Turing machine and � � Nk+i , we let M� denote themachine M using the oracle C� . The context will always distinguish betweenthe two de�nitions (2.2) and (2.3) of M� .For S; t and m functions of u, a circuit oracle is called �S;tj -circuit oraclewith variables from Bk;i(m) if Cu is a �S(u);t(u)j -circuit with variables fromBk;i(m(u)) for all u.There is a close correspondence between the �bi(�)-oracles and �S;ti -circuit oracles with variables from Bk;i(m), with S = 2(logm)c , t = log S andm = 2(logu)c (see [4]). Namely, if (M;B(x)) is as in (2.2), then the oracle B(x)is equivalent to a family of �S;ti circuits Cu with variables from Bk;i(m), withS; t;m bounded as above for some constant c depending on the runtimesof M and B . As B(x) 2 �bi , B(x) may be computed by making i blocks ofexistential/universal guesses and then running for polynomial time. Hence,for each u, a �S;ti circuit Cu with variables from Bk;i(m) (m = 2(logu)O(1) )may be constructed that computes B(u) by letting i levels of OR's and AND'sin Cu correspond to blocks of existential and universal guesses, respectively,and at the bottom of the circuit, expressing a polynomial time execution ofB (performed after all nondeterministic choices are �nished), as either an ORof AND's of fanin � t or an AND of OR's of fanin � t (if i is odd or even,respectively). Merging adjacent OR's (respectively, AND's) in the second7



and third levels from the bottom of the circuit, makes Cu have depth i+1 asdesired.Thus any �bi (�)-oracle may be viewed as a �S;ti -circuit oracle withvariables from Bk;i(m) and S; t;m bounded in terms of u as above. Theconverse is not true; however, any such �S;ti -circuit oracle may nonetheless beviewed as analogous to a non-uniform �bi(�)-oracle.(2.4) Fix m; let [m] denote the set f0; 1; : : : ;m� 1g. A (k�u)-dimensionalcylinder in [m]k is any set of the form:f(x1; : : : ; xk) 2 [m]k:xi1 = a1; : : : ; xiu = augfor any �xed values i1 < : : : < iu and a1; : : : ; au < m. There are �kr�mk�rmany r -dimensional cylinders in [m]k .(2.5) For � a k + i-ary predicate, denote by Ai;�(a; x1; : : : ; xk) the �bi(�)-formula:8y1 < a 9y2 < a � � �Qyi�1 < a Q0yi < �12`a log a�1=2 �(x1; : : : ; xk; y1; : : : ; yi):Thus Ai;� has (k + 1) free variables. The parameter ` relates to ` in (1.7)and its value will be �xed later.Let �(x1; : : : ; xk) be a k -ary predicate symbol and let B(a; �) be abounded formula containing � in which a is the only free variable, in whichevery quanti�er is bounded by a, which contains no function symbols, and inwhich every occurence of � has k bound variables as arguments. Obviously,B(a; �) depends only on the values of �(a1; : : : ; ak) where a1; : : : ; ak < a.De�ne B(a;Ai;�) to be the �b1(�) formula obtained from B(a; �) by replacingall occurences of �(x1; : : : ; xk) by Ai;�(a; x1; : : : ; xk).We shall assume B begins with an existential quanti�er, so B is9 x < a D . A witness for B(a; : : :) is a value for z such that D(a; z; : : :)holds. We shall see examples of such formulas in the next section.(2.6) The next theorem is the main technical result of this paper.8



Theorem Assume i; k � 1 and that �, Ai;� and B(a; �) are as in (2.5).Assume also that M is a polynomial time oracle machine with a �bi+1(�)-oracle, such that for every � � Nk+i the machine M� computes from input asome witness to formula B(a;Ai;�).Then there is a constant c � 1 such that for m su�ciently large there is aQ � Nk and a �S;t1 -circuit oracle C1 with variables from Bk;0(m) so that thefollowing conditions hold:(i) for all u, m(u) = m;S(u) = 2(logm)c and t(u) = logS = (logm)c ,(ii) for every r -dimensional cylinder U in [m]k , r = 1; : : : ; k ,jUnQj � mr�1=2(iii) for every �0 � Nk s.t. �0 \Q = ;, machine M�0 computes on input ma witness to formula B(m;�0).Note that for any given m, S(u); t(u) and m(u) are constants independentof u and that the variables of the �S;t1 -circuit oracle are of the form px1;:::;xk ,with x1; : : : ; xk < m, and thus M�0 is correctly de�ned for any �0 � Nk .To better understand Theorem 2.6, �rst consider a converse of it: ifN is a Turing machine which, given an input m and given a �S;t1 -circuitoracle C involving variables p~x , always outputs a witness for B(m;�0), thenthe same Turing machine N can �nd a witness for B(m;Ai;�) when givenm as input and given a �S;ti+1 -circuit oracle C 0 with variables from Bk;i(m).This converse is easily proved if C 0 is de�ned from C by replacing variablesp~x by �S;ti subcircuits for Ai;� (with variables from Bk;i(m))| note that inC , variables p~x give the truth values of �0(~x), while in C 0 , variables p~x;y1;:::;yigive truth values of �(~x; y1; : : : ; yi).Since a �bi+1(�)-oracle can be translated into a �S;ti+1 -circuit oracle withvariables from Bk;i(m), Theorem 2.6 essentially states that the converse canbe partially reversed, at least for �0 's that avoid the set Q. The set Q is smallin the sense that, in any cylinder, at least a fraction 1=pm of the k -tuplesfrom the cylinder are not in Q (and hence may be �0 ).Another way to think about Theorem 2.6 is as follows: Suppose there is amachine M that �nds witnesses for B(a;Ai;�) with a �bi+1(�)-oracle. SinceAi;� is a �bi -formula, M has the power to ask existential questions involvingAi;� . The point of Theorem 2.6 is that M does not have very much more9



