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Abstract

An NP search problem is the problems of finding a wit-
ness to the given NP predicate, and TFNP is the class of
total NP search problems. TFNP contains a number of sub-
classes containing natural problems; for example, PLS is
the class of efficient local search heuristics. These classes
are characterized by the combinatorial principle that guar-
antees the existence of a solution; for example, PLS is the
class of such problems whose totality is assured by the prin-
ciple “every dag with at least one edge has a sink.”

We show many strong connections between these search
classes and the computational power—in particular the
proof complexity—of their underlying principles. These
connections, along with lower bounds in the propositional
proof systems Nullstellensatz and bounded-depth LK, al-
low us to prove several new relative separations among
PLS, and Papadimitriou’s classes PPP, PPA, PPAD, and
PPADS.

1. Introduction

Traditionally the study of computational complexity has
been largely a study of decision problems, or the problem
of deciding whether the input satisfies a certain property.
Consequently, search problems, or the problems of finding
an object satisfying a desired property, have been studied
in terms of their equivalent decision counterparts. For ex-
ample, the complexity of finding a Hamiltonian cycle of a
graph (if one exists) is studied indirectly via the problem of
deciding if the input graph has a Hamiltonian cycle. A jus-
tification for this indirect approach is that these search and
decision problems are polynomially equivalent, i.e., they
are polynomial-time Turing reducible to each other.

However, when a search problem is total, i.e., every in-
stance of it is guaranteed to have a solution, it seems to have
no polynomially equivalent decision problem. Such total
search problems are commonplace in computer science and
mathematics: examples include optimization problems such

as the problem of finding a Traveling Salesman tour that
is locally optimal with respect to the 2-OPT heuristic, and
problems in game theory such as finding a Nash equilibrium
given payoff matrices for two players. Thus it is important
for us to understand the complexity of total search prob-
lems, and we need to study them directly.

In the papers [16, 24], total search problems are clas-
sified according to the combinatorial principle in the fi-
nite domain that guarantees the totality of the problems.
These classes contain numerous natural problems, some of
which are complete. For example, Polynomial Local Search
(PLS), which is the class of problems efficiently solvable
by local search, is characterized by the iteration principle
“every finite dag has a sink”; and Polynomial Pigeonhole
Principle (PPP), which has relevance to cryptographic hash
functions, corresponds to the pigeonhole principle “there is
no injective mapping from � n � 1 � to � n � .” The class Polyno-
mial Parity Argument (PPA) is defined by the parity princi-
ple “there is no perfect matching in an odd-sized graph” and
contains the problems of finding various economic equilib-
ria; its variants PPAD and PPADS are defined in a similar
manner (PPAD was called PSK in [24], and it is given this
name in [2]). All of these problems are NP-search problems
in the sense that, given a solution, we can verify its validity
in polytime (i.e. each class is contained in FNP).

Beame et al. [2] reformulate the search classes in terms
of type-2 search problems, or search problems whose input
contains not only numbers and strings (type-0 objects) but
also functions and relations (type-1 objects) that are pre-
sented as oracles. This type-2 approach results in much
cleaner definitions of the original type-1 search classes:
each class essentially becomes a collection of the type-1 in-
stances of a single type-2 problem. Thus the relationship
among these classes can be studied through the correspond-
ing type-2 search problems. In many cases we can obtain
unconditional separations of type-2 search problems, which
imply oracle separations of the corresponding type-1 search
classes. Many such relative containments and separations
among the above five search classes are obtained via the
type-2 methods in [2, 22].



Since an unrelativized separation of any two NP search
classes implies P �� NP, such relative separations are cur-
rently the best results we can hope for. Not only that,
we would like to argue that this particular type of oracle
result is more meaningful than your garden-variety oracle
result, whose relevance has been repeatedly brought into
question (starting with [1]). This intuition comes from two
sources: (i) Each of these type-2 separations implies that
the generic oracle test separates the corresponding type-1
classes ([11]). While generic oracles ([4]) are not infalli-
ble ([13]), they capture the intuition that an “arbitrary” ora-
cle should not affect the equality of two classes; (ii) Oracle
separations of complexity classes are usually obtained by
exploiting the difference in the ways these classes access
the oracle. In other words, most oracle separations are ac-
tually separations of different oracle access methods, and
this is why we can ‘separate’ two classes that are actually
equal ([15]), such as PSPACE and IP. On the other hand,
since all the relativized NP search classes access an ora-
cle in the same way (via deterministic polynomial-time ma-
chines), oracle separations of those classes may better re-
flect the unrelativized world.

We extend the framework of [2] into a systematic method
of formulating type-2 search problems from combinatorial
principles. The method is essentially as follows. Let Φ be
a first-order existential sentence over an arbitrary language
such that Φ holds in every finite structure, and define QΦ
to be the corresponding type-2 search problem of finding
a witness to Φ in a finite structure given as the input. For
example, the type-2 problem PIGEON of [2] that charac-
terizes the class PPP arises from the following sentence:

���
x � � α �

x ���� 0 ��� �
	
x � y � � x �� y � α

�
x � � α

�
y � ��

which states that, if 0 is not in the range of a function α,
then there must exist two elements that are mapped to the
same element by α; this is the injective pigeonhole prin-
ciple, which holds in every finite structure. Formulated as
above, it is clear that studying the complexity of a type-2
search problem QΦ amounts to the study of the ‘computa-
tional power’ of the combinatorial principle Φ, which is an
interesting mathematical endeavour in its own right.

The most important contribution of this paper is the in-
sight that the proof complexity of Φ is intimately linked
to the computational strength of QΦ, where the proof com-
plexity of Φ is measured in terms of the size of the short-
est proof of the propositional translation of Φ in a given
proof system. This close link between proof complexity
and computational complexity allows us to utilize the ex-
tensive knowledge that has been accumulated in proof com-
plexity research to derive a number of relative separations
of NP search classes. Our approach is made possible by the
type-2 approach that makes explicit the connection between
combinatorial principles and search problems.

Main Result 1: Let QΦ and QΨ be two type-2 search
problems corresponding to the combinatorial principles Φ
and Ψ. If QΦ � m QΨ, then there are “simple” reductions
from the propositional translation of Φ to the propositional
translation of Ψ in depth-1.5 tree-like LK and in Nullstel-
lensatz. This result can be seen as a generalization of a
technique used in [2], where a relative separation is proven
using a Nullstellensatz degree lower bound.

As corollaries, we obtain relative separations of search
classes that were not known, such as PLSG � PPAG with
G a generic oracle. Our result generalizes the proof tech-
niques of Beame et al. and hence it provides alternative
proofs for some of their results via the proof complexity
separations. Moreover, since the combinatorial principle
characterizing PPA has low-complexity proofs in Nullstel-
lensatz, it follows that the totality of every PPA problem has
a low-complexity proof. This is interesting because PPA
contains the witnessing problems for the fixed point theo-
rems of Brouwer, Nash, and Kakutani [24].

We also provide a partial solution for the open question
of whether there is an oracle such that PLS is not contained
in PPP.

Main Result 2: There is no ‘nice reduction’ from
ITERATION (which characterizes to PLS) to PIGEON
(which characterizes PPP).

Our third main result is a sufficient condition for QΦ to
be nonreducible to ITERATION.

Main Result 3: If Φ is a combinatorial principle that
does not involve the ordering relation, and if Φ fails in an
infinite structure, then QΦ is not reducible to ITERATION.

This generalizes the relative separation in [22], and it im-
plies that, in a generic relativized world, PLS does not con-
tain any of PPP, PPA, and PPAD. This may be interpreted
as evidence that efficient local search heuristics are unlikely
to exist for these classes. Also we obtain from Main Result
3 an alternative proof for Riis’s independence criterion for
the bounded arithmetic theory S2

2

�
R � [29, 17].

This paper is organized as follows. Section 2 introduces
basic definitions of search problems and the proof systems
that we use. The search classes of [16, 24, 2] are introduced
here, and the known relative separations are stated. In Sec-
tion 3 we show how to translate combinatorial principles
in first-order logic into unsatisfiable propositional formulas
and unsatisfiable set of polynomials. Section 4 contains our
Main Results 1 and 2. Section 5 presents some of the known
proof complexity separations, which imply a number of the
search problem separations in Section 6. Section 7 is an ex-
position of Main Result 3. Section 8 contains concluding
remarks and some open problems.
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2. Preliminaries

Throughout this paper we write Vn to denote the set of
all n-bit strings.

2.1. Search Problems

NP is the class of decision problems that are repre-
sentable as

� 	
y � R �

x � y � , where R is a polynomial-time pred-
icate such that R

�
x � y � implies

�
y
�
� p

���
x
� � for some polyno-

mial p.
The corresponding NP search problem QR is the follow-

ing problem: given x, find any y such that R
�
x � y � holds.

