
Theorem proving
in Lean 3

What is covered in that presentation from
Lean documentation
• 1. Introduction – the whole chapter

• 2. Dependent Type Theory – up to 2.7. Namespaces, without 2.8.
Dependent Types, 2.9. Implicit Arguments and 2.10. Exercises

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/theorem_proving_in_lean/introduction.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#namespaces
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#dependent-types
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#implicit-arguments
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#exercises

Introduction
Terminology

Formal verification

• The use of logic and computational methods to check if the claim, written
in a precise mathematical form, is true or false.

• Example of a claim: (A∧B) ⇒ (B∧A)
• Verification:

1. A ∧ B
2. A ∧ B⇒ A
3. A ∧ B⇒ B
4. A
5. B
6. B⇒ (A⇒ B ∧ A)
7. A⇒ B ∧ A
8. B ∧ A
(Resource of example: Y.Belov, V.Sokolov)

https://books.google.cz/books?id=3eikCwAAQBAJ&pg=PA16&lpg=PA16&dq=%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80+%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE+%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0&source=bl&ots=ctMZ5Wb6PU&sig=ACfU3U2B7fIowMRmr3d4UQ0P6tScLXjiCA&hl=en&sa=X&ved=2ahUKEwjOjeTBj9TzAhXM-KQKHRcyA04Q6AF6BAglEAM#v=onepage&q=%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%20%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0&f=false

Two ways how we can make a program to
provide a proof
• A program can find a proof

• A program can help verify that the given proof is correct

Automated theorem proving

• A theorem proving, where a proof is realized by computer program.
The process of proving is based on propositional and first-order logic

• The process is “searching”

👍 powerful, efficient

👎 system can have bugs. Are the results correct?

History of automated theorem proving

• JOHNNIAC (1954, Martin Davis), proved that the sum of two even
numbers is even

• Logic Theory Machine (1956, Allen
Newell, Herbert A. Simon and J. C.
Shaw) – ran on JOHNNIAC, constructed
proofs from a small set of propositional
axioms and three deduction rules:
modus ponens, (propositional) variable
substitution, and the replacement of
formulas by their definition. Managed
to prove 38 of the first 52 theorems of
the Principia

JOHNNIAC, photo from http://ed-thelen.org

http://ed-thelen.org/comp-hist/johnniac.html#Photo

What can we do using ATP

✓Check the validity of formulas in propositional and first-order logic:

• Resolution theorem provers

• Tableau theorem provers

• Fast satisfiability solvers

✓Search and check the validity expression in specific languages or
domains (e.g., of linear or nonlinear expressions over the integers or
the real numbers)

✓Realize mathematical computations, establish mathematical bounds,
find mathematical objects. Calculation equals to proof here.

Interactive theorem prover

• A software, that assists the development of formal proofs

• A human guides the search for proofs. Computer provides and stores
the details of proof

• The process is “verifying” – every claim should be supported by a
proof in a suitable axiomatic foundation

👎more input and interaction from user

👍 allow to obtain deeper and more complex proof

Interactive theorem proving

Resource: Tianxiang Lu on researchgate.net

https://www.researchgate.net/figure/The-interactive-theorem-proving-process_fig4_298070729

The aim of Lean

• To bridge the gap between interactive and automated theorem
proving

➢ It has automated tools and methods inside a framework

➢ User interacts with that framework and constructs axiomatic
proofs

The goal of Lean

“To support both mathematical reasoning and reasoning about
complex systems, and to verify claims in both domains”

Programmaticaly speaking, “to prove things about the objects we
define”

So, what can we verify in Lean:

➢ Ordinary mathematical theorems

➢ Claims about correctness of the programming code, hardware,
software, network protocols, mechanical and hybrid systems...

WHY ON THE
SAME LEVEL?

Ordinary mathematical theorems, claims
about correctness of programming code,
hardware, software, network protocols,
mechanical and hybrid systems...

Curry–Howard isomorphism

• There is a direct relationship between computer programs and
mathematical proofs:

➢ Hardware and software systems are described in mathematical
terms, the check of its correctness is a theorem proving

➢ A theorem proof is basically computations, a program. The
formula it proves is the type for the program

➢Proofs can be represented as programs, proofs can be run

How Lean can be used?