power; namely, if M asks instead �S;t1 -circuit oracle queries about � , then Mcan �nd a witness for B(a; �) for many � 's (the ones that avoid Q).Proof of the theorem: The proof consists of several steps, employing heavilythe lemmas from section 1.1. Choose m su�ciently large so that Lemma 1.8 holds and �x a = m. Let` � i+ 2k .2. For technical reasons (Lemma 1.8), we forbid into � any mem-bers (x1; : : : ; xk; y1; : : : ; yi) with x1; : : : ; xk; y1; : : : ; yi�1 � m or withyi � (12`m log(m))1=2 ; this can be done without loss of generalitybecause of the form of the bounded quanti�ers in B and in Ai;� .Clearly the truth value of Ai;�(a; x1; : : : ; xk) is computed by the circuitDì;m(x1; : : : ; xk) under the evaluation of variables:px1;:::;xk;y1;:::;yi = 1 i� (x1; : : : ; xk; y1; : : : ; yi) 2 �:3. Let E(x) be the �bi+1(�)-oracle of the oracle machine. Since the ma-chine M is polynomial time, any number u occuring in the computationis bounded by 2(logm)O(1) . For any u < 2(logm)O(1) , the truth value ofE(u) is computed by a �S;ti+1 -circuit Cu with variables from Bk;i(m),where S � 2(logm)c and t = log(S), for c large enough.Thus we henceforth think of M as being a �S;ti+1 -circuit{oracle (withvariables from Bk;i(m)) machine with S; t;m constants.4. Let �j be randomly chosen restrictions from R�jk;j;m(qj), for j = i; i� 1; : : : ; 1,where �j is + if j is odd and � if j is even, and qj = �2(`�i+j) log(m)m �1=2 .We are interested in what the e�ect of the composed restriction� =� �i � �i(�i) � �i�1 � �i�1(�i�1) � : : : � �1 � �1(�1)is on the circuits Cu and Dì;m(x1; : : : ; xk)5. By (1.8), any circuit D`+j�ij;m (x1; : : : ; xk) contains, after being restrictedby �j � �j(�j), the circuit D`+j�i�1j�1;m (x1; : : : ; xk) with probability at least1� 13m�`+i�1 , and thus this is true for all mk circuits D`+j�1j;m (x1; : : : ; xk)10



obtained by considering all values of x1; : : : ; xk < m, with probabilityat least 1� 13m�`+k+i�1:6. Applying successively the restrictions �j � �j(�j), with j = i; : : : ; 2, toDì;m(x1; : : : ; xk), transforms the circuit into(Dì;m(x1; : : : ; xk)) � �i � �i(�i) � : : : � �2 � �2(�2);and therefore, by the preceeding paragraph, with probability at least1� 13(i� 1)m�`+k+i�1each of these mk circuits contains the circuit D`�i+11;m (x1; : : : ; xk).7. To establish condition (ii) of the theorem, we have to be more careful inassessing what happens to D`�i+11;m (x1; : : : ; xk) after being restricted bythe randomly chosen � �1 � �1(�1).Let U be any r -dimensional cylinder; r � 1. Then analogouslyto part (b) of Lemma 1.8 and by reasoning similar to the proof ofLemma 1.8(a), with probability at least1 � 16m�`+i�1+r;there are at least mr  (`� i) log(m)m !1=2 � mr�1=2many �'s assigned to the mr many circuits corresponding to(x1; : : : ; xk) 2 U . At the same time, with probability at least1� 16m�`+i�1+rnone of these circuits collapses to 1. Summing up, with probability atleast 1 � 13m�`+i�1+r;11



all mr circuits corresponding to (x1; : : : ; xk) 2 U collapse to either �(i.e. to px1;:::;xk ) or to 0, with at most m�mr�1=2 collapsing to 0.Counting over all cylinders of dimension � 1, the above holds for allsuch cylinders U with probability at least1� kXr=1(13m�`+i�1+rmk�r kr!) = 1� 13m�`+i�1+k kXr=1 kr!� 1� 13m�`+i�1+k2k� 1� 13m�`+i�1+2k:8. Now we turn our attention to what e�ect � has on the oracle circuits Cu .By Lemma 1.6, any �S;tj+1 circuit with variables from Bk;j(m) is trans-formed by the restriction � �j � �j(�j) into a �S;tj -circuit with variablesfrom Bk;j�1(m) with probability at least1 � S(6qjt)t:Therefore with probability at least1 � S(6t)t0@ 1Xj=i qtj1A � 1� S(6t)t � i � (qi)t(since qi � qi�1 � : : : � q1), a �S;ti+1 circuit Cu with variables fromBk;i(m) is transformed by � into a �S;t1 -circuit C1u with variables fromBk;0(m). It follows that with probability at least1� S2 � i � (6qit)tC1u = Cu � � is a �S;t1 -circuit, for all u < S . In other words, every circuitoracle that M may query collapses to a �S;t1 with this probability. It iseasy to compute that for m large enough (w.r.t. ` and c):1 � S2 � i � (6qit)t � 1� 2� 13 log(m)c+1:12



9. By 6. and 7., � collapses every Dì;m(x1; : : : ; xk) into px1;:::;xk or 0, with\cylinder property" of 7. satis�ed, with probability at least1 � 13(i� 1)m�`+k+i�1 � 13m�`+i�1+2k � 1� i3m�`+i�1+2k:By 8., with probability at least1 � 2� 13 log(m)c+1;every C1u = Cu � � is a �S;t1 -circuit with variables from Bk;0(m).Thus both these events happen, for random � = �i � �i(�i) � : : : � �1 ��1(�1), with probability at least:1 � i3m�`+i�1+2k � 2� 13 log(m)c+1 � 1� i3m � 18 � 12 ;since ` � i+ 2k , for m large enough.10. By 9., there is at least one � satisfying conditions at 8. De�neQ = f(x1; : : : ; xk) j Dì;m(x1; : : : ; xk) � � = 0g:Q satis�es property (ii) of Theorem 2.6 by 7.De�ne the �S;t1 -circuit oracle byC1u := Cu � �:Now, condition (iii) of Theorem 2.6 is satis�ed by construction.Q.E.D. Theorem 2.6(2.7) Observe that the above proof works even if S is considerably larger: upto S = 2m( 12��) , � > 0 �xed. In other words, we can allow the machine M torun in time 2m( 12��) . The only modi�cation to the proof is to the calculationsin 8., recall that t = logS . 13