The input x is called an instance of QR and any y satisfy-
ing R

�
x � y � is called a solution for instance x. For every x,

QR
�
x � ��� y : R

�
x � y ��� denotes the set of solutions for in-

stance x. Usually we omit the subscript R. We say that Q is
total if Q

�
x � is nonempty for all x. TFNP is defined to be

the class of total NP search problems in [21] (see also [23]);
the same class is called VP (for Verification of solutions
in Polytime) in [22]. A number of interesting subclasses
of TFNP have been identified and studied: these classes
are PLS of [16], and PPP, PPA, PPAD, and PPADS of
[24, 2]. All of these classes contain natural problems, some
of which are complete (under an appropriate notion of re-
ducibility). We will formally define these classes below.

Beame et al. [2] generalize the notion of search problem
so that the instances of search problem Q consist not only
of strings, which are type-0 objects, but also functions and
relations, which are type-1 objects. More formally, let R
be a type-2 relation with arguments

�
α1 ���	��� � αk � x � y � , where

x and y are strings and for each i, 1 � i � k, αi is either a
string function or a string relation. R defines a type-2 search
problem QR in the usual way.

The complexity of type-2 relation, functions, and search
problems is measured with respect to a Turing machine that
receives the type-0 arguments on its input tape and is al-
lowed to access the type-1 arguments as oracles [31]. In
particular, a type-2 function F

�
α1 �	�	��� � αk � x � is said to be

polynomial-time computable if it is computed by a deter-
ministic Turing machine in time polynomial in

�
x
�
with ora-

cle access to α1 ���	�	� � αk .

2.2. Combinatorial Principles and Search Problems

Beame et al. [2] introduce several type-2 search prob-
lems that correspond to the combinatorial principles that
characterize the search classes of [24]. We extend their ap-
proach into a systematic method of defining type-2 search
problems from combinatorial principles that are represented
as sentences of first-order logic with equality.

Let L be an arbitrary first-order language and let Φ be a

sentence over L of the form

Φ 
 �
	
x1 �	�	� 	 xk � φ

�
x1 �	���	� � xk �

for some quantifier-free φ. Let us call such sentences
	

-
sentences. As usual, we allow the equality symbol � in
Φ even though we do not explicitly include it in L. Φ is
interpreted in a structure M which defines the universe of
discourse and the meaning of constants, functions, and rela-
tions of L. Some symbols of L may be designated as built-in
symbols with which we associate predetermined interpreta-
tion.

Definition 1. Define a canonical structure to be a structure
such that (1) the universe of discourse is Vn for some n � 1;
and (2) every built-in symbol of L assumes the predeter-
mined interpretation. We abuse the notation and write Vn to
denote the canonical structure with the set Vn the universe
of discourse.

The only built-in symbols we use in this paper are � and
0, which we interpreted as the standard ordering of n-bit
binary numbers and 0n, respectively.

Assume that Φ holds in every canonical structure. Then
the corresponding witness problem is the following: given
a canonical structure Vn, find a tuple � v1 �	�	��� � vk �� �

Vn � k
such that φ

�
v1 �	���	� � vk � holds in Vn. We formulate the wit-

ness problem as the type-2 search problem QΦ whose type-
0 argument x specifies the universe of discourse V � x � and
whose type-1 arguments are the functions and relations of L.
Built-in symbols are not part of the type-1 arguments, since
their meaning in V � x � is already fixed. Finally, since only the
length of x is used to define V � x � , we assume without loss of
generality that the type-0 argument of QΦ is always of the
form 1n for n � 1.

We introduce below the five combinatorial principles
that are of particular interest in the study of search prob-
lems. For readability we present them in implicational
form; it is easy to see that all of them are

	
-sentences.

Moreover, all of them hold in every canonical structure.

(1) f
�
0 � � 0 � ���

x � � x � f
�
f
�
x � � � � �
	

x � � x �� 0 � x � f
�
x � �

This sentence states that, if every element is either lonely
(i.e., is matched with itself) or matched with a unique
partner, and if 0 is lonely, then there exists another lonely
element. This is essentially the parity principle ‘no odd-
sized graph has a perfect matching’, and it holds in every
structure whose size is even; therefore, it holds in every
canonical structure. LONELY is the corresponding search
problem.

(2)
���

x � � f
�
x ���� 0 ��� � 	

x � y � � x �� y � f
�
x � � f

�
y � �

This states that if 0 is not in the range of f , then there exist
two distinct elements that are mapped to the same element
by f ; this is the injective, functional pigeonhole principle,
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and the corresponding search problem is PIGEON.

(3) g
�
0 � � 0 � f

�
0 � �� 0 � � �

x � � x � g
�
f
�
x � � ������

x � � x �� 0 � x � f
�
g
�
x � � � � �
	

x � y � � x �� y � f
�
x � � f

�
y � �

This is a weaker variant of the pigeonhole principle of
(2). The additional assumptions essentially state that
f is onto and that g is the inverse of f . This is the
onto-pigeonhole principle, and the corresponding search
problem is OntoPIGEON.

(4)
�
	

x1 � y1 � x2 � y2 � � � x1 �� x2 � y1 �� y2 � �
f
�
x1 � y1 � � f

�
x2 � y2 � �

This is the weak pigeonhole principle, which is similar to
(2) but the domain size is the square of the range size. We
call the corresponding problem WeakPIGEON.

(5) f
�
0 ��� 0 � � �

x � � f
�
x � � x � ��
	

x � � x � f
�
x � � f

�
x � � f

�
f
�
x � � �

This is the iteration principle of [8, 9], and we call the cor-
responding type-2 problem ITERATION. It states that, if
f is nondecreasing and f

�
0 ��� 0, then there exist x such that

f
�
x ��� x and f

�
x � � f

�
f
�
x � � . Note that it contains a built-in

ordering � . It is equivalent to the principle ‘every dag with
at least one edge has a sink’.

2.3. Reductions

Let Q be a type-2 search problem. Q can be used as an
oracle in the following way. A Turing machine M presents
a query to Q in the form

�
β1 �	���	� � βk � 1m � , where each of

β1 �	�	��� � βk is a polynomial-time function or relation. In the
next step M receives in its answer tape some z that is a so-
lution for Q

�
β1 ���	��� � βk � 1m � .

Let Q1 and Q2 be two type-2 search problems. We say
Q1 is Turing reducible to Q2 and write Q1 � T Q2 iff there
exists an oracle Turing machine M that, given an instance�
α1 ���	��� � αk � 1n � of Q1, outputs some z � Q1

�
α1 �	���	� � αk � 1n �

in polynomial-time using α1 �	���	� � αk and Q2 as oracles,
where each query to Q2 is of the form

�
β1 �	���	� � βl � 1m � with

m � nO � 1 � and with each βi for each 1 � i � l, a func-
tion or a relation that is polynomial-time computable using
α1 �	���	� � αk as oracles.

Q1 is many-one reducible to Q2, written Q1 � m Q2, if
Q1 � T Q2 by an oracle Turing machine that asks at most
one query to Q2. We write Q1 
 m Q2 if Q1 and Q2 are
many-one reducible to each other.

When Q1 is type-1, then Q1 is treated as a type-2 prob-
lem with no type-1 arguments.

Definition 2. Let Q be a type-2 search problem. Then C
�
Q �

is defined as

C
�
Q � � � Q � : Q � is type-1 and Q � � m Q �	� TFNP �

Thus, Q � � C
�
Q � means that Q � is polynomial-time solv-

able by finding a solution for a type-1 instance of Q that
is obtained by fixing the type-1 arguments of Q to be cer-
tain predicates and functions that are polynomial-time com-
putable. We take intersection with TFNP in the above def-
inition of C

�
Q � for a technical reason that without it C

�
Q �

may not be a set of NP search problems.
Now we are ready to formulate the search classes of

[JPY88, P94] in terms of the type-2 search problems. PPA
stands for Polynomial Parity Argument, and it is charac-
terized as PPA � C

�
LONELY � . This class contains the

problems of finding various economic equilibria, some of
which are complete. Polynomial Pigeonhole Principle is
defined as PPP � C

�
PIGEON � , and it has relevance in the

study of cryptographic hash functions. These two defini-
tions are from [2]. PPAD is an analogue of PPA in the
directed graphs, and hence the name (D is for ‘Directed’).
PPAD � C

�
OntoPIGEON � . Beame et al. characterizes

PPAD by different combinatorial principles, but they are
equivalent to the onto-pigeonhole principle, which we use
in this paper. Polynomial Local Search is the class of opti-
mization problems for which efficient local-search heuris-
tics exist, and PLS � C

�
ITERATION � . This character-

ization is essentially in [8] (also in [9]) in the context of
bounded arithmetic. Also [22] contains a direct proof in a
complexity theoretic setting. For more information on these
classes, see [16, 32] for PLS and [24] for the other classes.

