
FEASIBLY CONSTRUCTIVE PROOFS AND
THE PROPOSITIONAL CALCULUS

Preliminary Version

Stephen A. Cook
University of Toronto

i. Introduction

The motivation for this work comes
from two general sources. The first
source is the basic open question in com-
plexity theory of whether P equals NP (see
[I] and /2]). Our approach is to try to
show they are not equal, by trying to show
that the set of tautologies is not in NP
(of course its complement is in NP). This
is equivalent to showing t~-at no proof
system (in the general sense defined in
[3]) for the tautologies is "super" in the
sense that there is a short proof for
every tautology. Extended resolution is
an example of a powerful proof system for
tautologies that can simulate most stan-
dard proof systems (see [3]). The Main
Theorem (5.5) in this paper describes the
power of extended resolution in a way that
may provide a handle for showing it is not
super.

The second motivation comes from con-
structive mathematics. A constructive
proof of, say, a statement VxA must pro-
vide an effective means of finding a proof
of A for each value of x, but nothing is
said about how long this proof is as a
function of x. If the function is
exponential or super exponential, then for
short values of x the length of the proof
of the instance of A may exceed the number
of electrons in the universe. Thus one
can question the sense in which our origi-
nal "constructive" proof provides a method
of verifying VxA for such values of x.
Parikh E4] makes similar points, and goes
on to suggest an "anthropomorphic" formal
system for number theory in which induction
can only be applied to formulas with
bounded quantifiers. But e~en a quantifier
bounded by n may require time exponential
in the length of (the decimal notation
for) n to check all possible values of the
quantified variable (unless P = NP), so
Parikh's system is apparently still not
feasibly constructive.

In section 2, I introduce the system
PV for number theory, and it is this
system which I suggest properly formalizes
the notion of a feasibly constructive
proof. The formulas in PV are equations

t = u, (for example, x-(y+z) = x.y + x.z)
where t and u are terms built from vari-
ables, constants, and function symbols
ranging over L, the class of functions com-
putable in time bounded by a polynomial in
the length of their arguments. The system
PV is the analog for L of the quantifier-
free theory of primitive rec~rsive arithme-
tic developed by Skolem [5] and formalized
by others (see [6]). A result necessary
for the construction of the system is
Cobham's theorem [7] which characterizes L
as the least class of functions containing
certain initial functions, and closed under
substitution and limited recursion on nota-
tion (see section 2). Thus all the func-
tions in L (except the initial functions)
can be introduced by a sequence of defining
equations. The axioms of PV are these
defining equations, and the rules of PV are
the usual rules for equality, together with
"induction on notation".

All proofs in PV are feasibly cons-
tructive in the following sense. Suppose
an identity, say f(x) = g(x), has a proof
in PV. Then there is a polynomial p~(n)

such that ~ provides a uniform method of
verifying within p~(Ix01) steps that a

given natural number x 0 satisfies

f(x0) = g(x0). If such a uniform method

exists, I will say the equation is
polynomially verifiable (or p-verifiable).

The reader's first reaction might be
that if both fang g are in L, then there
is always a polynomial p(n) so that the
time required to evaluate them at x 0 is

bounded by p(Ix 01), and if f(x) = g(x) is a

true identity, then it should be p-
verifiable. The point is that the verifi-
cation method must be uniform, in the sense
that one can see (by the proof 9) that the
verification will always succeed. Not all
true identities are provable, so not all
are p-verifiable.

There is a similar situation in cons-
tructive (or intuitionistic) number theory.
The Kleene-Nelson theorem (E8], p. 504)
states that if a formula VxA has a

83

constructive proof, then it is recursively
realizable in the sense that there is a
recursive function f which takes x 0 into a

proof of A? (more properly, f(x0) is a

number which "realizes" A"O). The con-
X

verse is false. One can find a formula
VxA which is recursively realizable, but
not constructively provable, since one
cannot prove that the realizing recursive
function works. Similarly, any true equa-
tion f(x) = g(x) in PV is recursively
realizable (in fact, L-realizable), but
not all are p-verifiable (i.e. have
feasibly constructive proofs).

I argue in section 2 that provable
equations in PV are p-verifiable. I also
conjecture the converse is true, which
leads to

I.i Verifiability thesis. An equation
t = u of PV is prova--~n PV if and only
if it is p-verifiable.

This statement is similar to Church's
thesis, in that one can never prove that
PV is powerful enough, since the notion of
p-verifiable is informally defined. We
present evidence for the power of PV in
this paper by giving examples of things
that are provable in PV, and by presenting
the system PVI in section 3 which appears
to be more powerful than PV, but isn't.

Another argument for the power of PV
that can be made is this. There is
evidence that intuitionistic number theory,
as formalized by Kleene [8]., is equivalent
to a quantifier-free theory in which func-
tions are introduced by ordinal recursion
up to c O . From this point of view, PV is

the same kind of quantifier-free theory,
except the kind of recursion allowed is
restricted so that only functions in L can
be defined.

In section 2, the system PV is des-
cribed in detail, and some simple examples
of proofs in the system are given. The
Valuation Theorem (2.18) states that all
true equations in PV without variables are
provable in PV.

In section 3, the system PVI is pre-
sented. This system allows formulas to be
truth functional combinations of equations,
instead of just equations, and is much
more convenient than PV for formalizing
proofs. Nevertheless, theorem 3.10 states
that any equation provable in PVI is
provable in PV.

The second GSdel Incompleteness theo-
rem for PV, stating that the consistency
of PV cannot be proved in PV, is proved in
outline in section 4. I am aware of only
one other treatment in the literature of
this theorem for a free-variable system,
and that is in [9]. (However, there seems

to be a mistake in [9], since theorem 16,
p. 134 fails when f(s(x)) is neither iden-
tically zero nor identically non-zero.)

In section 5, the proof system
extended resolution is described, and the
notion of a p-verifiable proof system for
the propositional calculus is defined. The
Main Theorem (5.5) states that a proof
system f for the propositional calculus is
p-verifiable iff extended resolution can
simulate f efficiently, and the proof that
the simulation works can be formalized in
PV. The "if" part is proved in outline.

Section 6 describes how to develop
propositional formulas which express the
truth of equations t = u of PV for bounded
values of the variables in t and u. The ER
Simulation Theorem (6.8) states that if
t = u is provable in PV, then there is a
polynomial (in the length of the bound on
the variables) bound on the length of the
minimal extended resolution proofs of the
associated propositional formulas. The
"only if" part of the Main Theorem is then
proved in outline from this.

In section 7, it is shown how the
GSdel Incompleteness theorem implies that
the system PV, as a proof system for the
propositional calculus, is not itself
p-verifiable.

Finally, section 8 offers some conclu-
sions and directions for future research.

2. The System PV

I will use dyadic notation (see
Smullyan [i0]) to denote natural numbers. %
The dyadic notation for the natural number
n is the unique string dkdk_l...d O over the

k "2 i
alphabet {1,2} such that ~ d = n. In

i= 0 1
particular, the dyadic notation for 0 is
the empty string. The dyadic successor
functions s ICx) and s 2(x) are defined by

si(x) : 2x + i, i = 1,2, and correspond to

concatenating the digits 1 and 2, respec-
tively, on the right end of the dyadic
notation for x. I shall thus abbreviate
s i (x) by xi.

A function f comes from functions
gl,...,g m by the operation of substitution

iff some equation of the form

2.1 f(x I x n) = t

holds for all Xl,...,Xn, where t is a

The trouble with the more conventional
binary notation is the necessity of proving
the consistency of the analogs of equations
2.2 and 2.3 when x = i = 0.

84

syntactically correct term built up from
the variables Xl,...,Xn, numerals for the

natural numbers, and the function symbols

gl,...,gm.