3 ThePigeonholePrincipleIn this section we apply Theorem 2.6 to show the unprovability of a weakform of the pigeonhole principle in Si2(�).(3.1) Let �(x1; x2; x3) be a predicate symbol. Let WPHP (a; �) be theformula:(8u1; u2; v1; v2; w < a)[(�(u1; u2; w) ^ �(v1; v2; w))! (u1 = v1 ^ u2 = v2)]^(8u1; u2; v; w < a)[(�(u1; u2; v) ^ �(u1; u2; w))! v = w]! (9u1; u2 < a)(8v < a)(:�(u1; u2; v)):If we think of a pair of numbers x1 , x2 < a as coding a single number < a2 ,then the formula WPHP says that �(x1; x2; x3) does not de�ne the graph ofa one-to-one function from a2 to a. Clearly WPHP is �b2(�)-formula.(3.2) Let �(x1; x2; x3; y1; : : : ; yi) be a (i + 3)-ary predicate symbol andAi;�(a; x1; x2; x3) be the �bi(�)-formula de�ned in (2.5). Then we have:Theorem(Paris-Wilkie-Woods) For all i � 0, WPHP (a;Ai;�) is provableby T i+22 (�).Proof In [15] it was shown that WPHP (a; �) is provable in I�0(�) + 
1 ,and thus also in T2(�). Already [2] has observed that this proof can be carriedout in T 22 (�). This implies the theorem.Q.E.D. Theorem 3.2(3.3) Theorem Let i � 0. The �bi+2(�)-formula WPHP (a;Ai;�) is notprovable in Si+22 (�).Proof Case i = 0 was proved in [9]. We use Theorem 2.6 to essentiallyreduce the case i > 0 to the case i = 0 (we include the i = 0 argument heretoo).Let i � 1 and assume that Si+22 (�) proves WPHP (a;Ai;�). Then by the\main theorem" for bounded arithmetic [2], the formula WPHP (a;Ai;�) iswitnessed by a �Pi+2(�)-function, i.e., by a function which is computed by a14



polynomial time oracle machine M with a �bi+1(�)-oracle E(x). We shallconsider only �'s such that Ai;� de�nes a partial 1-1 function from a2 to a;in other words, such that(8u1; u2; v1; v2; w < a)[(Ai;�(a; u1; u2; w) ^Ai;�(a; v1; v2; w))! (u1 = v1 ^ u2 = v2)]^(8u1; u2; v; w < a)[(Ai;�(a; u1; u2; v) ^ Ai;�(a; u1; u2; w))! v = w]For such �'s, M� on input a, will witness the truth of WPHP (�; �) byproducing as output values u1; u2 < a such that(8v < a)(:Ai;�(a; u1; u2; v);in other words, M� outputs values for u1; u2 such that the partial functionde�ned by Ai;� is unde�ned at the pair u1; u2 .We now apply Theorem 2.6 with B(a; �) the �b2 -formula which is theprenex form of WPHP (a; �). Theorem 2.6 implies, for all m su�cientlylarge, there is a �S;t1 -circuit oracle, C1u , with variables from B3;0(m), whereS = 2log(m)c and t = log(m)c , and there is a Q � [m]3 such that whenever�0 � [m]3 and �0 \Q = ;, the machine M�0 outputs a witness to B(m;�0).We show that this is impossible. To prove this, we shall build an oracle �0for which M�0(a) fails to witness B(m;�0) | the oracle is constructed byexecuting M�(m) and creating sets X+i and X�i at the i-th oracle query.The set X+i (respectively, X�i ) is a set of triples that is forced to be in �0(respectively, out of �0 ). Initially, X+0 = ; and X�0 := Q. Let \C1u1 ?" bethe �rst circuit-oracle query. There are two possibilities:(a) There is � � [m]3 , X+0 � �, � \ X�0 = ;, such that � is a graph ofpartial 1� 1 map from m2(= m�m) to m, and C1u1 evaluates to 1,(b) There is no � satisfying (a).In Case (a), since C1u1 is a �S;t1 -circuit, it is an OR of AND's of size � t;thus, C1u1 can be forced true by specifying the the truth values � t = (logm)catoms. Choose any partial evaluation � that forces C1u1 true such that � sets� t values and is consistent with conditions in (a). Form X+1 (respectively,X�1 ) by adding to X+0 (respectively, to X�0 ) all (x1; x2; x3) such that px1;x2;x3given value 1 (respectively, value 0) by � . Now answer YES to the machineand resume its computation. 15



