
Theorem proving 
in Lean 3



What is covered in that presentation from 
Lean documentation
• 1. Introduction – the whole chapter

• 2. Dependent Type Theory – up to 2.7. Namespaces, without 2.8. 
Dependent Types, 2.9. Implicit Arguments and 2.10. Exercises

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/theorem_proving_in_lean/introduction.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#namespaces
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#dependent-types
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#implicit-arguments
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html#exercises


Introduction
Terminology



Formal verification

• The use of logic and computational methods to check if the claim, written 
in a precise mathematical form, is true or false.

• Example of a claim: (A∧B) ⇒ (B∧A)
• Verification:

1. A ∧ B
2. A ∧ B⇒ A
3. A ∧ B⇒ B
4. A
5. B
6. B⇒ (A⇒ B ∧ A)
7. A⇒ B ∧ A
8. B ∧ A
(Resource of example: Y.Belov, V.Sokolov)

https://books.google.cz/books?id=3eikCwAAQBAJ&pg=PA16&lpg=PA16&dq=%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80+%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE+%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0&source=bl&ots=ctMZ5Wb6PU&sig=ACfU3U2B7fIowMRmr3d4UQ0P6tScLXjiCA&hl=en&sa=X&ved=2ahUKEwjOjeTBj9TzAhXM-KQKHRcyA04Q6AF6BAglEAM#v=onepage&q=%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%20%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE%20%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B0&f=false


Two ways how we can make a program to 
provide a proof
• A program can find a proof

• A program can help verify that the given proof is correct



Automated theorem proving

• A theorem proving, where a proof is realized by computer program. 
The process of proving is based on propositional and first-order logic

• The process is “searching”

👍 powerful, efficient

👎 system can have bugs. Are the results correct?



History of automated theorem proving 

• JOHNNIAC (1954, Martin Davis), proved that the sum of two even 
numbers is even

• Logic Theory Machine (1956, Allen 
Newell, Herbert A. Simon and J. C. 
Shaw) – ran on JOHNNIAC, constructed 
proofs from a small set of propositional 
axioms and three deduction rules: 
modus ponens, (propositional) variable 
substitution, and the replacement of 
formulas by their definition. Managed 
to prove 38 of the first 52 theorems of 
the Principia

JOHNNIAC, photo from http://ed-thelen.org

http://ed-thelen.org/comp-hist/johnniac.html#Photo


What can we do using ATP

✓Check the validity of formulas in propositional and first-order logic:

• Resolution theorem provers

• Tableau theorem provers

• Fast satisfiability solvers

✓Search and check the validity expression in specific languages or 
domains (e.g., of linear or nonlinear expressions over the integers or 
the real numbers)

✓Realize mathematical computations, establish mathematical bounds, 
find mathematical objects. Calculation equals to proof here. 



Interactive theorem prover

• A software, that assists the development of formal proofs

• A human guides the search for proofs. Computer provides and stores 
the details of proof

• The process is “verifying” – every claim should be supported by a 
proof in a suitable axiomatic foundation

👎more input and interaction from user

👍 allow to obtain deeper and more complex proof



Interactive theorem proving

Resource: Tianxiang Lu on researchgate.net

https://www.researchgate.net/figure/The-interactive-theorem-proving-process_fig4_298070729


The aim of Lean

• To bridge the gap between interactive and automated theorem 
proving

➢ It has automated tools and methods inside a framework

➢ User interacts with that framework and constructs axiomatic 
proofs



The goal of Lean

“To support both mathematical reasoning and reasoning about 
complex systems, and to verify claims in both domains”

Programmaticaly speaking, “to prove things about the objects we 
define”

So, what can we verify in Lean:

➢ Ordinary mathematical theorems

➢ Claims about correctness of the programming code, hardware, 
software, network protocols, mechanical and hybrid systems...



WHY ON THE 
SAME LEVEL?

Ordinary mathematical theorems, claims 
about correctness of programming code, 
hardware, software, network protocols, 
mechanical and hybrid systems...



Curry–Howard isomorphism

• There is a direct relationship between computer programs and 
mathematical proofs:

➢ Hardware and software systems are described in mathematical 
terms, the check of its correctness is a theorem proving

➢ A theorem proof is basically computations, a program. The 
formula it proves is the type for the program

➢Proofs can be represented as programs, proofs can be run



How Lean can be used?