A function f comes from functions
g,hl,h2,kl,k 2 by the operation of limited

recursion on dyadic notation iff

2 .2 f (O , F) = g(y)

2 . 3 f (x i , ~) = h i (x , ~ , f (x , ~)) , i = 1 , 2

2.4 f(x,~) ~ ki(x,[), i = 1,2

for all natural number values of the vari-
ables, where ~ = (yl,...,yk). We allow

the case k = 0, in which g is a constant.

Cobham's class L can be defined to be
the set of functions f on the natural num-
bers such that for some Turing machine Z
and some polynomial p, for all natural
numbers Xl,...,Xn, Z computes f(xl,...,Xn)

within p(IxlI+...+IXnl) steps, where Ix)

is the length of the dyadic notation for
X.

2.5 Definition. The dyadic notation for
®(x,y) is the dyadic notation for x conca-
tenated with itself IYl times.

2.6 Theorem (Cobham). L is the least
class o-~ctions which includes the
initial functions Sl, s2, and ~, and which

is closed under the operations of substi-
tution and limited recursion on dyadic
notation.

Cobham stated this result in [7], in
a slightly different form. I am not aware
of any published proof of the theorem,
although Lascar gave a proof in some
unpublished seminar notes [II].

The formal system PV will have func-
tion symbols with defining equations of
the forms 2.1, 2.2, and 2.3. I want only
functions in L to be definable in PV,
which means the inequalities 2.4 must be
satisfied for some functions kl,k 2 in L.

It is not hard to see that the question,
given g,hl,h2,kl,k2, of whether the func-

tion f defined by 2.2 and 2.3 satisfies
2.4 is recursively undecidable. I want,
however, for the proof predicate in PV to
be not only decidable, but definable in
PV. Therefore, I shall require that
before a function f can be introduced by
2.2 and 2.3, a proof must be available in
PV that f does not grow too fast. It is
awkward to require that 2.4 be proved
directly in PV, because it obviously can-
not be proved without using f, whose
status in PV is uncertain until after the
proof is carried out. Thus the proof will
instead verify the inequality

I h i (x , ~ , z) l ~ I z ~ k i (x , 7) l , i = 1,2

f o r some p r e v i o u s l y d e f i n e d f u n c t i o n s k 1

a n d k 2 (n o t t h o s e i n 2 . 4) , w h e r e ~ i n d i -

c a t e s c o n c a t e n a t i o n . I t i s e a s y t o s e e
that this inequality guarantees that f is
in L if k I and k 2 are in L, since then

ff(x,7)l ~ Ig(F)l +~ Ik(o,F) l + Ik(dl,F) f +

... + Ik(dl...dk,[) I where dl...dk+ 1 is the

dyadic notation for x and k(x,~) = kl(X,~)

+ k 2 (x , F) •

In order to specify formally what con-
stitutes a proof of this inequality, we
must introduce enough initial functions in
PV to define the relation Ixl ~ IYl. Thus
we introduce a function TR(x) (TR for
"trim") which deletes the right-most digit
of x. From this, a function LESS(x,y) can
be defined whose value is x with the right-
most IYJ digits deleted. Thus Ix I IzT
iff LESS(x,y) = 0. In addition, we need *
(concatenation) as an initial function, and
also ® (see 2.5). The purpose of ® is to
allow formation of functions in PV by com-
position which grow sufficiently fast to
dominate any function in L.

Function symbols in PV will be defined
later to be certain strings of symbols
which encode the complete derivation from
initial functions of the function they
stand for. In particular, the defining
equation(s) and number of arguments (arity)
for a function symbol can be determined by
inspection from the symbol.

The set of terms of PV is defined
Inductlvely as fol---~s. (i) 0 is a term,
any variable x is a term, and any function
symbol f of arity 0 is a term. (ii) If
tl,~..,t k are terms, and f is a function

symbol of arity k ~ i, then f(tl,...,tk) is

a term. An equation is a string of the
form t = u, where t and u are terms. A
derivation in PV of an equation E from
equations EI,...,E n is a string of equa-

tions of the form DI,...,Dz, such that D~

is E, and each Di, l~i~, is either some

Ei, a defining equation for a function
J

symbol, or follows from earlier equations
in the string by a rule of PV (see below).
If such a derivation exists, we shall write
EI'''''En ~PV E, or simply ~PV E, if there

are no hypotheses (the symbol PV here will
sometimes be deleted). A derivation of E
from no hypotheses is a proof of E.

RULES OF PV

(Here t,u,v are any terms, x is a variable,
and y is a k-tuple of variables, k_>0.)

RI. t=u ~- u=t

8S

R2. t=u, u=v ~ t=v

R3. tl=Ul,...,tk=U k ~ f(tl,...,tk) =

f(u I u k) ,
for any k-place function symbol f,
kml.

R4 t= u ~ tv v
• X ~ U~,

V
where ~ indicates substitution of the

term v for the variable x.

R5. (Induction on notation) EI,...,E 6

fl(x'~) = f2(x'~),
where E 1 , . . . , E 6 a r e t h e e q u a t i o n s 2 .2

and 2 . 3 w i t h f r e p l a c e d by f l and by

f2"

The d e f i n i t i o n o f p r o o f i s n o t y e t
c o m p l e t e , b e c a u s e t h e n o t i o n o f f u n c t i o n
symbo l (and h e n c e o f t e r m and e q u a t i o n)
and a s s o c i a t e d d e f i n i n g e q u a t i o n s ha s n o t
y e t b e e n s p e c i f i e d . T h e s e n o t i o n s m u s t
a c t u a l l y be d e f i n e d i n d u c t i v e l y s i m u l -
t a n e o u s l y w i t h t h e d e f i n i t i o n o f p r o o f ,
b e c a u s e o f o u r r e q u i r e m e n t t h a t t h e
b o u n d e d n e s s o f f u n c t i o n s be p r o v e d i n PV.
The a r i t y o f a f u n c t i o n s y m b o l i s t h e num-
b e r o f a r g u m e n t s , and t h e o r d e r o f t h e
symbo l i s r o u g h l y t h e d e p t h o f n e s t i n g o f
r e c u r s i o n on n o t a t i o n u s e d to d e f i n e i t .
We d e f i n e t h e o r d e r o f a p r o o f t o be t h e
g r e a t e s t o f t h e o ~ e r s o f t h e f u n c t i o n
s y m b o l s o c c u r r i n g i n i t . Now we c a n com-
p l e t e t h e d e f i n i t i o n s o f a l l t h e s e n o t i o n s
s i m u l t a n e o u s l y and r e c u r s i v e l y as f o l l o w s :

The initial function symbols all have
order 0. T-~e are the symbol 0 (of arity
0), Sl,S2,TR (each of arity i) and *,~,

LESS (each of arity 2). There are no
defining equations for 0, s I and s2, and

the defining equations for the others are
(here xl means Sl(X), x 2 means s2(x)):

TR: TR(0) = 0
T R (x i) = x , i = 1 ,2

®:

*(x,0) = x

(x,yi) = si((x,y)) ,

®(x,0) = 0

®(x,yi) = *(X,®(x,y)),

i = 1,2

i = 1,2

LESS: LESS (x, 0) = x
LESS(x,yi) = TR(LESS(x,y)),

i = 1,2

Note: We use infix notation for * and ®
after this.

It t is a term, and k is the maximum
of the orders of the function symbols
occurring in t, and all variables in t are
among the variables Xl,...,Xn, n~0, then

~Xl...Xnt0 is a function symbol of arity n

and order k. The defining equation is
f(xl,...,Xn) = t, if n ~ i, and f = t, if

n = 0, where f is ~Xl...Xnt p.