For a type-2 search problem Q with its type-1 arguments
β1 �	���	� � βk and an oracle A, C

�
Q � A is the class of type-1

NP search problems Q � such that Q � � m Q by a reduction
that has oracle access to A. This means that the machine
M that solves Q � by asking a query to Q and the func-
tions/predicates β1 ���	��� � βk provided in the query to Q are
all polynomial-time computable with access to A.

Theorem 3. [11] Let Q1 and Q2 be type-2 search problems
defined by

	
-sentences. The following are equivalent: (i)

Q1 � m Q2; (ii) for all oracles A, C
�
Q1 � A 
 C

�
Q2 � A; and (iii)

there exists a generic oracle G such that C
�
Q1 � G 
 C

�
Q2 � G.

Theorem 4. [2] The following hold:
(i) OntoPIGEON � m LONELY;
(ii) OntoPIGEON � m PIGEON; and
(iii) LONELY and PIGEON are incomparable, i.e., nei-
ther is many-one reducible to the other.

The above result completely characterizes the relation-
ship among PPAD, PPA, and PPP via Theorem 3. Clause
(iii) of Theorem 4 also follows from our main results below
(see Section 6).

PLS is not discussed in [2], and progress for resolving
the relative complexity of PLS is made in [22]:

Theorem 5. [22] OntoPIGEON is not many-one reducible
to ITERATION.
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Thus, PLS contains none of PPP, PPA, and PPAD in a
generic relativized world. We present in this paper a gen-
eralization of the above result (Theorem 21). It was still
unresolved in [22] whether PLS is contained in any of the
other classes, and we will present below solutions to some
of these open problems.

2.4. Search Trees and Reduction

Let M be a Turing machine that, on input of length n,
accesses α : Vn �

� Vn as an oracle. For each n, a partial
function ρn : Vn �

� Vn is called a restriction.
For each n, M gives rise to a search tree Tn, which en-

codes all possible computations of M in terms of α. More
specifically, each internal node of Tn denote the queries to
α with an outgoing edge for each of N � �

Vn
� � 2n possible

ways the query can be answered. Each path P of Tn cor-
responds to a computation of M for a given α and also to
a restriction πP. Each leaf node of Tn is labeled with the
output of M for the corresponding computation. The height
of Tn is defined to be the length of the longest paths from
the root to a leaf node, which is the maximum number of
queries M asks to α on input of length n. It is easy to define
Tn for M that accesses more than one oracle function.

If M runs in polynomial time, then Tn has height poly-
nomial in n and polylogarithmic in N, and the size of Tn is
exponential in n and polynomial in N. From now on we
measure the size and height of search trees in terms of the
maximum branching factor N.

Let Q1 and Q2 be type-2 search problems, and assume
that the type-1 arguments of Q1 and Q2 are α1 �	���	� � αk and
β1 �	�	��� � βl , respectively. Assume that Q1 � m Q2 by an ora-
cle Turing machine M. Later it becomes useful to split M
into the following two polytime oracle Turing machines M1

and M2: M1 is identical to M except that it terminates when
M has produced a query q � �

β1 ���	�	� � βl � 1m � to Q2, and M2

simulates the computation of M after it has received an an-
swer to the query. Note that the input to M2 is therefore of
the form

�
α1 ���	�	� � αk � 1n � w � , where w � Q2

�
β1 ���	�	� � βl � 1m � .

Let T M1
n be a search tree encoding the computations of

M1 on
�
α1 ���	�	� � αk � 1n � ; note that its leaves are labeled with

queries to Q2. Similarly, let T M2
n

�
q � w � be the search tree

for M2 on
�
α1 �	���	� � αk � 1n � w � , where w is a solution for Q2

on instance q. Since M on any computation path outputs a
solution for Q1, the following condition is satisfied: If P1 be
a path in T M1

n ending with a query q to Q1, and if P2 is a path
in T M2

n
�
q � w � with w � Q2

�
q � , then the restriction πP1

� πP2

contains a solution for Q1.
Finally, recall that, if the reduction M asks a query�

β1 �	���	� � βl � 1m � to Q2, then m � p
�
n � for some polynomial

p and each βi is polynomial-time computable using oracles

α1 �	���	� � αk. For each v � �
Vm � arity � βi � , we define T βi � v �

m to be

the search tree for the polynomial-time algorithm comput-
ing βi

�
v � in terms of α1 ���	��� � αk.

2.5. The Instance Extension Property

Let Q be a type-2 NP search problem. Intuitively, we say
that Q has the instance extension property if any instance
can be converted to an arbitrary large instance so that the
solutions in the large instance correspond to the solutions in
the original instance. More formally, Q has the instance ex-
tension property iff the following holds: for every polyno-
mial p such that p

�
n � � n for every n � �

, there exist func-
tions f � β1 ���	��� � βk such that, if w � Q

�
β1 ���	�	� � βk � 1poly � n � � ,

then f
�
w � � Q

�
α1 �	���	� � αk � 1n � , where f and βi for each

1 � i � k is polynomial-time computable using αi as an or-
acle.

Lemma 6. Let Q1 and Q2 be two type-2 NP search prob-
lems such that Q1 � m Q2. If Q2 has the instance extension
property, then Q1 is many-one reducible to Q2 by an oracle
Turing machine M whose first oracle query is to Q2.

Proof. For simplicity, assume that both Q1 and Q2 take one
unary function as their type-1 argument. We write α and β
to denote the type-1 argument of Q1 and Q2, respectively.
Let Q1 � m Q2 by a reduction M which, given

�
α � 1n � , com-

poses queries q � �
β � 1m � to Q1 based on the answers to the

queries to α. Then there exists a polynomial p such that
m � p

�
n � for all n and all possible computations of M. We

can assume that p
�
n � � n.

Define another reduction M � as follows. Given
�
α � 1n � , it

asks a query q � �
β � � 1p � n � � to Q2 before asking any query to

α, where β � is computed by a polynomial-time oracle ma-
chine Mβ � as follows. Given v � Vp � n � , Mβ � first simulates M
to compute q � �

β � 1m � . By the instance extension property
of Q2, q can be extended to a larger instance r � �

γ � 1p � n � � .
Finally, Mβ � computes γ

�
v � and outputs it as β �

�
v � . After re-

ceiving a solution w � Q2
�
r � , M � computes f

�
w � � Q2

�
q � ,

and then simulates M using f
�
w � as the answer from the Q2

oracle.

All the type-2 search problems introduced in Section 2.2
have the instance extension property. For example, the in-
stance

�
α � 1n � of PIGEON can be extended to

�
β � 1m � with

any m � n by letting β
�
uv � � uα

�
v � for any u � Vm � n and

v � Vn.

2.6. Proof Systems

We consider two propositional proof systems in this pa-
per. The first is called propositional LK or sequent cal-
culus. Let A1 �	�	��� � Ak � B1 �	���	� � B � be propositional formulas
over some set of variables X̄ and the connectives ��� � �� . A
sequent is a syntactic object of the form

A1 �	���	� � Ak �
� B1 �	���	� � B � �
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with the intended meaning

A1 � ���	� � Ak � B1 � ���	� � B � �

The depth of such a sequent is the maximum over the depths
of each of the formulas. LK usually includes the following
rules (A � B are formulas, ∆ � Γ � ∆ � � Γ � are sets of formulas):

Logical Axiom: A ��� A

Weakening: Γ ��� ∆
Γ � ��� ∆ � for Γ � Γ � � ∆ � ∆ �

Contraction: A � A � Γ ��� ∆
A � Γ ��� ∆ � Γ ��� ∆ � A � A

Γ ��� ∆ � A
Exchange: A � B � Γ ��� ∆

B � A � Γ ��� ∆ � Γ ��� ∆ � A � B
Γ ��� ∆ � B � A

� -introduction: A � B � Γ ��� ∆
A � B � Γ ��� ∆ � Γ ��� ∆ � A Γ ��� ∆ � B

Γ ��� ∆ � A � B

� -introduction: Γ ��� ∆ � A � B
Γ ��� ∆ � A � B � A � Γ ��� ∆ B � Γ ��� ∆

A � B � Γ ��� ∆

� -introduction: Γ ��� ∆ � A	 A � Γ ��� ∆ � A � Γ ��� ∆
Γ ��� ∆ � 	 A

Cut: A � Γ ��� ∆ Γ ��� ∆ � A
Γ ��� ∆

An LK derivation of B from A1 ���	��� � Ak is a sequence of
sequents S1 �	���	� � Sm where Sm is �

� B and each Si either
follows via one of the above rules from earlier sequents or
is �

� A j for some j. LK is well-known to be derivationally
sound and complete; that is, there is a derivation of B from
A1 �	�	��� � Ak iff 
 k

i � 1 Ai logically implies B. Thus, if there is
a derivation of the empty sequent �

� , then 
 k
i � 1 Ai is un-

satisfiable, and such a derivation is called a refutation of

 k

i � 1 Ai.