In Case (b) put X+1 := X+0 , X�1 := X�0 , answer NO, and resume thecomputation.Arriving at (i+ 1)-st query, we have already de�ned X+i , X�i so thatjX+i j � i(logm)c; jX�i nQj � i(logm)c;and X+i \ X�i = ;, and the answers to the �rst i oracle queries have been�xed, for any graph � of a partial 1-1 function with X+i � � and �\X�i = ;.Form X�i+1 analogously as above.At the end of computation (which has � (logm)c steps), we de�neX+ = [i X+i ; X� = [i X�iand then we have thatjX+j � (logm)2c; jX�nQj � (logm)2cwith Q � X� . Furthermore, for all partial 1-1 maps � such that � � X+ and�\X� = ;, the oracle queries of M�(a) are �xed and thus the output (u1; u2)of M� is the same; in other words, there is a �xed output (u1; u2) whichwitnesses WPHP (m;�(x1; x2; x3)) for all such �. But this is impossible:since Q was chosen to satisfy Theorem 2.6(ii), there are at least m1=2 v 'ssuch that (u1; u2; v) =2 Q, and thus at least (m1=2 � (logm)2c) � 1 such v 'snot in X� . Hence we can set � = X+ [ f(u1; u2; v)g for some v such that� \X� = ;, but obviously (u1; u2) then does not witness WPHP (m;�).Q.E.D. Theorem 3.3(3.4) Corollary T i2(�) is not 8�bi(�)-conservative over Si2(�), i � 1.Actually, T i2(�) is not 8�bi(�)-conservative over any Sij(�), i � 1, j � 2.Proof The corollary follows from Theorems 3.2 and 3.3.Use Remark (2.7) for the second part.Q.E.D. Corollary 3.4The second part of Corollary 3.4 complements [12] where it was shownthat T ij+1 is not �b1 -conservative over T ij , i, j � 1.16



4 The Iteration Principle(4.1) The previous section showed that T i2 is not 8�bi(�)-conservative overSi2(�) by reducing | via Theorem 2.6 | the general case i > 2 to the basecase which is essentially equivalent to the case where i = 2. In this section,we give a example of another proof of the same result; the most importantnovel feature, is that now the base case corresponds to i = 1. For this, weneed to prove a useful analogue of Theorem 2.6.(4.2) A �S;t1 -circuit C with variables from Bk;0(m) is a pair of �S;t1 -circuitsC+ and C� with variables from Bk;0(m) such that C+ by de�nition computesthe value of the �S;t1 -circuit and C� must compute its negation.A �S;t1 -circuit oracle with variables from Bk;0(m) is a family of �S;t1 -circuits with variables from Bk;0(m), one for each oracle query, analagouslyto the de�nitions of (2.3). S; t and m may depend on u as before.(4.3) Theorem Assume i; k � 1 and that �(~x; ~y), Ai;� and B(a; �) are asin (2.5). Assume also that M is a polynomial time oracle machine with a�bi(�)-oracle, such that for every � � Nk+i the machine M� computes frominput a some witness to the formula B(a;Ai;�).Then there is a constant c � 1 such that for m su�ciently large there is aQ � Nk and a �S;t1 -circuit oracle C with variables from Bk;0(m) so that thefollowing conditions hold:(i) for all u,m(u) = m;S(u) = 2(logm)c and t(u) = logS = (logm)c ,(ii) for every r -dimensional cylinder U in [m]k , r = 1; : : : ; k ,jUnQj � mr�1=2(iii) for every �0 � Nk s.t. �0\Q = ;, machine M�0 computes on input m awitness to formula B(m;�0). (Recall that M�0 operates with the circuitoracle C�0 instead of the original �bi -oracle.)The di�erence between Theorems 2.6 and 4.3 that the former assumesM has a �bi+1 oracle and states the existence of a �S;t1 -circuit oracle, whereasthe latter assumes M has a �bi oracle and states the existence of a �S;t1 -circuitoracle. Having a �S;t1 -circuit oracle is analogous to having only an oracle for17



(a polynomial time function of) �, in the same way that having a �S;t1 -circuitoracle was analogous to having a �b1 -oracle. More precisely, when we constructan � by simulating M with a �S;t1 -circuit, if an oracle query answer has notyet been forced, then it will always be possible to force the oracle query toa desired Yes/No answer by setting only a relatively small number (namely,� t) many values of �. This is because both C�;+ and its complement C�;�are OR's of small AND's; and thus either a Yes or No answer may be forced bysetting values of � to make one AND true in C�;+ or in C�;� (respectively).Proof The proof of Theorem4.3 is nearly identical to the proof of Theorem2.6except for the last step. Before the last step of the proof, Ai;� 's have beencollapsed to circuits consisting a single AND gate, and the �bi -oracle has beencollapsed to a �S;t1 -oracle C1 (with variables from Bk;1(m) in this case).After one more random restriction (from R+k;1;m) the AND gates of thethe Ai;� 's collapse, with high probability, to 0 or to p~x with the cylinderproperty (ii) valid, exactly as in the proof of Theorem 2.6; It remains toconsider what this �nal restriction does to the circuit C1 : since C1 is a familyof �S;t1 -circuits, it certainly remains one after being restricted; in addition,by the switching lemma (Lemma 1.6), its complement :C1 becomes, withhigh probability, a family of �S;t1 -circuits too. In other words, after the �nalrestriction, the circuit oracle becomes a �S;t1 -circuit oracle with variables fromBk;0(m).The computations of the probabilities are identical to the proof ofTheorem 2.6.Q.E.D. Theorem 4.3(4.4) We shall consider an iteration principle Iter0(f; a) which states\If f satis�es the three conditions(1) 0 < f(0),(2) 8x < a; f(x) = a _ f(x) < f(f(x)), and(3) 8x < a; f(x) � a,then there exists a b < a such that f(b) = a".Note that Iter0(f; a) is expressible by a �b1 -formula.TheoremThe formula (8x)Iter0(f; x) is provable in T 12 (f) but not in S12(f).18



