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History of Type Theory

Initial ideas due to Bertrand Russell in early 1900’s, to create a
foundation for mathematics that avoids Russell’s paradox.

Studied by many logicians and later computer scientists,
particularly Church, whose λ-calculus (1930’s and 40’s) is a type
theory.

In 1972, Per Martin-Löf extended type theory to include dependent
types. It is this form of type theory that we will focus on.
One of the key features is that it unifies set theory and logic!

In 2006, Awodey and Warren, and Voevodsky, discovered that type
theory has homotopical models. Understanding this interpretation
will be the goal of the overall seminar, but not of this talk.

2012–2013: a special year at the IAS, which led to a book.

Last week: $7.5M Dept of Defense grant for a group led by Awodey.



Type theory as set theory: Notation

Type theory studies things called types, which can be thought of as
sets. The analog of elements of a set are called terms.

We write a : A to indicate that a is a term of type A.

And we write A : Type to indicate that A is a type.

A judgement is a string of symbols that may or may not be
provable from the rules of type theory. A judgement always
contains the turnstile symbol ` , separating context from the
conclusion.

Examples (using things we haven’t defined yet):

` 0 : N
x : N, y : N ` x+ y : N

f : R→ R, x : R ` f(x) : R



Type theory as set theory: more judgements

Judgements can also involve asserting that something is a type.

Examples:
` N : Type

A : Type, B : Type ` A×B : Type

A : Type, B : Type ` A→ B : Type

The last one says that if A and B are types, then there is a type
written A→ B (thought of as BA).

Finally, judgements can assert that terms are judgementally equal,
roughly, “equal by definition”. Examples:

a : A ` a ≡ a : A

` (λx.2 + x)(3) ≡ 2 + 3 : N

(Here λx.2 + x denotes the function x 7→ 2 + x in N→ N.)



Constructing types: the empty type

Now we begin introducing the “rules of the game”, which say which
judgements we can derive.

We begin by introducing the empty type:

` ∅ : Type

Now we can prove our first theorem, namely ` ∅ : Type!

We also have a (weak) universal property:

Γ ` p : ∅ Γ ` C : Type

Γ ` abort(p) : C

Intuitively, for any type C, there is a function ϕ : ∅→ C, and so
for any element p of ∅, ϕ(p) is a well-defined element of C.



The unit type

Next, the unit type, analogous to a set with one element:

` unit : Type ` tt : unit

Γ ` C : Type Γ ` c : C Γ ` p : unit

Γ ` triv(p, c) : C

The last rule above is a (weak) universal property.

There is also a computation rule:

Γ ` C : Type Γ ` c : C

Γ ` triv(tt, c) ≡ c : C

This is the first appearance of ≡.



Products

Product types are asserted to exist:

Γ ` A : Type Γ ` B : Type

Γ ` A×B : Type
Γ ` a : A Γ ` b : B

Γ ` (a, b) : A×B

Γ ` C : Type Γ ` p : A×B Γ, x : A, y : B ` c : C

Γ ` unpack(p, c) : C

Γ ` C : Type Γ ` a : A Γ ` b : B Γ, x : A, y : B ` c : C

Γ ` unpack((a, b), c) ≡ c[a/x, b/y] : C

Note that there are again four rules playing similar roles: type
constructor, term constructor, eliminator and computation rule.



Aside: Projections

We interrupt our list of the rules to show how we can use unpack

to define the projections. Our context will be

Γ :≡ A : Type, B : Type, p : A×B.

Then:

Γ ` A : Type Γ ` p : A×B Γ, x : A, y : B ` x : A

Γ ` unpack(p, x) : A

Here A plays the role of C as well.

To show that defining p1 to be unpack(p, x) is reasonable, we use
the computation rule to prove

a : A, b : B ` unpack((a, b), x) ≡ a

One can define p2 similarly.