If g,hl,h2,kl,k 2 are function symbols

of arity n-l, n+l, n+l, n, and n, respec-
tively, (n~l) and if k is the maximum of
the orders of the five function symbols,
and if Ei, i=1,2 are proofs of order k or

less of gESS(hi(x,~,z),z*ki(x,~)) = 0,

i=1,2, then <[g,hl,h2,kl,k2][~l][H2]> is a

function symbol of arity n and order k+l.
If f denotes this function symbol, then the
three defining equations for f are

f(0,y) = g(~) (or f(0) = g, if n = I)

f(xi,~) = hi(x,~,f(x,~)) , i = 1,2

All function symbols must be formed in
• these ways. This completes the formal
specification of the system PV.

As examples of proofs on PV, let us
verify some simple properties of LESS or
TR.

2.7 ~-PV TR(LESS(xi,y)) = LESS(x,y),

i = 1,2

The strategy is to use R5 (induction
on notation). To do this we introduce a
new function symbol f (formally, f is
XxyTR(LESS(yi,x))p) with defining equation
f(x,y) = TR(LESS(yi,x)). Also a function
symbol LESS' is introduced with defining
equation LESS'(x,y) = LESS(y,x). Now the
hypotheses of the induction rule can be
verified, when fl is f and f2 is LESS', and

g(y) = y, and hj (x,y,z) = TR(z); j=l,2.

Hence f(x,y) = LESS'(x,y), from which 2.7
follows by RI, R2, and R4, and the defining
equations for f and LESS'

2.8 ~PV LESS(x,x) = 0

This is shown by induction on x, using
2.7 with y replaced by x.

2.9 ~PV LESS(x,yi*z) = TR(LESS(x,y*z)),

i = 1,2

This is proved by induction on z.
Here hj(x,y,z,u) = TR(u).

2.10 ~PV LESS(x,y*z) = LESS(x,z*y)

Again this is proved by induction on
y, using 2.9, and the same function h.

J
above.

2.11

2.8.

~PV LESS(x,x*y) = 0

The proof is induction on y, using

86

The intended semantics of PV should
be clear. Every function symbol f stands
for a uniquely defined function in L,
which we can denote by ¢(f). (The reader
can give a precise definition of O(f) by
induction on the length of the function
symbol f.) An equation t = u in PV is
true iff its universal closure is true in
the domain of natural numbers, when all
function symbols receive their standard
interpretations.

We say a function F on the natural
numbers is definable in PV iff ~(f) = F
for some function symbol f of PV. By
Cobham's theorem, every function definable
in PV is clearly in L, but the converse is
far from obvious, because of our require-
ment that the bounding inequalities be
provable in PV. Nevertheless, the converse
is true.

2.12 Theorem. Every function in L is
definable in PV.

To prove this requires a reproving of
half of Cobham's theorem, showing that the
functions introduced by limited recursion
on notation can have their bounding
inequalities proved in PV. We will not
give the argument here.

Below we introduce two functions in
PV which we will use in the next section.
The defining equations given do not
strictly fit the format for recursion on
notation, since the function symbols
g,hl,h2,kl,k2 would have to be introduced

explicitly. However, the reader should
have no trouble doing this.

Note: s I(0) is abbreviated by i, and

s2(0) is abbreviated by 2.

2.13 sg(O) = 1

sg(xi) = 0, i = 1,2

2.14 sg(O) = o

sg(xi) = i, i = 1,2

2.15 CON(O,y) = 0

CON(xi,y) = sg(y)

The bounding inequalities for the
above three functions are easily proved in
PV from the defining equations for LESS
and TR.

We now wish to argue in support of
one part of the Verifiability Thesis (i.I),
namely that only p-verifiable equations
are provable in PV. Our argument includes
an outline of a highly constructive consis-
tency proof for PV, and it could be forma-
lized in, say, primitive recursive number
theory, to show there is no proof in PV of
0 = I. An indication of how a similar
argument showing the consistency of elemen-
tary arithmetic (in the sense of Kalmar)

could be carried out in primitive recursive
arithmetic was given in Rose [12].

2.16 Proposition. If ~PV t = u, then the

equation t = u is p-verifiable.

2.17 Corollary. Not ~PV 0 = i.

Our argument for establishing 2.16
proceeds by induction on the length of the
proof of t = u (here length counts the
length of the function sym-~ols in the
proof). Thus suppose ~ ~ i, and the propo-
sition holds for all proofs of length < ~.
Let H be a proof of t = u of length ~. If
t = u is a defining equation for a function
symbol f, then the equation holds by
definition of f. However, the time required
to verify the equation for a particular
value of the arguments is equal to the time
to compute f at that value, so we must be
sure that this computation time is bounded
by a polynomial in the length of the argu-
ments. Here we apply the induction hypo-
thesis, both to be sure that f does not
grow too fast (we know this partly because
if f is defined by recursion, then there
are proofs of length less than Z estab-
lishing a bound on the growth rate) and
that all functions used in defining f can
be computed in polynomial time.

Now suppose t = u follows from earlier
equations in H by one of the rules RI,...,
R5.

We will consider R4 as an interesting
example. Thus (changing the roles of t and
u to be consistent with the notation of R4)
we assume by the induction-hypothesis that
t = u is p-verifiable, and also that the
equations defining the functions in the
term v give a polynomial time method of

evaluating v. Thus to verify t~ = u~ for
' X X

particular values for the arguments, we
first evaluate v at the argument values,
obtaining v0, and then (using'the induction

hypothesis) verify t = u at these argument
values except we let x have the value v 0.

Note that, by the induction hypothesis, we
are confident that the equation will hold
at the values. Further, since a composi-
tion of polynomials is a polynomial, the
whole process is bounded in time by a poly-
nomial in the length of the arguments.

We leave the other rules to the
reader.

Notice that nothing is said about how
the verification time grows with the length
of the proof E. In fact, it is easy to see
that the naive bound on this time is at
least exponential in the length of E for
fixed argument values, and we will prove in
section 7 that PV itself is, in a sense,
not p-verifiable.

87

The final result in this section is
the following:

2.18 Valuation Theorem. If t = u is a
true equation of--~hout variables,
then ~PV t = u.

2.19 Definition. The numeral n for the
natural number n is the unique term in PV
of the form Sil(Si2(...Sik(0)...) whose

value is n. In particular, the numeral
for 0 is '0'.

2.20 Lemma. Every true equation in PV of

the form f(nl ~k) = ~ is provable in

PV.

First let us note that the valuation
theorem follows from the lemma. One shows
by induction on the length of t (using the
lemma) that if t = n is a true equation,
then it is provable in PV (rules RI,R2,R3
are all that is needed for this). But
t = n, u = n ~PV t = u.

The lemma is proved by induction on
the length of the function symbol f, where
we take the lengths of s I and s 2 to be 0,

and the lengths of TR, *, ®, and LESS to
be I, 2, 3, and 4, respectively. If f is
s I or s2, then our task is to show

~PV ~ = ~" But the identity function has

defining equation I(x) = x, from which we
may conclude x = x by R1 and R2, and m =
by R4.

Now suppose f is IXl...XntP for some

term t. Then the defining equation for f
is f(x I x n) = t. If f(nl nk) = ~

~l ~k
i s t r u e , t h e n t = ~ i s t r u e .

x I , • . . ,x k
Since the induction hypothesis applies to
each function symbol in t, the argument
made two paragraphs above can be applied
to show this last equation is provable in
PV. Hence, by R4 and R2, ~PV f(nl 'nk)

Finally, suppose f is introduced by
recursion on notation, so that it has
defining equations 2.2 and 2.3. (I intend
to include the initial functions TR, *, ®,
and LESS in this case too.) Then one can
see by induction on p that if f(P'nl'''''

nk) = m is true, it is provable in PV.