The size of a derivation is the sum of the sizes of all for-
mulas mentioned in the derivation, while the depth is the
maximum depth of any sequent in the derivation. A deriva-
tion is called tree-like if each sequent is used at most once
to derive a new sequent.

Nullstellensatz is an algebraic proof system. Let F be
a field and let X̄ be a set of variables. Given polynomials
q1 �	���	� � qm � p � F � X̄ � , a Nullstellensatz derivation of p from
q1 �	���	� � qm is another set of polynomials r1 �	�	��� � rm � F � X̄ �
such that

r1q1 � �	��� � rmqm
� p �

identically. A refutation is a derivation of 1. The degree of a
Nullstellensatz derivation is the maximum over the degrees
of riqi. Nullstellensatz is derivationally sound and complete
over any field F in the sense that p can be derived iff it is in
the ideal generated by q1 ���	�	� � qm.

3. Propositional Translations of Type-2 Prob-
lems

Let Φ be an
	

-sentence over language L. We say that Φ
is basic if its quantifier-free part is in DNF and contains no
nesting of symbols of L. More specifically, Φ is basic iff
every atomic formula in Φ is of the form R

�
x � , y � f

�
x � ,

or x � y, where R is a predicate symbol and f is a function
symbol.

For a type-2 search problem QΦ defined by a basic
	

-
sentence Φ, CNF

�
QΦ � n � for each n will be the unsatisfi-

able propositional CNF which (falsely) states that QΦ is not
total. It is the result of a standard translation of � Φ into
propositional CNF formulas due to [25]. The following is
a more detailed description of the translation: There will
be a set of variables in CNF

�
QΦ � n � for each type-2 argu-

ment α for QΦ. If α is an m-ary relation, then, for each
m-tuple v in the domain of α, there is a propositional vari-
able Xα � v � , which is intended to assert that α

�
v � is true. If

α is a function, we add propositional variables for the rela-
tion graph

�
α � : that is, for each v in the domain of α and

each w in the target of α, we add Xα � v ��� w, which asserts that
α
�
v � � w.
More specifically, CNF

�
QΦ � n � is defined as

CNF
�
QΦ � n � � syn FΦ � FDe f � FSingleDe f �

where FΦ, FDe f , and FSingleDe f are CNF formulas described
below. First, FΦ is of the following form:

FΦ
�

syn 
x1 � � � � � xk � Vn

� φ
�
x1 �	���	� � xk � �

where � φ is in CNF with each atomic formula replaced
by its corresponding propositional variable or propositional
constants. If an atom either contains any built-in predicate
or function, or of the form x � y, then it is replaced with
either true or f alse, depending on their truth value in the
canonical structure Vn.

FDe f is a CNF formula stating that every function in L
is total; more specifically, FDe f is the conjunction of the
following clauses

de fn
�
α
�
v � � � syn �

w � Vn

Xα � v̄ ��� w

for every function α � L and every v � �
Vn � arity � α � . Simi-

larly, FSingleDe f is the conjunction of the clauses

singlede fn
�
α
�
v � � � syn 

u � w � Vn

� Xα � v̄ ��� u � � Xα � v̄ ��� w

for every α, every v � �
Vn � arity � α � , and w � w � � Vn with w ��

w � .
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Note that all the clauses in CNF
�
QΦ � n � have constant

size except the clauses of FDe f , which have size
�
Vn
� � N.

The number of clauses in the CNF is polynomial in N.
Let CNF

�
QΦ � be the family of formulas� CNF

�
QΦ � n ��� n � � . We emphasize that CNF

�
QΦ � is

a family of unsatisfiable CNF formulas asserting, for each
n, that QΦ has no solutions.

If we start with Φ that is in DNF but not basic, we mod-
ify it to obtain a basic sentence as follows. If Φ contains an
atomic formula φ with nesting of symbols, say y � f

�
g
�
x � � ,

then replace φ with
� 	

z � � z � g
�
x � � y � f

�
z � � if φ is un-

negated and with
���

z � � z � g
�
x � � y � f

�
z � � if φ is negated.

Treat the other cases f
�
x � � g

�
y � and R

�
f
�
x � � in a similar

way. After all atoms are made basic, then make the whole
sentence prenex with the quantifier-free part in DNF. Let Φ �
be the resulting

	
-sentence. It is clear that QΦ 
 m QΦ � .

We also translate of search problems into sets of polyno-
mials in the following way. First, polyΦ contains a polyno-
mial for each clause C of FΦ that is obtained in the usual
way: each literal of C forms a linear factor of the polyno-
mial, where a positive literal x becomes a factor 1 � x and a
negative literal � x becomes a factor x.

Next, polyDe f contains a polynomial

∑
w � Vn

Xα � v̄ ��� w � 1 �

for each function α of L and v � �
Vn � arity � α � . Similarly,

polySingleDe f consists of polynomials

Xα � v̄ ��� wXα � v̄ ��� w �

for each function α of L, v � �
Vn � arity � α � , and w � w � � Vn with

w �� w � .
Finally, poly

�
QΦ � n � is the union of polyΦ, polyDe f ,

polySingleDe f plus the additional polynomials forcing each
variable x to take on 0/1 values: x � x2. Let poly

�
QΦ � be

the family � poly
�
QΦ � n � � n � � .

4. Search Problem Reductions and Proof Com-
plexity Reductions

4.1. Bounded-depth LK

Let L be an arbitrary first-order language consisting of
functions. Let M be a polynomial-time oracle Turing ma-
chine that accesses the functions of L as oracles on a domain
of size N � 2n. As in Section 2.4, M gives rise to the fam-
ily � Tn � n � 1 of search trees of height polylogarithmic in N.
Define, as in Section 3, the propositional variables Xα � v ��� w
for each function α j � L. Then each path P of Tn uniquely
corresponds to the conjunction ΠP of variables such that a
variable Xα � v ��� w appears in ΠP iff the query ‘α

�
v � � ?’ is an-

swered with w in P. It is clear that the size of ΠP is equal

to the height of Tn. We will simply write P to mean a path
and the corresponding conjunction. We define dis j

�
Tn � to

be the DNF formula � P � S P, where S is the set of all paths
in Tn.

We will use the following two lemmas many times in our
LK derivations. The first one says that we can easily prove
the totality of any function defined as a decision tree of total
functions. The second one says that we can easily prove
that any function defined as a decision tree of well-defined
functions is well-defined.

Lemma 7. Let L, M, and � Tn � n � 1 be defined as above, and
let FDe f be the CNF formula asserting that every function
in L is total. For each n, � dis j

�
Tn � has a a bounded-depth

LK derivation from clauses of FDe f of size quasipolynomial
in N.

Proof. Let P1 �	���	� � Pm be the paths of Tn. Let
α1

�
v̄1 � ���	��� � α �

�
v̄� � be all the queries to QΦ that appear

in Tn. Our goal is to derive the sequent S of the form

S : de f
�
Xαi � v̄i � � �	���	� � de f

�
Xαl � v̄� � � �

� dis j
�
Tn � �

since then � dis j
�
Tn � is easily obtained from S and �

de f
�
Xαi � v̄i � � for each i by weakening and cut.

For every node k of Tn, let Sk be the sequent

Sk : Rk � de f
�
X

αi1
v̄i1

� �	�	��� � de f
�
X

αik
v̄i j

� �
� P1 �	�	��� � Pk

where Rk is the sequence of variables corresponding to the
path from the root to k, and αi1

�
v̄i1 � ���	�	� � αi j

�
v̄i j � are all the

queries in the subtree of Tn rooted at x.
We argue that the sequent Sk for every node k of Tn has a

desired bounded-depth LK derivation; in fact, the derivation
is essentially an upside-down copy of Tn itself. First, let k be
a leaf node. Then Sk essentially contains Rk on both sides,
and therefore it has a short derivation from a logical axiom.
If k is a nonleaf node labeled with the query α

�
u � , then Sk

contains

de f
�
α
�
u � � � syn Xα � u ��� 0n � �	��� � Xα � u ��� 1n

in the left side. If k � is a child node of k by the answer
‘α

�
u � � w’, then Rk � is Xα � u ��� w � Rk. It is easy to see that Sk

is derived from Sk � for all child nodes k � by weakening and
� -left-introduction. Since T has quasi-poly size, so will this
derivation.