• As a programming language, as a system for writing programs with a
precise semantics and for reasoning about the functions that the
programs compute

• As a metaprogramming language – we can extend the functionality of
Lean using the Lean itself

How to use Lean?

• In browser

• Install a program, which is faster and more
flexible, than Lean in browser

Lean in VIM editor (download e.g. VS Code if you are
a Windows’ user)
Resource: yakovlev.me

https://yakovlev.me/lean-intro/

2. Dependent Type
Theory

Dependent type theory

• Powerful, expressive

• Provides a natural and uniform expressions of complex mathematical
assertions, hardware and software specifications

• Every term has a computational behavior (they can be computed)

• Lean is based on a version of dependent type theory Calculus of
Constructions

Why to use type theory in provers?

• We can track various kinds of mathematical objects: natural numbers,
functions on a natural numbers, booleans…

• We can build new types

Lean commands

• constant, constants – to declare constants, which then available everywhere in code

• variable, variables – to declare constants, that are available inside a block of code (?? ask)
• section – to define a block of code, can be nested (sections inside sections). Use it to declare variables for

insertion in theorems. It is not necessary to give a name to section, but if you do, it is necessary to close it
using the same name

• namespace – for grouping definitions, can be nested (namespaces inside namespaces). Use it to organize data.

namespace foo
def a : ℕ := 5
end foo
-- we call it outside like `foo.a`

• def – to define an object in a form def foo : α := bar

• universe – to declare a universe variable

constant a : bool
constants m n : nat

section useful
variable x : α
-- more computations here
end useful

namespace foo

def a : ℕ := 5
end foo
-- we call it outside like `foo.a`

def double : ℕ→ℕ := λ x, x + x
def double (x : ℕ) : ℕ := x + x

universe u
constant α : Type u

Lean commands

• # - the beginning for commands

• #check – to check the type of a constant or the type of operation

#check (λ x : α, x) a

• #print – to print something on a screen

#print “here I declare constants”

• #reduce – to evaluate an expression by reducing it to normal form (by carrying
out all the computational reductions that are sanctioned by the underlying logic)

constant n : nat
#reduce n + 0 -- n
#reduce n + 2 -- nat.succ (nat.succ n)
#reduce 2 + 3 -- 5

• #eval – the other command to evaluate an expression, less trustworthy, more
efficient

• -- comments, /- also comments -/

#check (λ x : α, x) a

constant n : nat
#reduce n + 0 -- n
#reduce n + 2 -- nat.succ (nat.succ n)
#reduce 2 + 3 -- 5

#print “here I declare constants”

Typing helper

• To type → type \to, \r or ->

• To type ℕ type nat or \nat

• To type × type \times

• To type letters like α, β, and γ, type \a, \b, \g

Type

• In type theory, every expression has an associated type – natural
number, Boolean, function…

• In Lean everything is a type. Types also have a type of Type, and Type
has a type of Type in an infinite hierarchy of types.

• You can define your own types in Lean

Let’s look at types in Lean closer

Let’s look at types in Lean closer – 2

Types have a type of
Type

We declared new types α and β

An infinite hierarchy of types lies in foundation of Lean: Type 0 (or Type) is a universe of
"small" or "ordinary" types. Type 1 is a larger universe of types, which contains Type 0 as
an element. Type 2 is a larger universe of types, which contains Type 1 as an element,
etc.

Declaring a universe type variable

Declaring a type variable without creating a universe

Functions in Lean
• nat → nat denotes the type of functions that take a natural number as input and return a natural

number as output

constant f : nat → nat

• (m, n) denotes the ordered pair of m and n, and if p is a pair, p.1 and p.2 denote the two projections

constants m n : nat

constant p : nat × nat

#check p.1 -- ℕ

#check (m, n) -- ℕ × ℕ

#check (p.1, n) -- ℕ × ℕ

• The application of a function f to a value x is denoted f x

#check f x -- ℕ

• When writing type expressions, arrows associate to the right; for example, in code constant g : nat
→ nat → nat, the type of g is nat → (nat → nat)

➢ g is a function that takes natural numbers and returns another function that takes a natural number and
returns a natural number – at the end, the number is returned