(Notice that the main induction hypothesis
holds for the function symbols g,hl,h2.)

3. The System PVI

The goal now is to construct a system
PVI in which it is easier to formalize
proofs than in PV, and then show that
every equation provable in PVI is provable
in PV, and conversely.

As a first step, we notice that it is
often easier to define a function by simul-
taneous recursion on several variables at
once, rather than on just one variable, as
in 2.2 and 2.3. For example, addition is
easily defined this way as follows:

X + 0 = 0 + X = X

£(x+y) 2 if i = j = I
xi + yj = {(s(x+y))l if i ~ j

<(s(x+y))2 if i j = 2

where s(x) = x + I.

More generally, f(x,y,z-) is defined
from g00,g01,gl0,{hij,kijli,je{l,2}} by

limited 2-recursion on dyadic notation iff

3.1 f(O,O,~-) = go0(~-)

3.2 f(O,yj,~-) = gOl(Y,~-)

3.3 f(xi,0,~-) = gl0(X,~-)

3.4 f(xi,yj,~-) = hij (x,y,z-,f(x,y,z-)),

i,j e {1,2}

3.5 LESS(hij(x,y,~,u),u*kij(x,y,~)) = 0,

i,j e {1,2}

The reason for using three initial
defining equations (3.1, 3.2m 3.3) instead
of just two, defining f(x,0,z) and f(0,y,[),
is to avoid the necessity of proving the
consistency of the equations when x = y = 0.

3.6 Theorem. Suppose there are function
symbols g00,g01,gl0,{hij,kijli,je{l,2}} in

PV such that the four equations 3.5 are
each provable in PV. Then there is a func-
tion symbol f in PV such that each of the
equations 3.1,...,3.4 is provable in PV.

The proof will not be given here.

It is also useful to have a rule
allowing induction on notation on several
variables at once.

3.7 Theorem. Suppose the equations

0
3.8 f(xl, Xn,~)~. =

1

g i (X l , . . . , X i _ l , X i + l , • . • , X n , ~) ,

i < i _<n

3.9 f(xli I Xnin,Y) =

hi I in(Xl Xn,~,f(x I

X n , ~)) ,

(i I i n) ~ {1,2} n

(2n+n equations altogether) are each prova-
ble in PV when f is replaced by fl and

again when f is replaced by f2" Then

88

fl(Xl Xn,~) = f2(xl Xn,~) is
provable in PV.

The proof will not be given here.

The system PVI can now be defined.
Variables, function symbols, terms, and
equations are the same as in PV. Formulas
in PVI are either equations, or truth-
functional combinations of equations,
using the truth-functional connectives
&,v,,,~,~. The axioms and axiom schemes
of PVI are the following:

El. x=x

E2. x=y = y=x

E3. (x=y&y=z) = x=z

(E4) f . (xl=Yl&...&xk=Yk) = f(x I Xk)=

f (Yl Yk)
for each k e i and each k-place
function symbol f in PV

E5. (x=y) = (xi=yi), i = 1,2

E6. ,xl=x2

E7. ~0=xi, i = 1,2

DEF. The defining equations for any
function symbol in PV are axioms
in PVI. Further, the equations
3.1,...,3.4 are axioms in PVI,
provided the equations 3.5 are
provable in PVI without using
these instances of 3.1-3•4, and
provided that the function symbol
f is the one given by theorem 3.6.
Finally, the defining equations of
the initial functions TR, *, ®,
and LESS, are axioms of PVI.

TAUTOLOGY. Any truth-functionally valid
formula of PVI is an axiom of PVI.

The rules of PVI are the following:

SUBST A ~ A ! where A is any formula of • X'

PVI, t is any term, and x is any
variable.

IMP. A I,...,A n ~ B, where the formula B

is a truth-functional consequence
of formulas AI,...,A n .

n-INDUCTION, n_>l:

x~I Xlil Xni n I {A . l-<i_<n}, {A=A Xl'''''~--~n
i

(i I in)e{l,2}n} ~ A

For example, 1-induction is the rule

A O, A ~ A xl, A ~ A x2
x pA

Proofs and derivations in PVI are
described in a way similar to PV.

We use the notation CI(A) to mean the
universal closure of A. We say a formula A
of PVI is true if CI(A) is true in the
domain of natural numbers, when the function
symbols receive their standard meanings.
The reader is warned that if the terms t
and u have variables, then this interpreta-
tion means that ~t = u is not the negation
of t = u. For example, sg(x) = 0 and
,sg(x) = 0 are both false, since their
universal closures are both false in the
natural numbers.

3.10 Theorem. An equation t = u is a
theorem of PVI if and only if it is a
theorem of PV.

The proof is omitted for lack of space.

As a measure of the power and useful-
ness of the system PVI, we prove the
following result.

3.11 Theorem. If AI,...,An,B are formulas

in PVI, and CI(B) can be derived from
CI(AI),...,CI(An) in the predicate calculus

with equality, then AI,...,A n F-pv I B.

Proof. Suppose the hypotheses of the
t e-~em are satisfied• Then CI(B) is a
logical consequence of CI(AI),...,CI(An),

CI(E1) ,CI(E4) in the predicate calculus

(without the equality axioms). Thus
CI(A) = CI(B) is a quantificationally valid
formula, where A is (AI&...&An&EI&...&E4).

By the Herbrand theorem (see [14]), there
are substitutions Ol,...,Ok such that

k c I , . . . , c r
3.12 i--iv (A~i~B~-, :~r)

is truth-functionally valid where Cl,...,c r

are new distinct constant symbols, Xl,...,x r

are the variables occurring i~ B, and each
~i is a substitution of "ground" terms

(built from Cl,...,c r and constant symbols

of PV by applying function symbols of PV)
for the variables in A. If we let ~! be

i
the substitution resulting when °i is

XI,...,X r
folIowed by the substitution

Cl,...,c r '
then the formula

k
3.13 v (Ao.~=B)

i= l

is "isomorphic" to 3.12, and hence it is
also truth-functionally valid. It follows,
since 3.13 is a formula of PVI, that it is
an axiom of PVI (by TAUTOLOGY). Further-
more, by the rule SUBST, each of the formu-
las EI~ ~ E4~, l~i~k, is a theorem of

89

PVI, and AlO ~ ,AnO~, l~i~k, can be

derived in PVI from the hypotheses AI,... ,

A n . Hence, by the rule IMP, we see that

AI'''''An ~PVI B.

4. The G~del Incompleteness
Theorem for PV

The main theorem in this section
states that the consistency of PV cannot
be proved in PV. This will be applied in
section 7 to show that the system PV, as a
proof system for the propositional calcu=
lus, is not p-verifiable.

It is easy to see that PV is incom-
plete, because the equivalence problem for
functions in L is not recursively enumera-
ble. But we need to know that a proof of
this incompleteness can be given in PV
itself so that we can follow G~del's method
of proving that a theory cannot have a
proof of its own consistency.

The first step is to assign "G~del
numbers" to the terms, equations, and
proofs in PV. Notice that an object of
any of these three kinds has been defined
to be a string of symbols. The underlying
alphabet of symbols is infinite, because
we assume there are an unlimited number of
variables at our disposal. However, we
can agree that a variable is just the
symbol x followed by a finite string on
the alphabet {1,2}. Hence any term, equa-
tion, or proof, is a finite string on some
fixed alphabet A of at most 32 symbols.
We can code each symbol o in A by a unique
five-digit code ~(o) over the alphabet
{1,2}. Then the G~del number of a string
Ol...o k is the number whose dyadic notation

is ~(Ol)...~(Ok). The number of an object

C is denoted by [C3. The important pro-
perty of G~del numbers from our point of
view is that an object C and the dyadic
notation for [C3 can be obtained from each
other within time bounded by polynomials
in the lengths of [C] and C, respectively.