Lemma 8. Let L, M, and � Tn � n � 1 be defined as above, and
let FSingleDe f be the CNF formula asserting that every func-
tion in L is well-defined. Let D1 be a disjunction of some
of the terms in dis j

�
Tn � , and let D2 be the disjunction of

the remaining terms. Then there is a bounded-depth LK
derivation of D1 � D2 �

� from clauses of FSingleDe f of size
quasipolynomial in N.

7



Proof. Let D1
� � i Di

1, and let D2
� � j D j

2. Any two terms

Di
1 and D j

2 must differ on at least one query since they corre-
spond to two different paths in the same tree. Assume that
on Di

1, we have αi j
�

v̄i j � � wi j and on D j
2, αi j

�
v̄i j � � w �i j .

Begin with the sequents

Di
1 � D j

2 �
� Xαi j � v̄i j ��� wi j

and Di
1 � D j

2 �
� Xαi j � v̄i j ��� w �i j

�

for each i � j. By � - and � - introduction, we get

� Xαi j � v̄i j ��� wi j � � Xαi j � v̄i j ��� w �i j
� Di

1 � D j
2 �

� �

By weakenings and � -introductions, we get

� � Xαi j � v̄i j ��� wi j � � Xαi j � v̄i j ��� w �i j
� i j � D1 � D2 �

� �

But cutting with FSingleDe f , we get D1 � D2 �
� . This deriva-

tion again has quasi-polynomial size.

We adopt the following definition for comparing the
proof complexity of different families of propositional for-
mulas:

Definition 9. Let S � R be two families of unsatisfiable CNF
formulas. We say S has a bounded-depth LK reduction to
R , written S � bd � LK R , if we can derive a substitution in-
stance R � of R from S in quasi-polynomial-size bounded-
depth LK.

Let S � R be families of unsatisfiable CNF formulas such
that S � bd � LK R . Obviously the substitution instances of
R derived from S have size quasipolynomial in N. Thus, if
every substitution instance R � of R has bounded-depth LK
refuations of size quasipolynomial in

�
R �

�
, then so does S .

Theorem 10. Let Φ and Ψ be two first-order sentences and
assume that Ψ satisfies the model extension property. Let
QΦ � QΨ be the corresponding type-2 NP search problem. If
QΦ � m QΨ, then CNF

�
QΦ � � bd � LK CNF

�
QΨ � . In fact, the

derivations are tree-like and have depth-1 � 5.

Proof. We assume that the type-1 arguments of QΦ and QΨ
are α1 �	���	� � αk and and β1 �	���	� � βk � , respectively. We use X
with subscripts to denote the variables of CNF

�
QΦ � and Y

with subscripts for the variables of CNF
�
QΨ � .

Since Ψ satisfies the model extension property, QΦ � m

QΨ by a polynomial-time oracle Turing machine M whose
query q � �

β1 ���	�	� � β �k � 1n � � only depends on 1n, the string
argument of QΦ. Fix n arbitrary. Recall the definition in

Section 2.4 of the search tree T βi � v �
n � computing the value

of βi
�
v � . For each w � Vn � , define DNF

�
Yβ � v ��� w � to be the

disjunction

�
P � S

S �

where S is the set of paths of T βi � v �
n � that end with a leaf

stating that βi
�
v � � w. Let DNF

�
� Yβ � v ��� w � be

�
P � S

S �

where S is the set of paths of T βi � v �
n � that end with a leaf

stating that βi
�
v � �� w. Because of Lemmas 7 and 8,

there is an equivalence in LK between � DNF
�
Yβ � v ��� w � and

DNF
�

� Yβ � v ��� w � . Therefore, we will ignore the syntactic dif-
ference between the two. Define CNF

�
QΨ � n � � � T � Y � as the

result of substituting for each variable Yβi � v ��� w the formula
DNF

�
Yβi � v ��� w � .

Below we show that bounded-depth LK derives from
CNF

�
QΦ � n � the substitution instance CNF

�
QΨ � n � � � T � Y � ,

the derivation is of size quasipolynomial in N. It suffices to
show that, for each clause C of CNF

�
QΨ � n � � , its substitu-

tion instance C � T � Y � has quasipolysize derivation from the
clauses of CNF

�
QΦ � n � . Three cases arise.

(i) If all of QΦ’s functions are total, then so are all of

QΨ’s: If C is de f
�
βi

�
v � � , then C � T � Y � is just dis j

�
T βi � v �

n � � ,
which has a desired derivation by Lemma 7.

(ii) If all of QΦ’s functions are well-defined, then so are
all of QΨ’s: Let C be a clause of FSingleDe f

�
Ψ � : �

�
Yβi � v ��� w � �

�
�
Yβi � v ��� w � � for some w �� w � . The formula Yβi � v ��� w � T � Y � , is a

disjunction of all paths in T βi � v �
n � that lead to something other

than w with all paths that lead to something other than w � .
This disjunction includes all paths in dis j

�
T βi � v �

n � � , so it is
easily derivable by Lemma 7.

(iii) If we find a solution to QΨ, then we can find one
for QΦ: Finally, consider a clause C of FΨ. Assume C

mentions variables Y β1
v̄1 � w1

�	���	� � Y βk
v̄k � wk

. For each 1 � i � k, let

Ti
� T βi � v̄i �

n � . Let P be the set of conjunctions � � P1 � ���	� �
Pk �

�
P1 � T1 �	�	��� � Pk � Tk � , where Pi � Ti means that Pi is a

path in Ti. P is just dis j
�
T � where T is the tree that starts

with T1 and puts copies of T2 at each leaf of T1, etc. There-
fore, by Lemma 7, the sequent �

� P has a quasipolysize
derivation. First, we can easily remove from �

� P the con-
junctions containing inconsistent paths. Next, we want to
remove the conjunctions that falsify C.

Assume that P � P falsifies C, where P � �
P1 � ���	� � Pk � .

Then P defines a solution w for QΨ. Recall from Section 2.4
that T M2

n � q � w � encodes all possible computations of M after
it receives w as the answer to the Q2-query q. By Lemma
7, �

� dis j
�
T M2

n � q � w � � has a quasipolysize derivation. Let
R be an arbitrary path in T M2

n � q � w � . If R is inconsistent with
P, then the sequent P� R �

� has a quasipolysize deriva-
tion. If R is consistent with P, then, by the definition of
M2, R contains a solution for QΦ and therefore it falsifies
some FΦ-clause B. Starting from �

� B, we get the sequent
B � �

� , where B � is a set of literals that are the negations
of those literals in B. Since R extends B � , we can derive
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R �
� . By cutting with these sequents, we derive P �

�

from �
� dis j

�
T M2

n � q � w ��� . Using this sequent, we remove
P from �

� P .
Now we have simply

�
� P �
�

where P � is the set of all P � P that satisfies C. Write C as
l1 � ���	� � � lk, where each li is either Yβi � v̄i ��� wi

or its negation.
For each path P � P � , there is an i such that P contains one
of the paths in DNF

�
li � . Therefore, it is easy to derive

�
� DNF

�
l1 � ���	��� � DNF

�
lk ���

Again this derivation has quasi-polynomial size.

4.2. Nullstellensatz

We saw above that a poly-time reduction between search
problems yields a quasi-poly-size bounded-depth LK re-
duction between the corresponding propositional formulas.
Here we show a similar connection to the Nullstellensatz
system. The structure of the presentation is analogous to
that above. Throughout this section, we work in an arbi-
trary field F .

Let L, M, � Tn � be as in section 4.1. For each path P in
Tn, we form a monomial as follows: if the query α

�
v̄ � � w

appears in P, then the variable Xα � v̄ ��� w appears in the mono-
mial. Clearly, the degree of the monomial is the length of
P. In general, we will abuse notation and use P to refer
to both the path and the monomial. We associate a poly-
nomial, poly

�
Tn � with the tree Tn—namely, the sum of the

monomials for each path in Tn. The polynomial poly
�
Tn �

has degree equal to the height of the tree Tn.

Lemma 11. Let L, M, � Tn � be as above. For each n, the
polynomial poly

�
Tn � � 1, has a Nullstellensatz derivation

from polyDe f of degree polylogarithmic in N.