Sums

Next we define sums, which are like disjoint unions or coproducts:

Γ ` A : Type Γ ` B : Type

Γ ` A+B : Type

Γ ` a : A Γ ` B : Type

Γ ` inl(a) : A+B

Γ ` A : Type Γ ` b : B

Γ ` inr(b) : A+B

Γ ` C : Type Γ ` p : A+B Γ, x : A ` cA : C Γ, y : B ` cB : C

Γ ` case(p, cA, cB) : C

Γ ` C : Type Γ ` a : A Γ, x : A ` cA : C Γ, y : B ` cB : C

Γ ` case(inl(a), cA, cB) ≡ cA[a/x] : C

The notation cA[a/x] means that in the expression cA, all free x’s
have been replaced by a’s. There is also an analogous computation
rule for inr.



Aside: Intuition and example

Intuitively, the rules for sums give the usual (weak) universal
property:
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Also, now we are able to construct some larger types, such as

F :≡ (unit + unit)× (unit + unit),

which has terms

tll :≡ (inl(tt), inl(tt)), tlr :≡ (inl(tt), inr(tt)),

trl :≡ (inr(tt), inl(tt)), trr :≡ (inr(tt), inr(tt)).

Then case(p, tll, tlr) defines an element of F that depends on an
element p : unit + unit.



Functions

Function types are also a primitive notion:

Γ ` A : Type Γ ` B : Type

Γ ` A→ B : Type

Γ, x : A ` b : B

Γ ` λx.b : A→ B

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B

Γ, x : A ` b : B Γ ` a : A

Γ ` (λx.b)(a) ≡ b[a/x] : B

Recall that λx.b should be thought of as the function x 7→ b.

Note that f : A→ B means that f is a term whose type is A→ B,
and that this matches usual mathematical notation.



Aside: Example

We saw above that p : unit + unit ` case(p, tll, tlr) : F , where
F :≡ (unit + unit)× (unit + unit).

Thus we get a term

λp.case(p, tll, tlr) : unit + unit→ F

which we think of as a function from a two element set to a four
element set.

Writing f for this function, we know that

f(inl(tt)) ≡ tll and f(inr(tt)) ≡ tlr.



Functions with multiple arguments

Intuitively, a function A×B → C with two arguments can be
thought of as a function A→ CB. This is called currying.

The latter is more convenient in type theory, so we will often
consider types such as A→ B → C, which is parsed as
A→ (B → C).

For g : A→ B → C, we still write g(a, b) for g(a)(b).

As an example, one can see that

λf.λg.λa.g(f(a)) : (A→ B)→ (B → C)→ (A→ C)

defines a function which composes two given functions.

We will see another example in a moment.



The natural number type N
Intuition: If C is a set, c0 ∈ C is an element and g : N×C → C is a
function, then there is a function f : N→ C such that

f(0) = c0 and f(n+ 1) = g(n, f(n)).

Formally:

` N : Type ` 0 : N
Γ ` n : N

Γ ` succ(n) : N

Γ ` C : Type Γ ` c0 : C Γ, m : N, c : C ` cs : C Γ ` n : N
Γ ` ind(c0, cs, n) : C

Γ ` C : Type Γ ` c0 : C Γ, m : N, c : C ` cs : C

Γ ` ind(c0, cs, 0) ≡ c0 : C

Γ ` C : Type Γ ` c0 : C Γ, m : N, c : C ` cs : C Γ ` n : N
Γ ` ind(c0, cs, succ(n)) ≡ cs[n/m, ind(c0, cs, n)/c] : C



Recursion

Combining the above rules with the rules for function types, we see
that in the appropriate context we can get a function

f :≡ λn.ind(c0, cs, n) : N→ C

If we write g :≡ λm.λc.cs : N→ C → C, then we have

f(0) ≡ c0 and f(succ(n)) ≡ g(n, f(n))

as expected.



Example

Let’s construct the function N→ N that doubles its input.

We want

double(0) = 0 and double(succ(n)) = succ(succ(double(n))).