We define the function proof on the
natural numbers by

If if m is the number of ~an
equation t = u, and n is

proof(m,n) = the number of a proof in
PV of t = u

otherwise

Next we define the function sub as
follows: sub(m) = n £f m = [t=u]--~d

n = [(t=u)~], for some equation t = u,

where ~ is the numeral for m. If m is not
of the form [t=u], then sub(m) = 0.

It is not hard to see that both the
functions proof and sub can be computed in
time bounded by a polynomial in the

lengths of their arguments, so that both
functions are in L. By theorem 2.12 there
are function symbols PROOF and SUB in PV
which define proof and sub, respectively.
(We assume that the defining equations for
these function symbols represent a
straightforward algorithm for computing the
functions.) Let

4.1 r = [PROOF(SUB(x) ,y)=03

Then

4.2 s = sub(r) = [PROOF(SUB(~),y)=0]

Thus equation number s says "I am not
provable".

4.3 Theorem. Equation number s has no
proof in PV.

Proof. Suppose, to the contrary, that p is
t e-h-~umber of a proof of equation number s.
By the valuation theorem (2.18), we have
~PV PROOF(SUB(7),p) = i. But by assumption,

PPV PROOF(SUB(~),y) = 0, so by the rules

R4, RI, and R2 of PV, ~PV 0 = i. This con-

tradicts the consistency of PV (theorem
2.17), establishing the present theorem.

Now let CON(PV) stand for the equation
PROOF([0=I],y) = 0. This is a true equation
of PV, asserting that the equation 0 = 1
has no proof in PV.

4.4 Theorem. CON(PV) has no proof in PV.

The idea, of course, is to show that
the proof of theorem 4.3 can be formalized
in PV. We will actually work in the system
PVI, since this is easier. The first step
is to for~alize the valuation theorem
(2.18) in PVI. The proof of 2.18 shows how
to construct, for each function symbol f of
PV, a function genf in L such that

genf(nl,...,nk,m) is the number of a proof

in PV of the equation f(nl nk) = ~'

provided the equation is true, and
genf(nl,...,nk,m) = 0 otherwise. The

function formf(n I nk,m) = [f(nl'''''

nk)=m] is certainly in L. It should be

possible to show

4.5 Lemma. ~PVI f(xl Xk)=Y =

PROOF(FORMf(x I ,xk,Y),GENf(x I xk,Y))

=i for each function symbol f of PV, where
FORMf and GENf are the function symbols

defining formf and genf, respectively.

Now let us apply the lemma when f is
PROOF, and substitute ~ (from 4.2) and 1
for two of the variables, to obtain

4 . 6 [-PV1 PROOF (~ ' , y) =1

PRO0 F (FORM (if , y , 1) , GEN (g' , y , 1)) = 1

90

where we have left off the subscripts on
FORM and GEN. By definition,
formpROOF(S,n,l) = [PROOF(s,n)=I], and for

each value of n, a proof (say number p) in
PV of the equation in brackets together
with a proof (say number q) in PV of for-
mula number s (see 4.2) gives rise easily
to a proof (say number contra(p,q,n)) in PV
of 0 = i. If we let CONTRA define the
function contra, then one can prove the
last statement in PVI.

4.7 Lemma.
}-PV1 ~ F (FORM (g , y , 1) , z) = 18PROOF (s ,u) =l)

PROOF ([0=i], CONTRA (z ,u,y))=i

Now lemma 4.7 with GEN(g,y,I) substi-
tuted for z and y substituted for u,
together with 4.6 gives us immediately by
the rule IMP of PVI

4.8 bPVI PROOF(~,y)=I = PROOF([0=I],t)=I

where t is CONTRA(GEN([,y,I),y,y)).

By axiom E7 of PVI, ~PVI n0 = I.

Hence, by substituting t for y in the
definition of CON(PV), we have by IMP and
equality reasoning, from 4.8,

4.9 ~PV1 CON(PV) = nPROOF([,y)=I

Simple r e a s o n i n g
shows ~PVl ,PROOF(x,y)=l = PROOF(x,y)=0,

and s ince by the v a l u a t i o n theorem,
~PV s = SUB(~), we have by 4.9

4.10 ~PV1 CON(PV) = PROOF(SUB(~-),y)=0

Thus, i f bPV CON(PV), then

~PVl CON(PV) (by theorem 3 . 10) , so

~PVI PROOF(SUB(~),y) = 0, so -

~PV PROOF (SUB (F) ,y) = 0 (again by 3.10),

which contradicts theorem 4.3. This com-
pletes our outline of the proof of theorem
4.4.

5. Propositional Calculus and
the Main Theorem

Propositional formulas will be formed
in the usual way from the connectives
&,v,~,=,~, and from an infinite list of
atoms. We will define an atom to be the
letters ATOM followed by a str~ng on {1,2},
so that formulas are certain strings on a
certain fixed finite alphabet. We can
assign GSdel numbers to the strings as in
section 4, and we will write [A] for the
number of the formula A. A tautology is a
valid propositional formula, and we will
use TAUT to denote the set of GSdel
numbers of tautologies.

A rope_of s s ~ (for TAUT) is a func-
tion f in L from~e set of natural numbers
onto TAUT. (This differs from the

definition in [3] in that numbers are used
instead of strings.) If f is a proof
system, and f(x) = [A], then x is (or
codes) a proof of A.

The paper [3] describes a large number
of standard proof systems, and compares
them from the point of view of length of
proof. The system we are interested in
here is a very powerful system called
extended resolution (ER), which can
efficiently simulate any of the standard
systems, except possibly Frege systems with
a substitution rule. The idea of extended
resolution is due to Tseitin [13].

The system ER can be defined as
follows. A literal is an atom or a negation
of an atom. The complement L of a literal
L is given by ~ = 7P, ~---g = P, where P is an
atom. A clause is a disjunction (LlV...VLk)

of literals, k~0, with no literal repeated.
If k = 0 the clause (called the empty
clause) is denoted by D. If A is a propo-
s1-~al formula, then we associate a
literal L B with every subform'hla B of A by

the conditions (i) if B is an atom, then L B

is B, (ii) if B is ~C, then L B is LC, and

(iii) if B is (CvD), (C&D), (C=D), or (C~D),
then L B is some atom uniquely associated

with B.

If F is a propositional formula, then
CNF(F) denotes some set of clauses whose
conjunction is equivalent to F (and which
is not unnecessarily long). Now we
associate with every propositional formula
A a set def(A) of clauses by the conditions
(i) def(P)~= ~ if P is an atom, (ii)
def(~B) = def(B), (iii) def(BoC) = def(B) u
def(C) u CNF(LBvc~(LBOLc)), where o is &,

V, D, or ~.

5.1 Lemma. a) Any truth assignment ~ to
the atoms of A has a unique extension T' to
the atoms of def(A) which makes (each
clause in) def(A) true. In fact, T'(LB) =

T(B) for each subformula B of A, so in
particular, T'(LA) = ~(A).

b) A is a tautology if and only if L A is a

truth-functional consequence of def(A).
c) There is a function f in L which
satisfies f([A]) = [def(A)].

Part a) is proved by induction on the
length of A. Part b) follows immediately
from a). For part c), obseTve that def(A)
has at most three times as many clauses as
A has connectives, and these clauses are
easily found.

Notice that, in contrast to def(A),
CNF(A) is not in general computable in
polynomial time, simply because some formu-
las have a shortest conjunctive normal form
which is exponential in their length. (For
example, (Pl&P2v...VP2n_l&P2n)).