Proof. Fix n and let T � Tn. We prove induction on
the height of T that poly

�
T � has a derivation of degree

height
�
T � . If height

�
T � � 0, then we consider T to have

one path p of length 0 and let poly
�
T � � 1. Otherwise,

let T have height k � 0. Consider the tree T � , the sub-
tree of T where every path from the root is truncated at
length k � 1. By induction, poly

�
T � � � 1 has a Nullstel-

lensatz derivation of degree k � 1. Consider any leaf l of
T � that is not a leaf of T and assume it queries α on ū
in T . Let T �l be the tree T � with every T -child of l added
on. Then poly

�
T �l � � poly

�
T � � � polyDe f

�
Xα

ū � pl , where pl

is the (monomial of the) path from the root to l. We know
poly

�
T � � poly

�
T � � is just the sum of poly

�
T �l � � poly

�
T � �

for all such leaves l. Hence poly
�
T � has a degree k Null-

stellensatz derivation.

Definition 12. Let F be a field and let X̄ and Ȳ be infinite
sets of variables. Let P1 be an infinite family of finite subsets
of F � X̄ � and let P2 be an infinite family of finite subsets of
F � Ȳ � . We say that P1 has a degree-d Nullstellensatz reduc-
tion to P2 (P1 � HN � d � P2), if, for any A � P1 there is a B � P2

and a set of polynomials f̄Y � � fY � Y � Ȳ
�

F � X̄ � such that
each polynomial in B

�
f̄Y � Ȳ � has a degree-d Nullstellensatz

derivation from A. B
�
f̄Y � Ȳ � is just the result of replacing

each variable Y in each polynomial of B by fY .

Theorem 13. Let Φ and Ψ be two first-order sentences and
assume that Ψ satisfies the model extension property. Let
QΦ � QΨ be the corresponding type-2 NP search problems.
If QΦ � m QΨ, then poly

�
QΦ � � HN � d � poly

�
QΨ � over any

field for some d that is polylogarithmic in N.

Proof. Again, we assume that the type-1 arguments of QΦ
and QΨ are α1 ���	�	� � αk and and β1 �	�	��� � β �k, respectively. We
use X with subscripts to denote the variables of poly

�
QΦ �

and Y with subscripts for the variables of poly
�
QΨ � .

Since Ψ satisfies the model extension property, QΦ � m

QΨ by a polynomial-time oracle Turing machine M whose
query q � �

β1 �	�	��� � βk � � 1n � � only depends on 1n, the string
argument of QΦ. Fix n arbitrary. Recall the definition in

Section 2.4 of the search tree T βi � v �
n � computing the value of

βi
�
v � . For each w � Vn � , define poly

�
Yβ � v ��� w � to be the sum

∑
P � S

S �

where S is the set of paths of T βi � v �
n � that end with a leaf

stating that βi
�
v � � w. Let poly

�
1 � Yβ � v ��� w � be

∑
P � S

S �

where S is the set of paths of T βi � v �
n � that end with a leaf

stating that βi
�
v � �� w. Because of Lemma 11, there is

an equivalence in Nullstellensatz between 1 � poly
�
Yβ � v ��� w �

and poly
�
1 � Yβ � v ��� w � . Therefore, we will ignore the syntac-

tic difference between the two. Define poly
�
QΨ � n � � � T � Y �

as the result of substituting for each variable Yβi � v ��� w the
polynomial poly

�
Yβi � v ��� w � .

Below we show that Nullstellensatz derives from polyΦ
the substitution instance poly

�
QΨ � n � � � T � Y � and that the

derivation is of degree polylogarithmic in N. It suffices to
show that, for each polynomial τ in poly

�
QΨ � n � � , its substi-

tution instance τ � T � Y � has a polylogarithmic degree deriva-
tion from the polynomials of poly

�
QΦ � n � . Four cases arise.

(i) If all of QΦ’s functions are total, then so are all of

QΨ’s: If τ is polyDe f
�
βi
�
v � � , then τ � T � Y � is poly

�
T βi � v �

n � � �
1, which has a desired derivation by Lemma 11.

(ii) If all of QΦ’s functions are well-defined, then so are
all of QΨ’s: If τ is in polySingleDe f , then τ is Yβi � v ��� wYβi � v ��� w �
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for some w �� w � . Every term t in τ � T � Ȳ � is the prod-

uct of two different paths in T βi � v �
n � , so something in

polySingleDe f
�
QΦ � is a factor of this term.

(iii) If we find a solution to QΨ, then we can find one for
QΦ: Now, consider a polynomial τ of polyΨ. Basically, τ
is a clause which rules out a certain solution w to QΨ. As
in Section 2.4, let T M2

n � q � w � be the tree that encodes all pos-
sible computations of the reduction M after it receives w as
the answer to a QΨ-query q. Therefore, every (noncontra-
dictory) term of the polynomial

P � poly
�
T M2

n � q � w � � τ � T � Ȳ �
contains a solution to QΦ. Hence, each term in P is
easily derivable from something in polyΦ. Moreover,
poly

�
T M2

n � q � w � � � 1 is derivable by Lemma 11. Then

τ � T � Ȳ � � P � τ � T � Ȳ � � poly
�
T M2

n � q � w � � � 1 � �
(iv) poly

�
QΨ � ’s variables are boolean: The Nullstellen-

satz setting requires one more case: τ � Yβi � v ��� w � Y 2
βi � v ��� w � .

But then τ � T � Ȳ � is just poly
�
Yβi � v ��� w � poly

�
1 � Yβi � v ��� w � , so

every term is the product to two different paths in the same
tree. Hence, every term is derivable from something in
polySingleDe f

�
QΦ � .

It is clear that none of these four cases involves high de-
gree polynomials in any way.

5. Proof Complexity Separations

In this section we show a number of proof complexity
separations which, together with Theorems 10 and 13, im-
ply separations of type-2 search problems. Note that the
CNF formulas CNF

�
PIGEON � , CNF

�
WeakPIGEON � ,

CNF
�
LONELY � , and CNF

�
WeakPIGEON � are equiva-

lent to the CNF formulas whose proof complexity have been
studied extensively. CNF

�
ITERATION � is equivalent to

the housesitting principle of [10, 7].

Lemma 14. The following separations hold in bounded-
depth LK:
(a) CNF

�
PIGEON ���� bd � LK CNF

�
WeakPIGEON � .

(b) CNF
�
LONELY ���� bd � LK CNF

�
PIGEON � .

(c) CNF
�
PIGEON ���� bd � LK CNF

�
ITERATION � .

(d) CNF
�
LONELY ���� bd � LK CNF

�
ITERATION � .

Proof. [26, 19] show that CNF
�
PIGEON � requires

exponential-size refutations in any bounded-depth sys-
tem. [3] show (b), and hence CNF

�
LONELY � requires

exponential-size bounded-depth LK refutations. On the
other hand, [20] show that CNF

�
WeakPIGEON � has

quasi-poly-size 0.5-depth LK refutations, and Lemma 15
below shows that CNF

�
ITERATION � has poly-size tree-

like resolution refutations.

Lemma 15. CNF
�
ITERATION � has poly-size tree-like

resolution refutation.

Proof. Fix arbitrary n � �
and let N � 2n.

CNF
�
ITERATION � n � consists of the following clauses:

(i) � X0 � 0
(ii) � Xi � j for all i � j such that j � i
(iii) � Xi � j � � X j � j for all i � j such that i � j
(iv) � 0 � j � N � 1 Xi � j for every i
(v) � Xi � j � � Xi � k for all i � j � k with j �� k
For every i � 1, define Ai to be the clause � j � i � X j � j.
A1 is derivable from clauses (i), (iii), and (iv) for i � 0.
Similarly, for every i � 1, the clause Xi � i � Ai � 1 is derived
using (ii), (iii), and (iv). Thus, for every i � 2, Ai is derived
by resolving Ai � 1 and Xi � 1 � i � 1 � Ai on Pi � 1 � i � 1. Finally, the
empty clause is derived from An

� � PN � N and PN � N , which
is derived from (ii) and (iv).

Lemma 16. The following separations hold for degree-d
Nullstellensatz whenever d is polynomial in n:
(a) poly

�
PIGEON � �� HN � d � poly

�
OntoPIGEON � over any

field F.
(b) poly

�
ITERATION � �� HN � d � poly

�
OntoPIGEON � over

any field F.
(c) poly

�
PIGEON ���� HN � d � poly

�
LONELY � over any field

F of characteristic 2.
(d) poly

�
ITERATION � �� HN � d � poly

�
LONELY � over any

field F of characteristic 2.