Proof To see that T 12 ` Iter0(f; a), let '(u) be the �b1 -formula(9x � u)(u < f(x) ^ f(x) � a):Then clearly, T 12 (f) proves '(0) by (1) of the de�nition of Iter0. Also, T 12 (f)proves u � a� 2 ^ '(u)! '(u+ 1);to prove this, note that if xu witnesses '(u) then either f(xu) = u + 1 orf(xu) > u+ 1, and in the former case, f(f(xu)) is witness for '(u+ 1), andin the latter case, xu is already a witness for '(u + 1). Now, by �b1 -IND,T 12 (f) can prove that '(a � 1) holds and a witness b for '(a � 1) mustsatisfy f(b) = a.Now, for the sake of a contradiction, assume S12(f) ` Iter0(f; a). Thenthere is a polynomial time Turing machine with an oracle for the function fsuch that, on input a, if f satis�es conditions (1)-(3) of the de�nition ofIter0, then M outputs a value b < a so that f(b) = a. We prove this isimpossible by constructing an f for which M fails.For �xed M , take a su�ciently large and start the computation of Mon a. After the i-th oracle query of M , we will have values 0 = r0 < r1 <� � � < rt < i and values s1; : : : ; sm such that t + m � i and such that wehave speci�ed the values f(rj) = rj+1 for all j < t and we have speci�ed thevalues f(sj) = 0 for all j � m and such that no other values of f have beenspeci�ed. In particular, the value of f(rt) has not been speci�ed. Thus, afteri oracle queries, � i values of f have been speci�ed (t and m vary with i, ofcourse).Suppose the (i + 1)-st oracle query is for the value of f(u). If f(u) hasalready been speci�ed, no action is taken and the computation of M continueswith the already speci�ed valued. If u 6= rt , then specify that f(u) = 0; thismakes u one of the sj 's. Otherwise, if u = rt , �x f(u) to be equal to the �rstvalue rt+1 > rt for which the value of f has not yet been speci�ed.At the end of M 's computation, f has been de�ned consistently and sothat conditions (1)-(3) are satis�ed. Since M runs for at most jajc steps forsome constant c, we take a large enough so that a > jajc . Clearly M cannot reliably output a value b such that f(b) = a; since, for any particular beither b is among rt 's and then f(b) < a, or it is possible to set f(b) = 0consistently with conditions (1)-(3).Q.E.D. Theorem 4.4 19



(4.5) For technical reasons, we slightly generalize the iteration principle to aprinciple Iter(f; a; a0) by replacing conditions (1) and (2) by:(10 ) a0 < a ^ a0 < f(a0).(20 ) (8x < a)(a0 � f(x)! (f(x) = a _ f(x) < f(f(x))).Obviously, Iter0(f; a) is just Iter(f; a; 0).It is interesting to note that the iteration principle is a simpli�ed formof a Skolemization of the induction axiom for (9y � x)�(x; y) (compare toKraj���cek [9]). To see this, let the Skolemization of the induction axiom for(9y � x)�(x; y) be(�(0; 0) ^ 8x; y � a ((�(x; y) ^ y � x)! (�(x+ 1; g(x; y)) ^ g(x; y) � x+ 1))! (9b � a)�(a; b):Consider the pairing function [x; y] := x(a+1) + y and let f be the functionsuch thatf([x; y]) = 8><>: [x+ 1; g(x; y)] if y � x < a and �(x; y)(a+ 1)2 if x = a and �(x; y)0 otherwiseIt is easy to see that if the hypothesis of the Skolemization is satis�ed, thenf satis�es the hypothesis of Iter(f; (a+ 1)2; 0) and thus Iter(f; (a+ 1)2; 0)implies that there is a pair [x; y] < (a + 1)2 such that f([x; y]) = (a + 1)2 .From the de�nition of f , x = a and �(a; y) and y < a, i.e., (9b � a)�(a; b)is true.(4.6) A unary function f : a ! a can be coded as a binary relation �(x; i)on a � jaj by letting �(x; i) be true if and only if the i-th bit of the binaryrepresentation of f(x) is equal to 1. The predicate � is called the bit graphof f . A formula f(x) = y is then equivalent to the sharply bounded formulay < a ^ (8i < jaj)((y)i = 1$ �(x; i));where (y)i denotes the i-th bit of the binary representation of y . So bystandard techniques, any �bi -formula C(f) involving f can be rewritten asan equivalent �bi -formula C 0(�) containing � instead of f (see Theorem 2.2of [2]). Furthermore, w.l.o.g., every occurence of � in C 0(�) has only bound20



variables as arguments. This allows us to generalize the concept of Ai;�from (2.5) to functions; namely, with k = 2, Ai;�(a; x1; x2) can be viewed asthe bit graph of a function F i;� : a ! a so that F (x1) has x2 -th bit equalto 1 i� Ai;�(a; x1; x2) holds.This treatment of functions as relations also translates to oracle machines,namely, one oracle query about a function's value can be replaced by jaj manyqueries about the bit graph of the function.Let Iter(F i;�; a; a0) be the �bi+1 -formula obtained by �rst expressingIter(f; a; a0) as an equivalent �b1 -formula involving the bit graph � of finstead of f , and then replacing every �(y; z) by the formula Ai;�(a; y; z).(4.7) Theorem For i � 0, the �bi+1(�)-formula Iter(F i;�; a; a0) is provablein T i+12 (�) but not in Si+12 (�).Proof The proof that �bi+1 -IND implies the iteration principle is completelyanalogous to the proof of the �rst part of Theorem 4.4; we leave it to thereader to check the details.It remains to show that Si+12 (�) does not prove Iter(F i;�; a; a0); assume,for the sake of a contradiction, that it does prove this. Then, by [2],Iter(F i;�; a; a0) is pi+1 -witnessed, i.e., there is a polynomial time Turingmachine M with a �bi (�)-oracle that on inputs a and a0 produces a witnessfor Iter(F i;�; a; a0). By the Collapsing Theorem 4.3 this implies that formany functions f : a! a, Iter(f; a; a0) is \nearly" p1(f)-witnessed. Moreprecisely, there is a polynomial timemachineM� and for any su�ciently largem a �S;t1 -circuit oracle C with variables from Bk;0(m) so that S = 2(logm)cand t = logS for some constant c ,and there is a set Q � m�log(m) with thecylinder property (ii) of Theorem 4.3 holding, such that whenever f : m! mis coded by � � m� log(m) with � \Q = ; and whenever m0 < m, then themachine M with circuit-oracle C outputs a witness to Iter(f;m;m0). Sincewe will consider only functions f which satisfy the hypotheses 10 , 20 and 3 ofthe iteration principle, the witness output by M will be a value b such thatf(b) = m.We shall prove that no such machine M with �S;t1 -circuit oracle C exists;this su�ces to show that Si+12 does not prove Iter(F i;�; a; a0).Our stategy is to diagonalize against an execution of M to produce a �which codes a function f satisfying the three hypotheses of the iterationprinciple but for which M fails to output a value b such that f(b) = m.21



