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Abstract

This article is a continuation of our search for tautologies that are
hard even for strong propositional proof systems like EF , cf.[14, 15].
The particular tautologies we study, the τ -formulas, are obtained from
any P/poly map g; they express that a string is outside of the range
of g. Maps g considered here are particular pseudorandom genera-
tors. The ultimate goal is to deduce the hardness of the τ -formulas
for at least EF from some general, plausible computational hardness
hypothesis.

In this paper we introduce the notions of pseudo-surjective and
iterable functions (related to free functions of [15]). These two proper-
ties imply the hardness of the τ -formulas from the function but unlike
the hardness they are preserved under composition and iteration. We
link the existence of maps with these two properties to the provabil-
ity of circuit lower bounds, and we characterize maps g yielding hard
τ -formulas in terms of a hitting set type property (all relative to a
propositional proof system). We show that a proof system contain-
ing EF admits a pseudo-surjective function unless it simulates a proof
system WF introduced by Jeřábek [11], an extension of EF .

We propose a concrete map g as a candidate function possibly
pseudo-surjective or free for strong proof systems. The map is de-
fined as a Nisan-Wigderson generator based on a random function and
on a random sparse matrix. We prove that it is iterable in a particular
way in resolution, yielding the output/input ratio n3−ǫ (that improves
upon a direct construction of Alekhnovich et.al. [2]).
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Propositional proof complexity studies the lengths of proofs of tautolo-
gies in various proof systems. The ultimate goal is to show that no proof
system can prove all tautologies by proofs of size polynomial in the size of the
tautology. With a general definition of proof systems as non-deterministic
algorithms accepting exactly the set of tautologies (cf. [7]) the problem is
equivalent to the NP/coNP problem.

Non-trivial lower bounds to the lengths of proofs have been proved for
various particular proof systems and already these partial results have deep
implications.1 All these proof systems are demonstrably weaker than the
usual text-book calculus based on modus ponens and a finite number of
axiom schemes, a Frege system F in the terminology of [7]. It is generally
thought that a pivotal case in this research is Extended Frege system EF .
EF extends F by allowing to abbreviate (possibly large) formulas by new
atoms. Equivalently, one may think of EF as a Frege system operating with
circuits rather than with formulas.2

No non-trivial lower bounds are known for either F or EF . A reason
often suggested as an explanation of this is that we do not have any lower
bounds for general boolean formulas or circuits. However, I do not see any
evidence that understanding the circuit class a proof system operates with
is either sufficient or necessary for proving lower bounds for the proof sys-
tem. In fact, from all proof complexity lower bounds it is only in the case
of constant depth Frege systems where a particular knowledge about AC0

circuits (namely the effect of random restrictions) was ever relevant to the
proof complexity lower bound. In all other cases (resolution, cutting planes
and its generalizations, algebraic proof systems, etc.) understanding the for-
mulas the system operates with is secondary to proof theoretic properties of
the system (allowing feasible interpolation or some global characterization of
shortly provable formulas in algebraic systems, width or degree arguments,
decision tree/branching program arguments, etc.). Of course, for example
in feasible interpolation the proof complexity lower bound is ultimately de-
duced from a circuit lower bound - but for monotone circuits that have
nothing to do with the formulas of the system. Moreover, any proof system
can be polynomially simulated by an extension of EF by a polynomial time
set of tautologies as extra axioms (and natural strong systems are equal to
such a system), and all these system operate with the same class of (all)
circuits.

I rather think that a reason why EF lower bounds appear distant at

1See [25] for a survey.
2See [11] for a formulation.
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this time is that the research concentrated essentially only on getting lower
bounds for weak systems and neglected a development of a general theory
of strong systems. In this respect the success of the transfer of the random
restriction method from boolean complexity to constant depth Frege systems
(the most important system for which we can prove lower bounds) is the
Danae gift.

Another reason is a lack of examples of concrete tautologies that would
make plausible candidates as being hard for EF . Researchers have proposed
numerous formulas over the years. However, the only supporting evidence
of the hardness of all these examples has been simply the lack of an obvi-
ous short EF -proof (this ”evidence” turned out to be false rather often).
One would like some candidates whose hardness could be deduced from
a general plausible computational complexity assumption. The conjecture
NP 6= coNP implies that no proof system P can admit polynomial size
proofs of all tautologies but it does not seem to imply lower bounds for
any particular tautologies. More precisely, it only yields that any coNP-
complete set of tautologies must contain a P -hard tautology while we would
like more concrete examples; for example, produced by a (probabilistic)
polynomial-time algorithm. See also [16].