➢ This process is called currying

constant f : nat → nat

constants m n : nat
constant p : nat × nat
#check p.1 --ℕ
#check (m, n) --ℕ × ℕ
#check (p.1, n) --ℕ × ℕ

#check f x --ℕ

Creating a function from another expression

• We need a lambda abstraction process here (we need to turn terms
and parts of terms into a variable)

• We temporarily postulate a variable x : α, and then we can construct
an expression t : β

• The expression fun x : α, t, or, equivalently, λ x : α, t, is an object of
type α → β

• It is a function from α to β which maps any value x to the value t,
which depends on x

• “Let f be the function which maps any natural number x to x + 5”
#check fun x : nat, x + 5
#check λ x : nat, x + 5

Some terminology…

• Bound variable – a placeholder with the given scope

λ x : α, t - x is a placeholder, whose "scope" doesn't extend beyond t

• Alpha equivalent expressions – the expressions that are the same up
to a renaming of bound variables, they are considered “the same.”

λ (b : β) (x : α), x is equal to λ (u : β) (z : α), z

• Identity function – a function that always returns the same value that
was used as its argument

Graph of the identity function on the

real numbers, Resource: Wikipedia

https://en.wikipedia.org/wiki/Identity_function

Some terminology – 2

• Constant function – a function whose (output) value is the same for
every input value, e.g., f(x) = 4 is a constant function

• Function composition – applying one function to the results of
another

Lean interprets the final three examples as the same
expression; in the last expression, Lean infers the type of x and
y from the types of f and h

The expression λ x : α, x denotes the identity function on α, the
expression λ x : α, b denotes the constant function that always
returns b, and λ x : α, g (f x), denotes the composition of f and g

We can abstract over any of the constants in the previous
definitions

We can even abstract over the type

The function that takes three types, α, β, and γ, and two
functions, g : β → γ and f : α → β, and returns the composition of
g and f

#reduce

• Beta reduction - the process of simplifying an expression. E.g.,
simplifying (λ x, t)s to t[s/x] - t with s substituted for the variable x

• Beta equivalent terms - terms that beta reduce to a common term

• Definitionally equal term – two terms that reduce to the same value

• In dependent type theory every term has a computational behavior,
and supports a notion of reduction, or normalization

How we are working in Lean most of the
time?
• We define objects and prove things about them

def double : ℕ→ ℕ := λ x, x + x
def square : ℕ→ ℕ := λ x, x * x
def do_twice : (ℕ→ ℕ) → ℕ→ ℕ := λ f x, f (f x)

def double (x : ℕ) : ℕ := x + x
def square (x : ℕ) := x * x
def do_twice (f : ℕ→ ℕ) (x : ℕ) : ℕ := f (f x)

def do_twice (α : Type*) (h : α → α) (x : α) : α := h (h x)
def do_twice (h : α → α) (x : α) : α := h (h x)

variables (α β γ : Type*)
variables (g : β → γ) (f : α → β) (h : α → α)
variable x : α

def do_twice := h (h x)

Local definitions using let

• let a := t1 in t2 means – all a in t2 will be replaced by t1

• #reduce let y := 2 + 2, z := y + y in z * z -- 64 - all z are replaced by y +
y, which are 4+4, so z * z equals to 64

def t (x : ℕ) : ℕ :=
let y := x + x in y * y
#reduce t 2 -- 16

Namespaces

• Like sections, nested namespaces have to be closed in the order they
are opened

• Namespaces cannot be declared inside a section

namespace foo
def a : ℕ := 5
#print "inside foo"
#check a
end foo
#print "outside the namespace"
-- #check a -- error
open foo
#print "opened foo"
#check a

Resources

• https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspond
ence

• https://yakovlev.me/lean-intro/

• https://leanprover.github.io/theorem_proving_in_lean/

• https://commons.wikimedia.org/w/index.php?curid=66273005

• https://ru.wikipedia.org/wiki/%D0%90%D0%B2%D1%82%D0%BE%D0
%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D
0%BE%D0%B5_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0
%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B
E#cite_note-1

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://yakovlev.me/lean-intro/
https://leanprover.github.io/theorem_proving_in_lean/
https://commons.wikimedia.org/w/index.php?curid=66273005
https://ru.wikipedia.org/wiki/%D0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE#cite_note-1