Each time an M makes an oracle query we shall set su�ciently many valuesof � so as to �x the answer to the query (no matter how � is extended in thefuture). We shall adopt the convention that �(x; j) will be false if x � m orif j > logm. We also adopt the convention that whenever a truth value of�(x; j) is set (that is the value of the j -th bit of f(x) is speci�ed), then therest of the the values �(x; s), for s � logm, are set (so that the value of f(x)is completely speci�ed). Thus, at any point during the construction of � , ifx < m, then either f(x) is completely unspeci�ed or a value for f(x) hasbeen chosen.We construct � by executingM with a �xed, su�ciently large m: after theq -th query of M we shall have constructed a partial relation �q � m� logmwhich de�nes a partial function fq : m ! m. (A partial relation is apartially speci�ed relation in which some values of �q are set and others areyet unde�ned.) Initially, we let the domain dom(f0) of f0 be the set ofx for which hx; ji is in Q, for some j and set f 's value to be zero on itsdomain. And �0 is the corresponding partial relation; namely, �0(x; s) = 0 i�hx; ji 2 Q for some j � logm. We let m0 be the least value not in dom(f0)and begin the execution of M on the inputs m and m0 .For conceptual clarity, we shall transform the �S;t1 -circuits of the oraclecircuits which use the function f in place of the relation � . Each circuit C�uconsists of an OR of AND's, each of fanin � t (recall that the family Ccontains a pair of circuits C+u , C�u for each possible oracle query u). Theliterals in the AND's are assertions of the form �(x; s) or :�(x; s). Each suchliteral may be replaced by an OR of the at most m=2 assertions f(x) = ycompatible with the assertion. After this replacement, the circuit may be putback into disjunctive normal form, yielding a circuit which consists of an ORof AND's, each of fanin � t | now each input to an AND is an assertion ofthe form f(x) = y . Each AND may obviously be thought of as specifyinga partial map with domain of size � t. For the rest of this proof, we shallconsider the C�u 's as being in this form, as it makes our arguments easier tounderstand (this doesn't change the argument in any essential way).After M 's k -th oracle query, we shall have de�ned a partial function fk �fk�1 � � � � � f0 and a sequence m0 < m1 < � � � < msk satisfying the followingconditions:(1) jdom(fk)j � jdom(f0)j+ kt2 � pm logm+ k(logm)2c .(2) For j < sk , fk(mj) = mj+1 ; and fk(msk) is unde�ned.22



(3) For all v 2 dom(fk) n fm0; : : : ;msk�1g, fk(v) = 0.(4) sk � kt and msk � pm logm+ kt2 .(5) Any f � fk gives the same answers as fk to M 's �rst k oracle queries.These �ve conditions are clearly already ful�lled for k = 0 at the beginningof M 's execution (conditions (1) and (4) holds because the cylinder property(ii) of Theorem 4.3 is satis�ed by Q.) We must ensure that these conditionsremain true for the entire computation of M | note that these conditionsimply that fk can be extended (in many ways) to a total function satisfyingthe hypotheses of the iteration principle.Now we describe how to de�ne fk+1 at M 's (k + 1)-st oracle query.Suppose M 's (k + 1)-st query is u, so the oracle answer is computed by the�S;t1 -circuit Cu consisting of two �S;t1 -circuits C+u and C�u computing eachother's complements. We will de�ne fk+1 from fk adding at most t2 elementsto the domain so that one of C+u and C�u is forced to be true and so thatconditions (1)-(5) hold.The circuits C�u each comprise an OR and AND's; each AND is aconjunction of � t statements of the form f(x) = y . Thus each ANDcorresponds in the obvious way to a partial function g with domain ofcardinality � t (namely, g is the minimal partial function such that f = gsatis�es the AND). Let pf(C+u ), respectively, pf(C�u ) be the set of partialfunctions corresponding to the AND's of the circuits C+u , respectively, C�u .It is an elementary fact, that for any g 2 pf(C+u ) and any h 2 pf(C�u ) theremust be a value x such that that g(x) and h(x) are de�ned and are unequal;otherwise there would be a total function f � g [ h which would satisfy bothC+u and C�u .If there is no g 2 pf(C+u ) which is compatible with fk then fk alreadyforces C�u true and we set fk+1 := fk . Otherwise, pick any g1 2 pf(C+u )which compatible with fk and choose msk+1 to be least number greater thanmsk which is not in dom(g1) [ dom(fk). Let k1 be the partial function withdom(k1) equal to dom(fk) [ dom(g1) [ fmskg and de�ned byk1(x) = 8><>: fk(x) if x 2 dom(fk)msk+1 if x = msk0 if x 2 dom(g1) n dom(fk) and x 6= msk :23