Proof. [2, 28] prove that poly
�
PIGEON � requires Ω

�
N � -

degree Nullstellensatz refutations over any field. [10, 7]
prove the same for poly

�
ITERATION � (they call the prin-

ciple “housesitting”).
On the other hand, poly

�
OntoPIGEON � has constant-

degree Nullstellensatz refutations over any field. We have
the following polynomials (let Xi j say that pigeon i maps
to hole j and let Yi j say that hole i maps to pigeon j for
0 � i � j � N):
(i)

�
∑N � 1

j � 0 Xi j � � 1 for all i

(ii)
�
∑N � 1

j � 0 Yi j � � 1 for all i �� 0
(iii) Xi0 for all i
(iv) Xi j

�
1 � Yji � for any i � j

(v) Yi j
�
1 � X ji � for any i � j

(vi) Xi jXi j � for any i � j �� j �
Begin by converting each Yi j in (ii) to X ji using (iv) and (v).
Now sum up all polynomials in (i) and subtract all polyno-
mials in (ii). What remains is

�
∑N

i � 0 Xi0 � � 1. Now we can
simply cancel each Xi0 using (iii).

Finally, poly
�
LONELY � has constant-degree Nullstel-

lensatz refutations over characteristic 2. We have the fol-
lowing polynomials (let Xi j say that node i maps to node j
for 0 � i � j � N):
(i) Xi j � Xi jX ji for all i �� j
(ii) Xii for all i �� 0
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(iii) 1 � X00

(iv) ∑N � 1
j � 0 Xi j � � 1 for any i

(v) Xi jXi j � for any i � j �� j �
Begin by summing up all polynomials in (i), (ii) and (iv):
this yields

�
∑N � 1

i � 1 X0i � � 1. If we add X0 jX00 � X0 j
�
1 � X00 �

to this, we get simply 1.

6. Search Problem Separations

Many of the separations follow directly from Theo-
rems 10 and 13, and Lemmas 14 and 16:

Theorem 17. The following separations hold:
(a) ([2]) PIGEON �� m LONELY or PPPA �
 PPAA

(b) ([2]) LONELY �� m PIGEON or PPAA �
 PPPA

(c) PIGEON �� m WeakPIGEON
(d) ([2]) PIGEON �� m OntoPIGEON or PPPA �
 PPADA

(e) ITERATION �� m LONELY or PLSA �
 PPAA

(f) [22] LONELY �� m ITERATION or PPAA �
 PLSA

(g) [22] PIGEON �� m ITERATION or PPPA �
 PLSA

As usual, the oracle separations of the search classes fol-
low from the type-2 separations by Theorem 3.

To (almost) complete the characterization of PLS, we
prove a slightly weaker separation of ITERATION from
PIGEON:

Definition 18. We say that Q1 is nicely reducible to Q2 if
Q1 � m Q2 and, any instance of Q1 which contains exactly
one solution is reduced to an instance of Q2 that contains
exactly one solution.

Note that all common examples of reductions are nice
reductions. In fact, they almost always preserve the num-
ber of solutions in general. Nice reductions are, ostensibly,
much less restricted than what [2] call strong reductions.

Lemma 19. If ITERATION is nicely reducible
to PIGEON, then ITERATION is reducible to
OntoPIGEON.

Proof. Consider ITERATION on a structure of size N �
2n, defined by the type-1 function succ

��� � . The correspond-
ing instance of PIGEON has size N � � 2n � , and is defined

by the function β. Let T � � T β � pi �
n � � N � � 1

i � 0 be the decision
trees arising from the nice reduction. Consider a path π1 in

T β � pi �
n � that maps pigeon pi to hole h and π2 in T

β � p j �
n � that

maps pigeon p j to h. Either π1 and π2 are contradictory or
they specify enough of the ITERATION instance so that a
polytime machine M2 can find the solution. The only way
π1 and π2 can so determine a solution is if one of them (wlog
π1) contains a solution or contains a node v whose index is
at least N � poly

�
n � and such that succ

�
v ��� v. In the latter

case, we can extend P1 by poly
�
n � queries so that it contains

a solution. Now prune all branches of T that contain a solu-
tion to the ITERATION instance. At this point, given any
paths π1 � π2 that represent a collision of pigeons are con-
tradictory. Lemma 4 of [2] describes how to build a forest
of trees H � � Hβ � hi � � N � � 1

i � 1 such that each tree has height at
most polynomial in n and Hβ � hi � determines which pigeon,
if any, maps to hole hi. If we find that no pigeon maps to
hole hi, we label the leaf by pigeon 0.

We now have the appropriate objects, namely T and H ,
to pass to an oracle for OntoPIGEON. This oracle will
return (1) pigeons pi and p j that collide, (2) a pigeon pi

that maps to hole h0, (3) a pigeon pi that maps to hole hk,
but hole hk maps to pigeon p j, or (4) a hole hi that maps
to pigeon pk, but pk maps to hole h j. Cases (1) and (2)
have nothing to do with H , so we can find a solution to
ITERATION by the correctness of T . In case (3), it must
be that pi and p j collide under T , so again we can find a
solution to ITERATION. Finally, case (4) can arise only
when k � 0 and hi is left empty by T . Assume that the
pertinent path, π, in tree Hβ � hi � does not reveal a solution to
the ITERATION instance, otherwise we are done. Create
an instance of ITERATION that is consistent with π and
contains only one solution as follows: let v be the node (if
there is one) such that, according to π, succ

�
v � � u � v and u

is maximal. Note that u �� N � 1, since that would constitute
a solution. For every w � u such that π does not determine
succ

�
w � , let succ

�
w � � u. For every undetermined w � u,

let succ
�
w � � w. Finally, let succ

�
u � � N � 1. This instance

of ITERATION has the unique solution u. Since T is a
nice reduction, the corresponding instance of PIGEON has
exactly one solution. Hence, there should be no hole, except
perhaps h0, that remains empty. Therefore Hβ � hi � must have
been incorrect, so T must have been incorrect.

Theorem 20. ITERATION is not nicely reducible to
PIGEON.

Proof. This follows from Lemmas 19 and 16, and Theo-
rem 13.

7. A Separation Criterion for PLS

We now present a sufficient condition for separating a
search Q from ITERATION. The condition generalizes the
main result of [22] (presented as Theorem 5 of this paper)
and also the relative separations from the iteration problem
in [9].

Theorem 21. Let Φ be an
	

-sentence over a language L
all of whose built-in symbols are constants. If Φ fails in an
infinite structure, then

QΦ
�

T ITERATION �
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Proof. For simplicity, we fix the language L to be L �
� 0 � α � , where α is a unary function, and assume that Φ is
an

	
-sentence over L of the form

�
	
x � φ � x � . The case with

arbitrary language and arbitrary
	

-sentence is analogous to
the current case. Let K � �

K � αK � be an infinite structure in
which Φ fails.

Recall that a partial function ρn : Vn �
� Vn is called a re-

striction. Let ρ � � ρn � n be a family of restrictions. The size
of restriction ρn is

�
dom

�
ρn �

�
and is written

�
ρn
�
. We say that� ρn � n is a polysize family if

�
ρn
� � nO � 1 � . We say that ρn is

safe for Φ if there exists a one-one mapping h : Vn �
� K such

that ρn
�
v � � u implies αK

�
h
�
v � � � h

�
u � . Note that, if ρn is

safe for Φ, then ρn does not contain a solution for QΦ.
It is not hard to prove that, if ρn is a safe restriction and

m � �
ρn
�
� � N, then we can answer m queries to α con-

sistently with ρn so that ρn augmented with the answers is
still safe. We call this the safety property, and state it more
formally as follows: If ρ � � ρn � n is a polysize family of
safe restrictions, and if � Tn � n is a family of search trees of
height polynomial in n, then, for all sufficiently large n, Tn

contains a path P such that ρn and πP are consistent and
ρn

� πP is safe for Φ. The safety property has been implicit
in separation proofs in [5, 17, 2, 9, 22].

Now assume for the sake of contradiction that QΦ � m

ITERATION. Since ITERATION has the instance ex-
tension property, we assume without loss of generality that
the reduction M on

�
α � 1n � composes a query q � �

β � 1m � to
ITERATION without asking any queries to α.

Claim 22. There exists a polysize family � ρn � n of restric-
tions such that, for sufficiently large n, the following hold:
(1) ρn is safe for Φ; and (2) ρn contains the answers to all
the queries to α and ITERATION made by M on

�
1n � α � .

Suppose Claim 22 holds and consider M on
�
α � 1n �

for n sufficiently large. We answer all the queries to α
and ITERATION according to ρn asserted to exist by the
Claim. At the end of its computation, M needs to output
some v as a solution for QΦ on this instance, although no
solution for QΦ has been specified. Hence, after M outputs
some v, we can construct a total extension α of ρn so that
v �� QΦ

�
α � 1n � . This completes the proof of Theorem 21

from Claim 22.
It remains to prove Claim 22. Fix n sufficiently large and

let q � �
1m � β � be the query that M asks to ITERATION.