The only examples of a different character were defined in [6]. The
formulas express the soundness of a proof system Q w.r.t. proofs of size
n = 1, 2, . . .. One can show that if they have polynomial size EF -proofs
then proofs in Q are at most polynomially shorter than proofs in EF . Thus
if we take for Q a proof system we believe to be much stronger than EF
(like the quantified propositional logic G or a proof system based on ZFC)
then the formulas are hard for EF . However, here we derive one lengths-
of-proofs lower bound from another one (which is, in fact, equivalent to
the proved statement for Q ⊇ EF ). There is also no known Q such that
one can show that it has a superpolynomial speed-up over EF , assuming
some general complexity conjecture. There are, however, interesting links
to Gödel’s second incompleteness theorem, cf.[17].

The present work hopes to contribute to the search for tautologies hard
for strong proof systems and to the understanding of these systems in gen-
eral. We continue in the research line of [14, 15] linking the problem with the
provability of the dual weak pigeonhole principle (dWPHP) for polynomial-
time computable functions. The principle says that g : {0, 1}n → {0, 1}m

is not onto, if n < m. The qualification ”weak” reflects the fact that the
principle is weaker than the usual pigeonhole principle in which it is enough
to consider {0, 1}m \ {0} instead of {0, 1}n. Reasons why there is a connec-
tion are explained in [14, 15] and further vindicated in [11] demonstrating a
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relation between theory BT (BT , defined in [14], is S1
2(PV ) plus instances

of dWPHP for all polynomial time functions g), probabilistic computations
and derandomization techniques. Various relations between the provability
of the (dual) weak pigeonhole principle and complexity theory are known
for a long time, starting with [22] (linking WPHP with the Linear Time
Hierarchy, cf. also [13, Chpt.15]). The relation we study here focuses on
proof complexity.

The most important knowledge about EF (the only knowledge, really)
and stronger proof systems P is their relation3 to bounded arithmetic (a
relation similar to the relation of Turing machines and boolean circuits).
This relation motivates several notions and statements in the previous as
well as in the present work. However, main definitions and statements about
proof systems are formulated combinatorially. The only exception is Section
5 where the use of bounded arithmetic substantially simplifies the argument.

The tautologies we are interested in are called τ -formulas4 and have
been defined in [14]. The idea to investigate them has been discovered
independently by Alekhnovich et.al. [2], although the motivation has been
partially different. They are defined as follows5. Let g : {0, 1}n → {0, 1}m,
n < m, be a boolean map computed by a size s circuit C. The set of
τ -formulas corresponding to C is parameterized by b ∈ {0, 1}m \ Rng(g).
Given such b we construct propositional formula τ(C)b, or simply τb when
C is fixed, as follows. The atoms of τb are x1, . . . , xn for bits of an input
x ∈ {0, 1}n and auxiliary atoms y1, . . . , ys for bit values on subcircuits of C
determined by the computation of C on x. The formula expresses in a DNF
that if yj ’s are correctly computed as in C with input x then the output
C(x) differs from b. The size of τb is proportional to n + s. The formula
is a tautology as b /∈ Rng(g). For P ⊇ EF operating with circuits we can
use an easier definition of τb not involving yj ’s: τb is simply the disjunction∨

i≤m Ci(x) 6≡ bi, where Ci(x) computes the ith bit of C(x).
When C is canonically determined by g (and n) we may also speak of

τ -formulas from g. This never leads to a confusion. Moreover, the maps
g we consider should yield hard τ(C)-formulas for any size nO(1) circuit C
computing them.

The working conjecture is that for a randomly behaving g the τ -formulas

3The reader who is interested in the relation can find an elementary exposition in [15].
4By a coincidence the formulas in [2] are also denoted using the letter τ , so hopefully

this is a generally acceptable notation.
5Note that this is a different formalization of a PHP-type principle than a formalization

often considered in proof complexity with atoms pij representing the statement ”i maps
to j”.