Now if k1 forces either C+u or C�u to be true, we set fk+1 := k1 . Otherwise,note that for each h 2 pf(C�u ) there is at least one value in dom(k1)\dom(h);in other words, there are at most t � 1 values in dom(h) n dom(k1). Nowpick an arbitrary g2 2 pf(C+u ) which is compatible with k1 and choose msk+2to be equal to the least value greater than msk+1 not in dom(g2) [ dom(k1).De�ne the partial function k2 from k1 , g2 and msk+2 in exactly the samefashion as k1 was de�ned from fk , g1 and msk+1 . As before, either k2 forcesone of C+u or C�u to be true and we set fk+1 := k2 ; or we have that for allh 2 pf(C�U ), there are at most t� 2 values in dom(h) n dom(k2). We iteratethis process until we �nd a k` with ` � t such that k` forces one of C+u andC�u to be true; then we set fk+1 := k` . It is straightforward to verify thatfk+1 satis�es conditions (1)-(5).The above completes the de�nition of the fk 's. Since M runs inpolynomial time we choose c so that M(m) makes k � (logm)c queries.fk is the partial function constructed at the end of the above process. Bycondition (4), we havemsk � pm logm+ k � t2� pm logm+ (logm)c(logm)2c<< mfor m su�ciently large. Likewise jdom(fk)j << m. Now M cannot reliablyoutput a witness to the iteration principle Iter(f;m;m0) since, for any outputvalue b of M(m), we may extend fk to a total function f , such that f satis�esthe hyptheses 10 , 20 , 3 of the iteration principle and such that f(b) 6= a;namely, if b 6= msk�1 let f have value 0 whenever fk is unde�ned, and ifb = msk�1 let f(msk) = msk + 1 and otherwise have value 0 whenever fk isunde�ned.Q.E.D. Theorem 4.7.5 T 12 andPolynomial Local Search(5.1) In [7] a Polynomial Local Search problem (PLS-problem) L is de�nedto be a maximization problem satisfying the following conditions: (we havemade some inessential simpli�cations to the de�nition in [7])24



� For every instance x 2 f0; 1g� , there is a set FL(x) of solutions,an integer valued cost function cL(s; x) and a neighborhood functionNL(s; x),� The binary predicate s 2 FL(x) and the functions cL(s; x) and NL(s; x)are polynomial time computable. And there is a polynomial pL so thatfor all s 2 FL(x), jsj � pL(jxj). Also, 0 2 FL(x).� For all s 2 f0; 1g� , NL(s; x) 2 FL(x).� For all s 2 FL(x), if NL(s; x) 6= s then cL(s; x) < cL(NL(s; x); x).� The problem is solved by �nding a locally optimal s 2 FL(x), i.e., an ssuch that NL(s; x) = s.It follows from these conditions that there is a polynomial time computableML(x) such that ML(x) > cL(s; x) for all s 2 FL(x).A PLS-problem L can be expressed as a �b1 -sentence saying that theconditions above hold; if these are provable in T 12 then we say L is a PLS-problem in T 12 . The formula OptL(x; s) is the �b1 -formula NL(s; x) = s.(5.2) Theorem Let L be a PLS-problem in T 12 . Then T 12 `(8x)(9y)OptL(x; y).Proof It is known [2] that T 12 proves the �b1 -MIN axioms; this immedi-ately implies also the �b1 -MAX principle. Arguing informally in T 12 , wehave that, for all x, there is a maximum value c0 < ML(x) satisfying(9s 2 FL(x))(cL(s; x) = c0). Taking s to be witness for this last formula, sis globally optimal and hence satis�es OptL(x; s), and the theorem is proved.Q.E.D. Theorem 5.2(5.3) Now we establish a converse to Theorem 5.2. We shall use the de�nitionof the formulaWitness from [2]. We also adopt the convention that witnessesare e�ciently coded, i.e., for every �b1 -formula C(~u) there is a term tC(~u) sothat any witness for C(~u) must be � tC(~u), as in Theorem 5.3 of [2].Theorem Let �(a) be a �b1 -formula such that T 12 ` (8x)�(x). Then there isa PLS-problem L in T 12 such that T 12 proves(8x)(8s)(OptL(x; s)!Witness1;a� (s; x)):25



The point of the previous two theorems is that, on one hand, any PLS-problem can be expressed as a �b1 -de�ned function in T 12 and that, conversely,any �b1 -function of T 12 can be expressed as a PLS-problem composed with aprojection function.Proof If T 12 proves (8x)�(x), then by free-cut elimination, there is a T 12 -proof P in the Gentzen sequent calculus systemLKB of the sequent >�(u1)such that every sequent in P is of the formA1(~u); : : : ; Ak(~u) >B1(~u); : : : ; B`(~u)where ~u is a vector of r free variables (which includes the variable u1) andwhere all the formulas Ai and Bi are �b1 -formulas.We shall prove by induction on the number of proof steps that any sequentof the above form provable in T 12 corresponds computationally to a PLS-problem. Namely, there is a PLS-problem L0 such that (1) inputs to L0 are(encodings of) k + r -tuples hm1; : : : ;mr; v1; : : : ; vki where m1; : : : ;mr arevalues for the variables u1; : : : ; ur and (2) for input a tuple h~m;~vi, the locallyoptimal solutions are the k+ r+1-tuples of the form h~m;~v;wi with the same~m and ~v values such that if each vi witnesses Ai(~m) then w is a witness forone of the formulas B1(~m); : : : ; B`(~m). From such problem L0 we get problemL satisfying the requirement of the theorem by adding to each L0 -solutionh~v;wi a new neighbour w with higher cost, provided w is a witness to � .The existence of the PLS-problem is obvious for initial sequents, which byde�nition contain only atomic formulas. The induction step splits into casesdepending on the �nal inference of the proof P . The cases where the �nalinference is a propositional inference or a structural inference other than cutare very simple, requiring only minor changes to the PLS-problem. The casewhere the �nal inference of P is an 9:right inference� >�; A(t)t � s;� >�; (9x � s)A(x)can be handled easily also: the induction hypothesis states that there is aPLS problem L that applies to the upper sequent. We now sketch how tomodify L to construct a PLS problem L0 that works for the lower sequent.First, let cL0(s; x) = cL(s; x) + 1 for s 2 FL(x). Inputs h~m; v0; ~vi to L0that provide witnesses to � are assigned cost 0 and have as neighbour the26