91

If a clause C 1 is (LlV...vLivLvLi+l v

...VLk) and C 2 is (MlV'''vM'v~vMj +Iv'''vM~)l

then the resolvent of C 1 an~ C 2 ls the

clause which results from deleting repeti-
tions of literals from (LlV...VLkVMlV...v

The extension rule for an atom P
allows the introduction of the three or
four clauses in CNF(P~(LIoL2)), where o is

&, v, =, or ~, provided P and P are dis-
tinct from L 1 and L 2. An ER proof of a

formula A is a string A~CI~...~Ck~Ck+I ~

...*Cn, where Cn is LA, {C I,...,C k} are

the clauses in def(A), and each C. for
1

i > k is either a resolvent of two earlier
Cj s, or is introduced by the extension

rule for some atom P which has no earlier
occurrence in the string. Any string not
of the above form is, by convention, an ER
proof of (PvTP), for some fixed atom P.
The proof system ER is the function such
that ER(n) = [A], provided the dyadic
notation of n codes an ER proof of A. It
is easy to see the function ER is in £.

It follows from lemma 5.1 and a
slight modification of the usual complete-
ness theorem for ground resolution (see
[14~, for example) that every tautology A
has an ER proof in which the extension
rule is not used. (The purpose of the
extension rule is to give shorter proofs.)
I now prove the converse explicitly, since
I want to argue later that the proof can
be formalized in PV.

5.2 Soundness of ER. If a formula A has
an ER proof, then A is a tautology.

Proof. If A is ~P v P, then A is obviously
a tautology. Otherwise, the proof has the

* .*C described form A~CI~...~Ck**Ck+ 1 .. n

earlier. Let ~ be any truth assignment to
the atoms of A. Then, as mentioned in
lemma 5.1, T can be extended to a truth
assignment ~' to the atoms L B of def(A)

such that z' makes all clauses in def(A)
true and T'(LA) = T(A). Hence ~' makes

CI,...,C k true. Further, each time clauses

DI,D2,D 3 are introduced by the extension

rule for an atom P, T' can be extended to
T" whose domain includes P in such a way
that DI,D2,D 3 are true under T" (for

example, if the clauses are CNF(P~(LIVL2)),

then T"(P) is T'(LIVL2)). Thus there is

an extension T 1 of T' which makes all

clauses C i introduced by extension true.

It is easy to see that any truth assignment
which makes two clauses true must make any
resolvent of those clauses true. Hence,

by induction on i, we see that r I makes C i

true for 1 ~ i ~ n. In particular, ~i

makes C n = L A true. Since TI(LA) = T'(LA)

= z(A), T makes A true. Since T is an
arbitrary truth assignment to A, A is a
tautology.

The above argument shows more than
just the soundness of ER. It shows that an
ER proof of A provides a uniform method of
checking rapidly that a given truth assign-
ment satisfies A; namely check that z

1
satisfies successively CI,C2,...,C n = LA,

and check successively that TI(B) ~ TI(LB)

for larger and larger subformulas B of A,
and finally check that T(A) = TI(LA) = true.

Thus ER is a p-verifiable proof system in
the following sense.

5.3 (Informal definition). A proof system
F for TAUT is p-verifiable iff there is a
polynomial p(n) such that given a proof x
in the system of a formula A, x gives a
uniform way of verifying within p(Ixl)
steps that an arbitrary truth assignment to
A satisfies A.

It is easy to see that all the usual
"Frege" systems (see [3]) for the proposi-
tional calculus satisfy this definition, in
addition to ER. On the other hand, if the
substitution rule (from A conclude Aa,
where ~ substitutes formulas for atoms) is
added to Frege systems, then it is no
longer clear that the system is p-
verifiable. A proof of A in such a system
does provide a way of verifying that a
given truth assignment T satisfies A, but
since a formula B in the proof may have
several substitution instances in the
proof, and each of these instances can
again have several instances, and so on, we
may end up having to verify B for exponen-
tially (in the length of the proof) many
truth assignments to check that A comes out
true under the single assignment ~. Also,
there is no reason to think that a proof
system for TAUT which incorporates Peano
number theory or set theory is p-verifiable.

To make the notion of p-verifiable
proof system precise, let us code a truth
assignment T as a string (PI,Z(PI)),

(P2,z(P2)) (Pk,T(Pk)) listing the atoms

in its dom~bin and the truth value assigned
to these atoms. This string in turn can be
coded as a string on (1,2}, and IT] will
denote the number whose dyadic notation is
this last string. Then we can define a
function tr in L such that

= ~i if ~(A) is true
tr([A],[T]) L0 if T(A) is false

We can make the convention that z assigns
false to all atoms of A for which a value
is not explicitly given, so that T(A) is

92

defined for any formula A and truth assign-
ment T and every number n codes some truth
assignment. Let TR be a function symbol in
PV which defines tr.
5.4 (Formal Definition). A proof system
f for TAUT is p-verifiable iff there is
some function symbol F in PV defining f
such that ~PV TR(F(x),y) = I.

It is worth pointing out that this
formal definition depends on the particular
function symbol TR chosen to define tr.
That is, it depends on the algorithm
chosen to compute tr. Presumably, if TR
and TR' both represent straightforward
algorithms for computing tr, then
~PV ZR(x,y) = TR'(x,y), so definition 5.4

would be the same for TR and TR'.

The formal definition requires that
the soundness of f be provable in PV. If
one believes the verifiability thesis
(I.I), then it is easy to see that the
formal definition captures the informal
one.

In [3], a notion of one proof system
simulating another is defined. Here I
would like to sharpen that notion and say
that a proof system fl p-simulates a proof

system f2 iff there is a function g in L

such that f2(n) = fl(g(n)) for all n.

Further, fl p-verifiably simulates f2 iff

there exist functions symbols FI,F 2 in PV

defining fl,f2, respectively, and a func-

tion symbol G such that ~PV F2(x) =

FI(G(x)).
Now I can state the main theorem of

this paper, which characterizes the p-
verifiable proof systems.

5.5 Main Theorem. A proof system f for
tautologles is p-verifiable if and only if
extended resolution p-verifiably simulates
f.

5.6 Theorem. Extended resolution p-
verifia l-~imulates any Frege system (see
[3]) .

5.7 Corollary. Every Frege system is a
p-verifiable proof system.

Theorem 5.6 can be proved by forma-
lizing in PV the proof in [3] which shows
that ER simulates any Frege system. The
argument will not be given here.

The following lemma is needed for the
Main Theorem.

5.8 Lemma. ER is p-verifiable. That is,
~PV TR E--~E-~RES(x),y) = i, where EXTRES is a

suitable function symbol in PV defining ER.

The proof amounts to showing the
proof of 5.2 (Soundness of ER) can be

formalized in PV. (Of course, in practice
it is easier to work in PVI.) Thus one
defines a function tauone(n) in L such that
when n = [T], then tauone(n) = [TI], where

T 1 is the truth assignment described in

that argument. Then the formal versions of
the equations TI(L A) = T'(L A) = T(A) are

provable in PV, and;TR(ER(x),y) = 1 follows.
The details are omitted.

The "if" part of the Main Theorem
follows easily from the lemma. For suppose
ER p-verifiably simulates f. Then
~PV F(x) = EXTRES(G(x)), where F defines f.

If rule R3 of PV (with TR for f) is applied
to this equation and the result applied
with transitivity to 5.8 with G(x) for x,
we obtain ~PV TR(F(x),y) = I. Hence f is

p-verifiable.

The converse to the Main Theorem is
more difficult and will be dealt with in
the next section.

