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Abstract

Given any simply consistent formal theory F of the state complexity
L(S) of finite binary sequences S as computed by 3-tape-symbol Turing
machines, there exists a natural number L(F ) such that L(S) > n is
provable in F only if n < L(F ). On the other hand, almost all finite
binary sequences S satisfy L(S) > L(F ). The proof resembles Berry’s
paradox, not the Epimenides nor Richard paradoxes.
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Computational complexity has many points of view, and many points
of contact with other fields. The purpose of this note is to show that a
strong version of Gödel’s classical incompleteness theorem follows very
naturally if one considers the limitations of formal theories of compu-
tational complexity.

The state complexity L(S) of a finite binary sequence S as com-
puted by 3-tape-symbol Turing machines is defined to be the number
of states that a 3-tape-symbol Turing machine must have in order to
compute S. This concept is a variant of the descriptive or information
complexity. Note that there are (6n)3n n-state 3-tape-symbol Turing
machines. (The 6 is because there are six operations: tape left, tape
right, halt, write 0, write 1, write blank.) Thus only finitely many fi-
nite binary sequences S have a given state complexity n, that is, satisfy
L(S) = n.

Any simply consistent formal theory F of the state complexity of
finite binary sequences will have the property that L(S) > n is provable
only if true, unless the methods of deduction of the theory are extremely
weak. For if L(S) > n isn’t true then there is an n-state 3-tape-symbol
Turing machine that computes S, and as this computation is finite, by
carrying it out step by step in F it can be proved that it works, and
thus that L(S) ≤ n.

Suppose that there is at least one finite binary sequence S such that
L(S) > n is a theorem of F . Then there is a (blog2 nc + 1 + cF )-state
3-tape-symbol Turing machine that computes a finite binary sequence
S satisfying L(S) > n. Here cF is independent of n and depends only
on F . How is the Turing machine constructed? Its first blog2 nc + 1
states write the number n in binary notation on the Turing machine’s
tape. The remaining cF states then do the following. By checking in
order each finite string of letters in the alphabet of the formal theory
F (the machine codes the alphabet in binary) to see if it is a proof,
the machine generates each theorem provable in F . As each theorem is
produced it is checked to see if it is of the form L(S) > n. The first such
theorem encountered provides the finite binary sequence S computed
by the Turing machine.

Thus we have shown that if there were finite binary sequences which
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in F can be shown to be of state complexity greater than n, then there
would be a (blog2 nc+1+cF )-state 3-tape-symbol Turing machine that
computes a finite binary sequence S satisfying L(S) > n. In other
words, we would have

n < L(S) ≤ blog2 nc+ 1 + cF

which implies
n < blog2 nc+ 1 + cF .

As this is impossible for

n ≥ L(F ) ≈ cF + log2 cF ,

we conclude that L(S) > n can be proved in F only if n < L(F ).
Q.E.D.1

Why does this resemble Berry’s paradox of “the least natural num-
ber not nameable in fewer than 10000000 characters”? Because it may
be paraphrased as follows. “The finite binary sequence S with the first
proof that S cannot be described by a Turing machine with n states or
less” is a (log2 n + cF )-state description of S.

As a final comment, it should be mentioned that an incomplete-
ness theorem may also be obtained by considering the time complexity
of infinite computations, instead of the descriptive complexity of fi-
nite computations. But this is much less interesting, as the resulting
proof is, essentially, just one of the classical proofs resembling Richard’s
paradox, and requires that ω-consistency be hypothesized.
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