Here’s the proof that such a function exists:

` N : Type ` 0 : N

m : N, c : N ` c : N
m : N, c : N ` succ(c) : N

m : N, c : N ` succ(succ(c)) : N n : N ` n : N
n : N ` ind(0, succ(succ(c)), n) : N
λn.ind(0, succ(succ(c)), n) : N→ N

So we define double :≡ λn.ind(0, succ(succ(c)), n) : N→ N.



Addition

We can also use recursion to define addition on N, by taking C to
be the type N→ N.

We let c0 :≡ λn.n : N→ N, the identity function, thought of as
n 7→ 0 + n.

For m : N and c : N→ N, we let cs :≡ λn.succ(c(n)) : N→ N.
Intuitively, if c is n 7→ m+ n, then cs is n 7→ 1 +m+ n.

Now we define add : N→ N→ N to be λm.λn.ind(c0, cs,m)(n).

We abbreviate add(m,n) as m+ n.



Coq

There are more rules of type theory, but let’s delay talking about
them for now.

Instead, I’d like to illustrate how what we know so far works in
Coq, a proof assistant based on type theory.

Coq was named after Thierry Coquand, and means “rooster” in
French. It also alludes to “Coc”, the “calculus of constructions”.

Unfortunately, much of the notation is different from what we’ve
described, but the ideas are very similar.



Dependent types and products

One of the key ideas in Martin-Löf type theory is that of dependent
types.

Examples:
A : Type, B : Type ` A→ B : Type

a : A, B : A→ Type ` B(a) : Type

Note that we are thinking of Type as being a type itself, and we
could use recursion to define a function B : N→ Type that sends n
to N× · · · × N (n factors).

Thinking of a dependent type B : A→ Type as a family of sets
indexed by an indexing set, we assert that the product exists.

A term of
∏
x:A

B(x) should be thought of as a function f sending

each x : A to an f(x) : B(x). Notice that both the value of f(x)
and the type of f(x) depend on x.



Dependent Products

Γ ` A : Type Γ, x : A ` B : Type

Γ `
∏
x:A

B : Type

Γ, x : A ` b : B

Γ ` λx.b :
∏
x:A

B

Γ ` f :
∏
x:A

B Γ ` a : A

Γ ` f(a) : B[a/x]

Γ, x : A ` b : B Γ ` a : A

Γ ` (λx.b)(a) ≡ b[a/x]



Functions

Γ ` A : Type Γ, ` B : Type

Γ ` A→ B : Type

Γ, x : A ` b : B

Γ ` λx.b : A→ B

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B

Γ, x : A ` b : B Γ ` a : A

Γ ` (λx.b)(a) ≡ b[a/x]



Dependent Sums

Γ ` A : Type Γ, x : A ` B : Type

Γ `
∑
x:A

B : Type

Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) :
∑
x:A

B

Γ ` C : Type Γ ` p :
∑
x:A

B Γ, x : A, y : B ` c : C

Γ ` unpack(p, c) : C

Γ ` C : Type Γ ` a : A Γ ` b : B[a/x] Γ, x : A, y : B ` c : C

Γ ` unpack((a, b), c) ≡ c : C

What’s the non-dependent special case of this? A×B!



What’s left?

We’ve now covered almost all of the rules of type theory, with the
exception of:

Some structural rules, which are fairly obvious.

Identity types, which are subtle and which will be discussed in a
future lecture.

Differences from ordinary set theory: No intersections,
unions, or subsets. Every term has exactly one type.

Nevertheless, with this foundation, all of the usual constructions of
mathematics can be done. For example, one can construct the real
numbers and do analysis.



Type theory as logic

Instead of thinking of types as sets, we can think of them as
propositions.

And we interpret q : Q to mean that Q is true. More generally, a
judgement

x1 : P1, . . . , xn : Pn ` q : Q

is interpreted as saying that if P1, . . . , Pn are true, then Q is true.

Remarkably, the laws we have given are exactly what is needed to
do predicate logic!