6. Propositional Formulas Assigned
to Equations of PV

To prove the "only if" part of theorem
5.5 I propose to first prove that extended
resolution can p-simulate any p-verifiable
proof system, and then argue that this
proof can be formalized in PV. This first
proof is carried outby assigning, for each
m, a propositional formula to each equation
t = u which says, roughly speaking, "the
equation holds when variables are
restricted so that the dyadic notations for
all relevant functions have length at most
m". I the~ argue that if ~PV t = u, then

there is an ER proof of the formula whose
length is bounded by a polynomial in n.
Applying this result to the equation
TR(F(x),y) = 1 (which is provable in PV if
F represents a p-verifiable proof system
f), one can see that there is an ER proof
of formula number f(n) which is not much
longer than the proof n.

Proceeding more formally, let us fix
the integer m > 0. We associate with every
term t of PV the atoms P0[t],Pl[t],...,Pm[t]

and Q0[t],Ql[t],...,Qm[t]. We will call

these the atoms of t. The intended
meanings are

~true if ith dyadic.digit (i.e.

j coefficient of 21) of t is 2
Pi [t] ~ ~false if this digit is 1

|irrelevant if the dyadic length of
t is < i+l

true if coefficient of 2 i in t is

Qi [t] ~ ~ defined (i.e. t ~ 2 i+l - I)
Kfalse otherwise

Now we can define, for each term t and each
truth assignment T to the atoms of t which

93

satisfies Qi[t] = Qi_l[t], l~i~m, a number

valm(t,T) which is the number whose dyadic

notation is determined by these intended
meanings. Next we associate a proposi-
tional formula proPm[t] with the term t

(the subscript m will sometimes be
omitted). Among the atoms of this formula
are some of the atoms of t and the atoms
of the variables which occur in t. This
formula has the following property:

6.1 Semantic Correctness of proPm. Let

the term t of PV with variables Xl,...,x n

define the function f(xl,...,Xn) , and let

T be a truth assignment which satisfies
prOPm[t] and such that when f is evaluated

(according to the defining equations in
PV) at x i = valm(Xi,T), l~i~n, no value of

any number appearing in the computation
exceeds m in dyadic length. Then
Valm(t,z) = f(valm(Xl,T) valm(Xn,~)).

To define proPm[t] in general in such

a way that 6.1 holds, we start with the
following special cases.

6.2
m

proPm[X] is & Qi[x] = Qi_l[X], for
i=l

each variable x.

m

6.3 proPm[0] is & ~Qi[0]
i=0

6.4 proPm[Sl(X)] is

m-i
(proPm[X] & (Pi+l[Sl(X)]-Pi[x])

i=0

& 7P0[s I (x)]
m-i

&Q0[Sl(X)] & (Qi+l[Sl(X)]-=Qi[x]))
i=0

6.5 proPm[S2(X)] is defined similarly.

tl,...,t k
Let o - be a substitution

Xl,...,x k
(regarded as a transformation) of terms
for variables. The function ~ takes a
substitution and an atom of t into an atom
of to, and is defined by the equations
~(a,Pi[t]) = Pi[ta], and ~(a,Qi[t]) =

Qi[ta], where to is the term resulting

when a is applied to t. @ can be extended
in an obvious way so that its second argu-
ment is any propositional formula in the
atoms of various terms t. Thus ~(a,TA) =
7~(o,A), and ~(o,(AoB)) = (~(o,A) o~(a,B)),
where o is &, v, =, or ~. The formulas
proPm will satisfy the following property:

4.6 Substitution Principle.

tl,...,t k
o = Then

x I x k

Let

k
proPm[ta] <=> &

i=l
proPm[ti]&~ (a,proPm[t]) ,

where <=> can be read "is truth-functionally
equiva&ent to".

For example, if t is Sl(X) and a is ~,

then this principle and 6.3, 6.4, say that
proPm[Sl(0)] is a conjunction of formulas,

including ~Qi[0], l~i~m, and ~P0[Sl(0)],

and Q0[Sl(0)], and Qi+l[Sl(0)] ~ Qi[O],

0~i~m-l. These formulas imply ~P0[Sl(0)],

Q0[Sl(0)], and 7Qi[Sl(0)] , l~i~m, which

completely specify the dyadic notation for
sl(0) (=1).

Now suppose proPm[f(xl , Xk)] has

been defined for all function symbols f is
a certain set S. Then we can inductively
define proPm[t] for each term t built from

0, variables, and function symbols in S by

6.7 proPm[f(t I tk)] =

k tl,...,t k
& proPm[t]&~

i= 1 i (Xl, ,x k

proPm[f(x I Xk)])

To complete the definition of proPm[t]

for all terms t, it suffices to show how to
define proPm[f(xl, Xn)] for each of the

two ways of defining new function symbols•
First, suppose f is ~Xl...XntP , where

proPm[t] has been defined• Then the

defining equation for f is f(x I ,Xn) = t,

and we define

6.8 proPm[f (x I ,Xn)] is

m

(proPm[t] & (Pi[f(xl x n)]-pi[t])
i=0

m
& (Qi[f (Xl Xn)]-Qi[t]))

i=0

The case in which f is defined by
recursion on notation is more complicated,
and is omitted for lack of space.This com-
pletes the definition of proPm[t] , for all

terms t.

94

Now suppose Xl,...,x r is a list of

all the variables appearing in the terms t
and u, and n,m are positive integers with

m. Then [t=uI~ is the n propositional

formula

((prOPm[t]&proPm[U]) & (~Qn+l[Xl]& • • .

&,Qn+l[Xr])) =

m m

(& Qi[t]=(Pi[t]-Pi[u]) & (Qi[t]-Qi[u]))
i=0 i=0

We say that m is a bounding value for
n relative to t = u if the terms t an-~ u
can be evalu-ated by the relevant defining
equations for all values of their variables
of dyadic length n or less without having
any value in the computation exceed m in
dyadic length.

6.8 ER Simulation Theorem. Suppose ~ is
a proo-=F in PV of t = u. Then there is a
polynomial p(m) (depending on ~) such that
for all n,m, if m is a bounding value for

n relative to t = u, then It=u[n has an
m

extended resolution proof of length at
most p(m).

The proof is by induction on the
length of H, and is omitted.

Using this theorem, we can sketch the
proof of the "only if" part of theorem 5.5.
Thus suppose f is a p-verifiable proof
system, and suppose F is a function symbol
in PV which defines f, such that
~PV TR(F(x),y) = i. Since all functions

used in defining F and TR are in L, it
follows that one can find a polynomial q
with natural number coefficients such that
for all n, q(n) is a bounding value for n
relative to TR(F(x),y) = i, and q(n) ÷ =.
By theorem 6.8, there is a polynomial p(n)

n
such that ITR(F(x),y)=I[q(n) has an ER

proof of length at most p(q(n)), for all n.

Now let PI,...,Pk be the atoms of

some propositional formula A. A truth
assignment T to these atoms determines a
number [T] in a straightforward manner,
and using a variable y for [T], we can use
the extension ~ule to introduce a set CL
of clauses defining the atoms Pi[y] and

Qi[y] in terms of the atoms Pl,...,Pk..

Thus any truth assignment T' which
satisfies all clauses in CL must have the
property that if T is the restriction of
T' to PI,...,Pk, then [T] is the value of

y whose dyadic notation is represented by
T'(Pi[y]) , T'(Qi[y]) , l~i~m, for suitable

m. Since any truth assignment T"
satisfying def(A) must have T"(A) = T"(LA) ,

one can see from the way TR is defined that
there is an ER derivation of L A

Q0[TR([--~,y)] from def(A), CL, and ,

proPm[TR([A],y)] , for suitable m. Further,

there is a polynomial r(n) such that for
all formulas A, this ER derivation has
length at most r([A]).