We want to construct a safe restriction µ1 so that a solu-
tion for ITERATION

�
1m � β � is specified. By definition of

many-one reduction, Recall that, for each x � Vm, T β � x �
m is

the search tree corresponding to the computations of Mβ on
x; we denote it as B

�
x � . We say a path P of B

�
x � is safe if

the corresponding restriction πP is safe. For each x � Vm, let
Sa f eB

�
x � be the set of all good paths of B

�
x � . Because of

the safety property, Sa f eB
�
x � is nonempty for every x � Vm.

There are three cases to consider:

Case (i): Sa f eB
�
0m � contains a path P with leaf label

β
�
0m � � 0m. This path defines a solution for ITERATION.

We give the solution to M and set µ1 : � πP.
Case (ii): For some x � Vm, Sa f eB

�
x � contains a path

P with leaf label β
�
x � � y for some y � x. This path also

defines a solution for ITERATION, so we give the solution
to M and set µ1 : � πP.

Case (iii): the above two cases do not hold. Since the first
case does not hold, every path in Sa f eB

�
0m � corresponds to

a computation of Mβ with β
�
0m � � 0m. Similarly, since the

second case does not hold, every path in Sa f eB
�
1m � leads

to β
�
1m � � 1m. Hence, by the least number principle, there

exists x � Vm such that (1) Sa f eB
�
x � contains a path P that

leads to β
�
x � � y for some y � x; and (2) for all z � x, every

path in Sa f eB
�
z � leads to β

�
z � � z. Let GoodB

�
y � as the set

of paths P � of B
�
y � such that πP � is consistent with πP � and

piP
� πP � is safe for Φ. By the safety property, GoodB

�
y �

is not empty. Let P � be any path in GoodB
�
y � . Set µ1

to be πP �
� πP

� and return x to M as a solution for its
ITERATION-query. Note that x is a solution because
β
�
x � � y and β

�
y � � y. This concludes the construction of

µ1.
Let w be the answer to the query to ITERATION that

is constructed as above. Recall that T M2
n

�
q � w � is the search

tree encoding all possible computations of M2 in this case.
By the safety property, there exists a path R in T M2

n
�
q � w �

such that πR and µ1 are consistent and πR
�

µ1 is safe. Set-
ting ρn : � πR

�
µ1 makes Claim 22 hold.

Note that the conclusion of Theorem 21 implies that
C
�
Q � A � PLSA for any generic oracle A by Theorem 3.
The reader may be familiar with the following result of

Krajicek (Theorem 11.3.1 of [17]):

Theorem 23. [17] Let Φ be a
	 �

-sentence over a relational
language L without � . If Φ fails in an infinite structure, then
the type-2 problem QΦ is not in type-2 FPNP.

Theorems 21 and 23 are incomparable. Since
ITERATION is in type-2 FPNP trivially, the consequence
of Theorem 23 is stronger than that of our Theorem 21.
However, it does not apply to search problems defined by	

-sentences (which are also
	 �

-sentences) over functional
languages, which is the scope of our Theorem 21. For ex-
ample, Theorem 23 does not say anything about the com-
plexity of PIGEON, since the PIGEON principle is not
over a relational language. In fact, PIGEON is in type-2
FPNP trivially: binary search asking ‘does there exist v � k
witnessing PIGEON?’ for various k yields a solution in
polynomial-time.

8. Concluding Remarks and Open Problems

We have obtained a number of search problem sepa-
rations from proof complexity separations and our Theo-
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rems 10 and 13. Note that our proofs of these separations
do not depend on the fact that the substitution instance of
CNF

�
QΨ � and poly

�
QΨ � are uniformly generated by a Tur-

ing machine that reduces QΦ to QΨ. Hence, all the search
problem separations in this paper hold to exclude reductions
by nonuniform poly-size circuits. The same is true for the
separations obtained in [2, 22].

One of the properties of the two proof systems we use
is that the objects they deal with a fairly expressive. What
exactly are the properties of a proof system P necessary to
prove an analog of Theorems 10 and 13? We know that no
such theorem can be proven for the cutting planes proof sys-
tem since the CLIQUE � OR � COLORING search prob-
lem is reducible to PIGEON, but there is cutting planes
reduction between the corresponding CNFs ([27]).

All the separations we obtained in this paper are with re-
spect to many-one reducibility. Since all the known separa-
tions from [2, 22] are known to hold with respect to Turing
reducibility, it is an interesting open problem to see if this
stronger separation is obtainable directly from proof com-
plexity separation.

We made progress toward resolving the relative com-
plexity of PLS by showing ITERATION

�
m LONELY

and ITERATION is not nicely reducible to PIGEON. We
are interested in knowing whether ITERATION is many-
one reducible to PIGEON or not, which still remains open.
One difficulty is that the iteration principle is easy for al-
most all proof systems (except for Nullstellensatz, for which
the hardness of the iteration principle allowed us to prove
ITERATION

�
m LONELY) and the pigeonhole principle

is hard for almost all proof systems.
From Theorem 13 and the fact that poly

�
LONELY � has

constant-degree Nullstellensatz refutations, it follows that
the totality of every PPA problem has low-degree Null-
stellensatz proofs. This indicates that the fixed point theo-
rems of Brower, Nash, and Kakutani, whose corresponding
search problems are in PPA, have low-complexity proofs.

Theorems 10 and 13 constructs propositional refutations
from reductions. Does the converse hold? Is it true that if
the translation of a search problem has a simple LK or Null-
stellensatz refutation, then the search problem is reducible
to, say, ITERATION (which is easy for LK) or LONELY
(which is easy for Nullstellensatz)?

The theories of bounded arithmetic are introduced by
Buss in [5] as fragments of Peano Arithmetic with bounds
on their reasoning power. Bounded arithmetic is closely
related to computational complexity and proof complexity,
and our results connecting these two areas naturally have
some consequences on bounded arithmetic as well. For
the definitions and relevant results, we refer the reader to
[5, 17, 6]. For an

	
-sentence Φ, we denote by Φ

�
a the for-

mula obtained by bounding all existential quantifiers in Φ
by a free variable a.

Theorem 24. Let Φ be an
	

-sentence over an arbitrary lan-
guage L. If the relativized bounded arithmetic theory S2

�
L �

proves
�

xΦ
�

x, then PIGEON
�

m QΨ and LONELY
�

m

QΨ. In fact, QΨ
�

m QΦ for any Φ such that CNF
�
Φ �

requires exponential-size refutations in any bounded-depth
LK system.

Proof. The idea is that, if S2
�
L � proves

�
xΦ

�
x, then from

the proof we can construct quasi-polysize bounded-depth
LK refutations of CNF

�
QΦ � ([25, 17]). From Theo-

rem 10 it follows that, if QΨ � m QΦ, then CNF
�
Ψ � has

subexponential-size LK refutations, which contradicts the
assumption.

Our Theorem 21 implies the following independence cri-
terion for the relativized S2

2 by Riis [29] in a similar way
Krajicek’s theorem (Theorem 23) in [17] implies it.

Theorem 25. [29] Let L be a language that is disjoint with
the language of bounded arithmetic, and let Φ � 	

xφ
�
x � be

a sentence of arbitrary quantifier-complexity. If Φ fails in
an infinite structure, then the relativized bounded arithmetic
theory S2

2

�
L � does not prove Φ

�
a.

Proof. Krajicek has a proof of this theorem based on
Theorem 23 in [17]. Since our proof is similar to
his, we only sketch the idea. Let Φ be of the form	

x1
�

y1 �	��� 	 xk
�

ykφ
�
x1 � y1 ���	��� � xk � yk � , with φ quantifier-free.

Define a herbrandization ΦH of Φ as

	
x1

	
x2 �	��� 	 xkφ

�
x1 � f1

�
a � x1 � �	�	��� � xk � fk

�
a � x1 �	���	� � xk � � �

where f1 ���	�	� � fk are new functions. Let K be an infinite
structure in which Φ is false. By defining f1 ���	�	� � fk appro-
priately, K can be extended to K � in which ΦH fails; thus,
QΦH is not reducible to ITERATION by Theorem 21.

Let L � � L
� � f1 �	���	� � fk � . Since ITERATION charac-

terizes the Σb
1

�
L � � -consequences of S2

2

�
L � � ([9]), S2

2

�
L � � does

not prove

	
x1 � a

	
x2 � a ���	� 	 xk � a

� f1
�
a � x1 ��� a � �	��� � fk

�
a � x1 ���	�	� � xk � � a �

φ
�
x1 � f1

�
a � x1 � �	�	��� � xk � fk

�
a � x1 �	�	��� � xk � � � �

Let M be a model of S2
2

�
L � � in which the above formula fails.

It is not hard to see that Φ
�

a fails in this model.
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