4



are indeed hard for many, if not all, propositional proof systems P and that
the way how to show it is to prove that one can think consistently in P
that g is onto. The phrase precisely means that there is a particular model
of T , a bounded arithmetic theory corresponding to P , in which g is onto.
Hence one replaces the proof complexity problem by a problem to construct
a model. Fortunately this can be characterized in a finitary way using the
notions of functions free resp. pseudo-surjective for P , defined in [15] and in
Section 3 here (the characterization depends on the exact choice of T ). The
task to construct a suitable model is, in principle, harder than the original
task to prove the hardness of the τ -formulas. We hope that this will be
compensated for by the availability of methods of logic.

The precise meaning of the qualification ”randomly” in the preceding
paragraph is crucial and we shall discuss this in some detail in Sections 1
and 2. Briefly, the key property of g is akin to a hitting set generator w.r.t.
NP/poly-sets.

In this paper we propose a concrete map g as a candidate function possi-
bly pseudo-surjective or free for strong proof systems. The map is defined as
a Nisan-Wigderson generator based on a random function and on a random
sparse matrix. Then we introduce the notions of pseudo-surjective and iter-
able functions (related to free functions of [15]) and link it to the provability
of circuit lower bounds, and we characterize maps g yielding hard τ -formulas
in terms of a hitting set type property (all relative to a propositional proof
system). This is in Sections 1, 2, 3 and 4. In Section 5 we show that a proof
system containing EF admits a pseudo-surjective function unless it simu-
lates a proof system WF introduced by Jeřábek [11], an extension of EF .
Finally, in Section 6, we prove that the proposed g is iterable in a particular
way in resolution, yielding the output/input ratio n3−ǫ, any ǫ > 0.

The paper is self-contained but the reader can benefit from reading [15]
for background in proof complexity and bounded arithmetic, motivations
for some of the notions, and for some bibliographical information. Two
particular pieces of the background we shall use are: First, any propositional
proof system Q can be p-simulated by some P ⊇ EF . The symbol P ⊇ EF
means that P extends EF by a set of tautologies as extra axioms (no new
rules are needed for the previous sentence to hold). Hence, when aiming
at strong proof systems, the restriction to P ⊇ EF is without a loss of
generality (see [6, 17, 13]). All P ⊇ EF prove their own soundness. Second,
let A(x) := ∀y(|y| ≤ |x|k), B(x, y) be a coNP-property (i.e. a Πb

1-formula),
where B(x, y) is a polynomial-time relation. For n ≥ 1, the propositional
formula ||A(x)||n has n atoms for the bits of x, nk atoms for bits of y
and nO(1) atoms for bits of a computation by a (fixed) circuit of the relation
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B(x, y). The formula says that if the bits of the computation are correct then
the relation B(x, y) holds. Again, if we work with P ⊇ EF manipulating
directly with circuits we do not need the auxiliary nO(1) atoms encoding the
computation and the translation is simply a circuit computing the relation
B(x, y) restricted to inputs of the right length. The issue how a circuit is
associated to B(x, y) is important and the reader should look in [13] for this.
Note that τ(C)b is just ||∀x, C(x) 6= y||m(y/b), where x is a priori bounded by
the input size of C and y are the m bits associated to y in the translation.

We shall often consider functions g : {0, 1}∗ → {0, 1}∗ satisfying the
following assumptions for some constant c ≥ 1:

(A1) The length of the output |g(x)| = m(n) depends only on the length of
the input |x| = n, and n < m(n) ≤ nc, all n ≥ 1.

(A2) Map g is in P/poly: Cn is a size ≤ nc circuit computing g on {0, 1}n

(hence it has n inputs and m(n) outputs).

We shall call functions obeying condition (A1) polynomially stretching (or
just p-stretching). Hence the statement that g = {Cn}n obey assump-
tions (A) is abbreviated by the phrase g = {Cn}n is a P/poly p-stretching
function. We shall denote by gn the function g restricted to {0, 1}n, i.e.
computed by Cn.

Some notation and conventions: [n] is the set {1, . . . , n}, {0, 1}≤ℓ is⋃
r≤ℓ{0, 1}r, all logarithms are base 2 and matrices and vectors are over field

F2. dWPHP(g) denotes the instances of the dual weak pigeonhole principle
for function g. CD(f) is the circuit complexity of boolean function f w.r.t.
circuits querying an oracle D. For proof systems P and Q, P ≥ Q means
that Q has at most polynomial-speed up over P . The symbols P ⊢s and P ⊢∗

stand for P -provable in size ≤ s and has poly-size P -proofs respectively. All
other notions or facts not explained here can be found in [13].