• As a programming language, as a system for writing programs with a 
precise semantics and for reasoning about the functions that the 
programs compute

• As a metaprogramming language – we can extend the functionality of 
Lean using the Lean itself



How to use Lean?

• In browser

• Install a program, which is faster and more 
flexible, than Lean in browser 

Lean in VIM editor (download e.g. VS Code if you are 
a Windows’ user)
Resource: yakovlev.me

https://yakovlev.me/lean-intro/


2. Dependent Type 
Theory



Dependent type theory

• Powerful, expressive

• Provides a natural and uniform expressions of complex mathematical 
assertions, hardware and software specifications

• Every term has a computational behavior (they can be computed)

• Lean is based on a version of dependent type theory Calculus of 
Constructions



Why to use type theory in provers?

• We can track various kinds of mathematical objects: natural numbers, 
functions on a natural numbers, booleans…

• We can build new types



Lean commands

• constant, constants – to declare constants, which then available everywhere in code

• variable, variables – to declare constants, that are available inside a block of code (?? ask)
• section – to define a block of code, can be nested (sections inside sections). Use it to declare variables for 

insertion in theorems. It is not necessary to give a name to section, but if you do, it is necessary to close it 
using the same name

• namespace – for grouping definitions, can be nested (namespaces inside namespaces). Use it to organize data.

namespace foo
def a : ℕ := 5
end foo
-- we call it outside like `foo.a`

• def – to define an object in a form def foo : α := bar

• universe – to declare a universe variable

constant a : bool
constants m n : nat

section useful
variable x : α
-- more computations here
end useful

namespace foo

def a : ℕ := 5
end foo
-- we call it outside like `foo.a`

def double : ℕ→ℕ := λ x, x + x
def double (x : ℕ) : ℕ := x + x

universe u
constant α : Type u



Lean commands

• # - the beginning for commands

• #check – to check the type of a constant or the type of operation

#check (λ x : α, x) a

• #print – to print something on a screen

#print “here I declare constants”

• #reduce – to evaluate an expression by reducing it to normal form (by carrying 
out all the computational reductions that are sanctioned by the underlying logic)

constant n : nat
#reduce n + 0           -- n
#reduce n + 2           -- nat.succ (nat.succ n)
#reduce 2 + 3           -- 5

• #eval – the other command to evaluate an expression, less trustworthy, more 
efficient

• -- comments, /- also comments  -/

#check (λ x : α, x) a

constant n : nat
#reduce n + 0           -- n
#reduce n + 2           -- nat.succ (nat.succ n)
#reduce 2 + 3           -- 5

#print “here I declare constants”



Typing helper

• To type → type \to, \r or ->

• To type ℕ type nat or \nat

• To type × type \times

• To type letters like α, β, and γ, type \a, \b, \g



Type

• In type theory, every expression has an associated type – natural 
number, Boolean, function… 

• In Lean everything is a type. Types also have a type of Type, and Type 
has a type of Type in an infinite hierarchy of types.

• You can define your own types in Lean



Let’s look at types in Lean closer



Let’s look at types in Lean closer – 2

Types have a type of 
Type

We declared new types α and β

An infinite hierarchy of types lies in foundation of Lean: Type 0 (or Type) is a universe of 
"small" or "ordinary" types. Type 1 is a larger universe of types, which contains Type 0 as 
an element. Type 2 is a larger universe of types, which contains Type 1 as an element, 
etc.

Declaring a universe type variable

Declaring a type variable without creating a universe



Functions in Lean
• nat → nat denotes the type of functions that take a natural number as input and return a natural 

number as output

constant f : nat → nat

• (m, n) denotes the ordered pair of m and n, and if p is a pair, p.1 and p.2 denote the two projections

constants m n : nat

constant p : nat × nat

#check p.1               -- ℕ

#check (m, n)          -- ℕ × ℕ

#check (p.1, n)        -- ℕ × ℕ

• The application of a function f to a value x is denoted f x

#check f x                 -- ℕ

• When writing type expressions, arrows associate to the right; for example, in code constant g : nat
→ nat → nat, the type of g is nat → (nat → nat)

➢ g is a function that takes natural numbers and returns another function that takes a natural number and 
returns a natural number – at the end, the number is returned