input h~m;~vi to L. An output h~m;~v;wi of L has as its L0 -neighbour a tupleh~m; v0; ~v; w0i with cost ML(h~m;~vi) + 1, where w0 = w or w0 = ht(~m); wi,whichever provides a witness to a formula in the succedent �; (9x � s)A. Itis easily checked that L0 has the desired properties.Similarly the case where the �nal inference of P is an 9 �:left or a 8:leftis handled by simple modi�cations to the PLS-problem. The case where the�nal inference is a 8:right is more complicated: it is comparable to the casewhere the �nal inference is an induction rule (treated below) and we leave itto the reader.In the case where the �nal inference of P is a cut inference� >A A >�� >�we have, by the induction hypothesis, two PLS-problems L1 and L2 whichapply to the upper sequent. A PLS problem for the lower sequent is formed asa \composition" of PLS problems. (To simplify this case, we assume w.l.o.g.that the cut formula A is the only formula in the succedent (antecedent) ofthe left (right, resp.) upper sequent.) By coding, the PLS problems L1 andL2 can be modi�ed to have domains FL1 and FL2 disjoint. The local optima(outputs) of the PLS problem L1 can have as neighbours inputs to L2 . Byadding ML1(� � �) to the cost function of L2 , the cost of any L2 -solution isgreater than the cost of any L1 -solution. This makes it possible to arrangethat any local optimum of the PLS combined problem can be found byapplying L2 to a local optimum of L1 . We leave the precise details to thereader.Finally consider the case where the �nal inference of P is an inductioninference A(u0; ~u) >A(u0 + 1; ~u)A(0; ~u) >A(t(~u); ~u)W.l.o.g., there are no side formulas to the induction inference.� Given a PLSproblem L for the upper sequent, we form a PLS-problem L0 for the lowersequent. The general idea is, of course, that L0 is an exponentially longiteration of instances of L. First, the set FL0(h~m; vi) is the set of tuples�This is because we may conjoin and disjoin any side formulas, which must be�b1 -formulas, into the induction formula. This modi�cation uses only propositionalinferences. 27



hm0; z; si where m0 < t(~m) and s 2 FL(hm0; ~m; zi); thus FL0 is a disjointunion of solution spaces for instances of L. We de�necL0(hm0; z; si; h~m; vi) = m0 �M + cL(s; hm0; ~m; zi)where M is a function of hm;~zi and is large enough to dominate ML(s)whenever m0 < t(~m) and s 2 FL(hm0;m; zi). The neighbourhood functionis de�ned so thatNL0(hm0; z; si; h~m; vi) = hm0; z;NL(s; hm0; ~m; zi)iexcept when s = NL(s; hm0; ~m; zi), in which case, for m0 < t(~m)� 1, we setNL0(hm0; z; si; h~m; vi) = hm0 + 1; z0; hm0 + 1; ~m; z0iiwhere z0 is the last component of s, i.e., the witness for A(m0+1; ~m). Whenm0 = t(~m)� 1, thenNL0(hm0; z; si; h~m; vi) = h~m; v; z0i:This last case gives a local optimum for L0 . It is easy to check (and we leaveit to the reader) that L0 gives a PLS problem that solves the lower sequent ofthe induction inference.Q.E.D. Theorem 5.3(5.4) There are two open problems concerning PLS problems and T 12 thatare interrelated by Theorems 5.2 and 5.3. First, can any PLS problem Lbe PLS reduced in the sense of [7] to a PLS-problem which has, for allinputs, a unique local optimum? And second, is it true that whenever T 12proves (9x � t)A with A 2 �b1 then there exists a �b1 -formula B such thatT 12 proves (9!x � t)B and B ! A? These questions are not apparentlyequivalent since even if local optima are unique, they may not be provablyunique in T 12 .Papadimitriou [13] has introduced two classes PLF and PLDF of searchproblems and showed that PLDF � PLF .y A PLDF search problem Lhas, for every input x a directed graph Nx(c; c0) on nodes c; c0 < t(x) for someyIn a later paper [14], the classes PLF and PLDF are renamed to PPA and PPAD ,respectively. 28



term of Bounded Arithmetic, such that every node has indegree and outdegree� 1. In addition, it is assumed that Nx(c; c0) is a polynomial time predicateof x, c, and c0 and that if there exists a value c0 (resp., c) such that Nx(c; c0)holds, then it can be computed in polynomial time from x and c (resp., fromx and c0 ). On input a pair hx; c0i such that c0 has indegree 0 in Nx , theproblem is to �nd a node that has outdegree 0: such a node must exist sincethe directed graph is �nite. However, it is unlikely that T 12 can prove thatPLDF problems must have solutions since the pigeon-hole principle can bereduced to the statement that a PLDF problem has a solution. For instance,if f and g are new function symbols, we can de�ne a graph N(c; c0) by thecondition f(c) = c0 and g(c0) = c. Now if g is further presumed to be theinverse of f then the pigeonhole principle for f is equivalent to the statementthat if N has a node of indegree 0 then N must have a node of outdegree 0.However, by [16, 11, 1], the pigeonhole principle for f is not provable even inT2(f). Thus T2(f; g) does not prove the existence of solutions for this PDLFproblem.References[1] P. Beame, R. Impagliazzo, J. Kraj���cek, T. Pitassi, P. Pudl�akand A. Woods, Exponential lower bounds for the pigeonhole principle,to appear in Proceedings of the 24th Annual ACMSymposiumon Theoryof Computing, 1992.[2] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985Princeton University Ph.D. thesis.[3] , Axiomatizations and conservation results for fragments of boundedarithmetic, in Logic and Computation, proceedings of a Workshop heldCarnegie-Mellon University, 1987, vol. 106 of Contemporary Mathemat-ics, American Mathematical Society, 1990, pp. 57{84.[4] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits and thepolynomial-time hierarchy, Math. Systems Theory, 17 (1984), pp. 13{27.[5] P.H�ajekandP. Pudl�ak,Metamathematics of First-order Arithmetic,Springer-Verlag. To appear. 29
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