Conjunction

For example, the product P ×Q is inhabited if and only if both P
and Q are, so it is reasonable to interpret the product P ×Q as
“P and Q”. The rules

Γ ` P : Type Γ ` Q : Type

Γ ` P ×Q : Type

Γ ` a : P Γ ` b : Q

Γ ` (a, b) : P ×Q

Γ ` R : Type Γ ` p : P ×Q Γ, x : P, y : Q ` c : R

Γ ` unpack(p, c) : R

tell us that we can construct products; that if P and Q are true, so
is P ×Q; and that if P ×Q is true and P and Q implies R, then R
is true.

The last rule gave us projection maps P ×Q→ P and P ×Q→ Q,
which show that if P ×Q is true, then both of P and Q are true.



Disjunction, implication, etc

Similarly, the other rules match standard logical constructions:

Types ←→ Propositions

P ×Q ←→ P and Q

P +Q ←→ P or Q

P → Q ←→ P implies Q

∅ ←→ false

unit ←→ true∏
x:A

P (x) ←→ ∀xP (x)∑
x:A

P (x) ←→ ∃xP (x)

This is called the Curry-Howard correspondence.
Note that there are three kinds of implication in type theory.



Induction

The rules for N, when slightly generalized to replace C : Type with
a dependent type, give exactly the usual rule for proof by induction:

Γ, m : N ` C : Type

Γ ` c0 : C[0/m]
Γ ` n : N

Γ, m : N, c : C ` cs : C[succ(m)/m]

Γ ` ind(c0, cs, n) : C[n/m]

If C(0) is true and C(m) implies C(m+ 1), then C(n) is true for
each n.



Example of a proof

Theorem. For any P and Q, P → (Q→ P ).

Proof. Assume P . We need to prove Q→ P . So assume Q.
P follows by assumption.

Formally:

p : P ` p : P

p : P, q : Q ` p : P

p : P ` λq.p : Q→ P

` λp.λq.p : P → (Q→ P )

(All lines should start with the context P : Type, Q : Type.)

Show this and other examples in Coq.

Many non-trivial theorems have been formalized, including
π1(S

1) ∼= Z (2013), the four color theorem (2004), and the
Feit-Thompson theorem (2012), all in Coq.
A C compiler has been written in Coq and proved correct.



Type theory versus ZFC

The usual foundation for mathematics is Zermelo-Fraenkel set
theory, a system of axioms expressed in first order logic.

This is very different from type theory, in which the logic and the
set theory are at exactly the same level.

Benefits of type theory

Type checking of expressions is computable (as we saw in
Coq). In other words, proofs can be checked, even when the
detailed steps aren’t given.

Judgemental equality of terms is computable. In fact, you can
just apply simplification rules in any order and you are
guaranteed to reach a canonical form.

From this, you can prove that type theory is consistent!

From type theory proofs, you can automatically extract
algorithms.



Intuitionistic logic

The logic we’ve just described is intuitionistic or constructive by
default. You can’t prove the law of excluded middle “P or not P”
(i.e., show that P + (P → ∅) is inhabited) from the rules we have.

This is another benefit. It means that the theorems you prove are
true in more models. In particular, they are true in topoi and in
homotopical situations.

And if you want to use LEM, you can simply assume it as an axiom.

Surprisingly, the most natural form of the axiom of choice is a
tautology in type theory! But there are other versions that can be
assumed as an axiom when needed.

Moreover, Voevodsky’s “Univalence” axiom does hold in
homotopical situations, and can often be used in place of LEM and
AC. When this axiom is assumed, then one speaks of “homotopy
type theory”.



Possible topics for future talks

Identity types

Univalence

Homotopy type theory

π1(S
1) ∼= Z

Models of (homotopy) type theory, completeness

Doing mathematics in type theory: category theory, set theory,
analysis

More about Coq



References

The Homotopy Type Theory book produced by the Univalent
Foundations Program at the IAS is freely available and is an
excellent source.

To get started, I found it very helpful to read the slides from Mike
Shulman’s series of seven lectures in a seminar at UCSD. In
particular, this lecture was heavily influenced by the second lecture
of that series.

The Coq homework exercises for that lecture were a transforming
experience.

Thanks for listening!