➢ This process is called currying

constant f : nat → nat

constants m n : nat
constant p : nat × nat
#check p.1               --ℕ
#check (m, n)          --ℕ × ℕ
#check (p.1, n)       --ℕ × ℕ

#check f x                 --ℕ



Creating a function from another expression

• We need a lambda abstraction process here (we need to turn terms 
and parts of terms into a variable)

• We temporarily postulate a variable  x : α, and then we can construct 
an expression t : β

• The expression  fun x : α, t, or, equivalently, λ x : α, t, is an object of 
type α → β

• It is a function from α to β which maps any value x to the value t, 
which depends on x

• “Let f be the function which maps any natural number x to x + 5”
#check fun x : nat, x + 5
#check λ x : nat, x + 5



Some terminology…

• Bound variable – a  placeholder with the given scope

λ x : α, t - x is a placeholder, whose "scope" doesn't extend beyond t

• Alpha equivalent expressions – the expressions that are the same up 
to a renaming of bound variables, they are considered “the same.”

λ (b : β) (x : α), x is equal to λ (u : β) (z : α), z

• Identity function – a function that always returns the same value that 
was used as its argument

Graph of the identity function on the 

real numbers, Resource: Wikipedia

https://en.wikipedia.org/wiki/Identity_function


Some terminology – 2

• Constant function – a function whose (output) value is the same for 
every input value, e.g., f(x) = 4 is a constant function

• Function composition – applying one function to the results of 
another



Lean interprets the final three examples as the same 
expression; in the last expression, Lean infers the type of x and 
y from the types of f and h

The expression λ x : α, x denotes the identity function on α, the 
expression λ x : α, b denotes the constant function that always 
returns b, and λ x : α, g (f x), denotes the composition of f and g

We can abstract over any of the constants in the previous 
definitions

We can even abstract over the type

The function that takes three types, α, β, and γ, and two 
functions, g : β → γ and f : α → β, and returns the composition of 
g and f



#reduce

• Beta reduction - the process of simplifying an expression. E.g., 
simplifying (λ x, t)s to t[s/x] - t with s substituted for the variable x

• Beta equivalent terms - terms that beta reduce to a common term

• Definitionally equal term – two terms that reduce to the same value

• In dependent type theory every term has a computational behavior, 
and supports a notion of reduction, or normalization



How we are working in Lean most of the 
time?
• We define objects and prove things about them

def double : ℕ→ ℕ := λ x, x + x
def square : ℕ→ ℕ := λ x, x * x
def do_twice : (ℕ→ ℕ) → ℕ→ ℕ := λ f x, f (f x)

def double (x : ℕ) : ℕ := x + x
def square (x : ℕ) := x * x
def do_twice (f : ℕ→ ℕ) (x : ℕ) : ℕ := f (f x)

def do_twice (α : Type*) (h : α → α) (x : α) : α := h (h x)
def do_twice (h : α → α) (x : α) : α := h (h x)

variables (α β γ : Type*)
variables (g : β → γ) (f : α → β) (h : α → α)
variable x : α

def do_twice := h (h x)



Local definitions using let

• let a := t1 in t2 means – all a in t2 will be replaced by t1

• #reduce  let y := 2 + 2, z := y + y in z * z   -- 64 - all z are replaced by y + 
y, which are 4+4, so z * z equals to 64

def t (x : ℕ) : ℕ :=
let y := x + x in y * y
#reduce t 2   -- 16



Namespaces

• Like sections, nested namespaces have to be closed in the order they 
are opened

• Namespaces cannot be declared inside a section

namespace foo
def a : ℕ := 5
#print "inside foo"
#check a
end foo
#print "outside the namespace"
-- #check a  -- error
open foo
#print "opened foo"
#check a



Resources

• https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspond
ence

• https://yakovlev.me/lean-intro/

• https://leanprover.github.io/theorem_proving_in_lean/

• https://commons.wikimedia.org/w/index.php?curid=66273005

• https://ru.wikipedia.org/wiki/%D0%90%D0%B2%D1%82%D0%BE%D0
%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D
0%BE%D0%B5_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0
%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%B
E#cite_note-1

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://yakovlev.me/lean-intro/
https://leanprover.github.io/theorem_proving_in_lean/
https://commons.wikimedia.org/w/index.php?curid=66273005
https://ru.wikipedia.org/wiki/%D0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE#cite_note-1