Now suppose A has a proof a in the
system f; that is, suppose f(a) = [A].
Then bK the valuation theorem 2.18,
~PV F(a) = [A-], and one can verify that

IF(a)=[--~[n has an ER proof of length
ql (n)

not exceeding pl(ql(n)), where n = [al, for

some polynomials Pl and ql" Putting this

ER proof together with the ones in the
preceding two paragraphs, and noting that
the clauses in CL, def(proPm[t]) for all

terms t involved can be introduced by the
extension rule, we come up with an ER proof
g(a) of A of length not exceeding~p~a[),

for some polynomial P2" Thus ER(g(a)) =

f(a) for all a, and since g(a) is in L, ER
p-simulates f.

To complete the proof of theorem 5.5
it is necessary to show ~PV ER(G(x)) = F(x),

where G is a function symbol in PV defining
g. This amounts to showing the above
argument can he formalized in PV, which I
will not do here. It is not hard to check,
however, that the above argument is feasibly
constructive, so that if one believes the
verifiability thesis (i.I),-the formaliza-
tion is not necessary.

7. PV as a Propositional Proof System

Any formal system for number theory
can be treated as a proof system for TAUT
by regarding a proof of the formalization
of tr([A],y) = 1 as a proof of A. In par-
ticular, if ~ is a proof in PV of TR([A],y)
= I, then J[is a proof in PV of A. We can
define a function pv in L which satisfies
pv([~]) = [A] if ~ is a proof of A. Thus
pv is a proof system for TAUT in the
general sense defined in section 5.

7.1 Theorem. The system pv is not p-
verifiable.

7.2 Lemma. ~PVI TR(PV(x),y)=I

PROOF([0=I],z)=0

The lemma says that the statement "if
pv is p-verifiable, then PV is consistent"
is provable in PVI. I prove the lemma by
giving an informal argument for the impli-
cation which is readily formalized in PVI,
using the techniques of section 4.

95

By hypothesis,

(i) tr(pv(m),n) = 1 for all m and n.

It is not hard to see that

(2) /PV TR([P&nP],y) = 0.

Now suppose PV is inconsistent, so
that

(3) ~pv o : 1.

Then from (2) and (3),

(4) ~PV TR([P&nP] ,y) = 1.

I f H i s a p r o o f in PV o f (4) , t h e n

(5) p v ([~]) = [P&~P].

Combining (I) and (5), we have

(6) tr([P&,P],n) = i, for all n.

But (6) is absurd, since tr([P&,P],n)
= 0. Hence our assumption that PV is
inconsistent is untenable, so PV is
consistent.

From lemma 7.2, we see that if
~PV TR(PV(x),y) = i, then ~PVI CON(PV), so

~PV CON(PV), violating theorem 4.4.

Therefore pv is not p-verifiable.

8. Conclusions and Future Research

(I) There should be alternative formali-
zations of PV. These would make the
verifiability thesis (i.i) more convincing
and make it easier to formalize arguments
in PV. One such formalization should be a
programming approach, where proving f(x) =
g(x) amounts to proving the equivalence of
two programs.

(2) If one believes that all feasibly
constructive arguments can be formalized
in PV, then it is worthwhile seeing which
parts of mathematics can be so formalized.
I think that a good part of elementary
number theory (such as the unique factori-
zation theorem) can be formalized in PV,
although the results will have to be for-
mulated carefully. For example, the

e I e 2 e k .
function Pl P2 "'" Pk is not in L and

so it is not definable in PV. However,
e I e 2 e k

the relation n = Pl P2 "'" Pk i__ss an L-

relation, and its characteristic function
is definable in PV. As another example of
formulation problems, it is hard to see at
first how to formulate in PV the complete-
nessJof a proof system for TAUT such as
ER, since there is no function g in L
taking an arbitrary tautology number [A]
into an ER proof of A (unless P = NP).

However, there is a function g in L which
takes a code for a tautology A together
with a list TI,...,T k of all truth assign-

ments to A into an ER proof of A, and the
equation ER(G([A~TI*...~Tk])) = [A] should

be provable in PV. This formulation of
completeness says that given a formula A,
together with a verification that all truth
assignments to A make A true, one can find
an ER proof of A. This statement certainly
incorporates the information that every
tautology has an ER proof.

(3) The question that lead me to the
system PV in the first place is the question
of whether extended resolution is a super
proof system. I conjecture that it is not.
A possible approach to showing this is by
proving some sort of converse to the ER
simulation theorem (6.8). Specifically, I
conjecture that the propositional formulas

Icap's (pv)[n q(n) have'no ER proofs bounded in

length by a polynomial in n, where q(n) is
a bounding value for n relative to con(PV).

(4) It would be interesting to prove that
a Frege system with substitution (see [3])
is not p-verifiable. A likely approach is
to show that such a system p-verifiably
simulates pv, which would mean that if such
a system were p-verifiable, so would be pv,
violating theorem 7.1.

ACKNOWLEDGMENTS

I would like to thank Robert Constable
for helpful discussions concerning cons-
tructive mathematics, and for a critical
reading of the first half of this manus-
cript. I would like to thank Martin Dowd
for helping with the technical aspects of
k-recursion and k-induction on notation.

REFERENCES

i.

2.

S.A. Cook. "The complexity of theorem
proving procedures". Proceedings of
Third Annual ACM Symposium on Theory of
Computing, May, 1971.

R.M. Karp. "Reducibility among combi-
natorial problems" in Complexity of
Computer Computations, R.M. Miller and
J.N. Thatcher, editors, Penum Press,
1972.

3. S.A. Cook and R.A. Reckhow. "On the
lengths of proofs in the propositional
calculus". Proceedings of Sixth Annual
ACM Symposium on Theory of Computing,
May, 1974, pp 135-148. See also
corrections for the above in SIGACT
News, Vol 6, No 3 (July, 1974) pp 15-22.

4. R.J. Parikh. "Existence and feasibility
in arithmetic". J. Symbolic Logic, Vol
36, No 3 (1971).

5. Th. Skolem. Begr~ndung der Elementaren
Arithmetik, 1923

96

6. R.L. Goodstein. Recursive Number
Theory, North-Holland, Amsterdam, 1957.

7. Alan Cobham. "The intrinsic computa-
tional difficulty of functions". Proc.
of the 1964 International Congress-~
Logic, Methodology, and the Philosophy
of Sciences, North-Holland Publishing
Co., Amsterdam, pp 24-30.

8. S.C. Kleene. Introduction to
Mathematics, Van Nostrand, 1952.

9. H.E. Rose. "On the consistency and
undecidability of recursive arithme-
tic". Zeitschr. f. math. Logik and
Grundlogen d. Math, Bd. 7, S. 124-135
(1961).

I0. R.M. Smullyan. Theory of Formal
Systems, Princeton University Press,
Revised Edition, 1961.

II. Daniel Lascar."Cobh~m's characterization of i", in To~ics
in the theory of Computation, notes of a seminar c o ~ d by
R.H. Baer and S.A. Cook, Dept. of }~athematics, University of California at Berkeley

(March, 1967) (UnDublished)
12. J.P. Cleave and H.E. Rose. "E n-

arithmetic". Sets, Models, and
Recursion Theory, Crossley, ed.,
North-Holland, Amsterdam, 1967.

13. G.S. Tseitin. "On Ithe complexity of
derivation in propositional calculus".
Studies in Mathematics and Mathematical

~ , Part II, A.O. Slisenko, ed.
slated from Russian).

14. C.L. Chang and C.T. Lee. Symbolic
Logic and Mechanical Theorem Provin~
Academic Press, 1973.

97