1 A hitting set property

Let us note first a simple characterization of those P/poly p-stretching maps
g = {Cn}n for which all corresponding τ(Cn)-formulas are hard for a proof
system P .

Definition 1.1 Let g = {Cn}n be a P/poly p-stretching map. The resultant
of g with respect to P , denoted ResP

g , is the class of all NP/poly-sets A ⊆
{0, 1}∗ such that for some definition of A:

y ∈ A iff ∃z(|z| ≤ |y|k), B(y, z)
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B(y, z) a P/poly relation, the proof system P admits polynomial-size proofs
of the propositional statements

||∀x, z; B(y, z) → C(x) 6= y||m(n)

(with the bounds to the lengths of x and z implicitly polynomial in n).

The lemma generalizes [19, Thm.5.1]. That theorem states that the
canonical formulas expressing the primality of a number have polynomial
size EF -proofs iff there is an NP-definition of primes whose soundness is
provable in S1

2 .

Lemma 1.2 Let g = {Cn}n be a P/poly p-stretching map. Let P ⊇ EF be
a proof system. Then the following two conditions are equivalent:

1. There exists t ≥ 0 such that for infinitely many n ≥ 1 and b ∈
{0, 1}m(n) the formula τ(Cn)b has a P -proof of size ≤ |τ(Cn)b|

t =
|b|O(t).

2. The resultant ResP
g contains an infinite set.

Proof :
Consider sets Ut for t ≥ 1 defined by:

Ut := {b ∈ {0, 1}∗ | P ⊢|b|t τb}

Clearly all Ut are in ResP
g , as P proves its own soundness. So if the resultant

contains no infinite set only finitely many b ∈ {0, 1}∗ \ Rng(g) yield a τ -
formula with a P-proof of size ≤ |b|t. This proves the if-part of the statement.

For the opposite implication assume that A is an infinite set in the
resultant. Let A be defined by the condition ∃z(|z| ≤ |y|k), B(y, z), B a
P/poly relation. In particular, all formulas

||(|z| ≤ |y|k ∧ B(y, z)) → (|x| = n → Cn(x) 6= y)||m(n)

have P -proofs of size mO(1).
For b ∈ A ∩ {0, 1}m pick c, |c| ≤ |b|k, such that B(b, c) holds. The

formula ||B(y, z)||m(b, c), with the bits of b and c substituted for the bits
corresponding to the variables y and z respectively, is just a true boolean
circuit of size mO(1). Hence it has size mO(1) P -proof (the evaluation of the
circuit ). Modus ponens yields a P -proof of τb of size mO(1).

q.e.d.
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Note that if g is uniform polynomial time then the resultant contains
an infinite set iff it contains a uniform NP infinite set. This is because
Ut’s are define using Cn’s only as advises. We could also consider ”expo-
nential” version of the resultants, replacing ”polynomial size proof” with
”sub-exponential size proofs” and NP-sets with sets in NTime(2no(1)

).
The proof of the lemma utilizes the fact that the soundness of P has

short P -proofs. As mentioned earlier, this is true for all P ⊇ EF and also
for all known natural systems simulating EF . However, the statement can
be also viewed (and was originally) as a simple model theoretic fact.6 Let
K be any infinite first-order structure, Θ(y) an existential formula in the
language of K, and b ∈ K. Then there is an extension of K to a model N of
a theory S (in the language of K) in which Θ(b) holds iff b satisfies in K all
universal consequences of Θ(y) provable in S. Taking Θ(y) to be ∃x(|x| ≤
|y|ℓ), g(x) = y, and considering only cofinal extensions N of a canonical
structure Mn (defined in Section 3) to a model of T corresponding to P
yields the theorem too. In this way a variant of the lemma can be proved,
for example, for resolution R which does not prove its own soundness, cf.[3].

Lemma 1.2 suggests that one should thus try to find P/poly p-stretching
maps g = {Cn}n such that any NP/poly-set disjoint with its range must be
small, forgetting about the condition that the disjointness is P -provable.7

This would imply, in particular, that resultants with respect to any P must
contain only small NP-sets and that there are P -hard τ(g)-formulas. Here
the qualification ”small” cannot mean finite because as long as we drop the
P -provability we can encode into advises of the NP/poly sets polynomially
many elements from each {0, 1}m\Rng(g). It seems that the meaning of the
qualification most natural and so most useful for further research is ”small
density”. A chief reason is the connection with pseudo-random generators.
We will define a modification of the NW-generators for this purpose in the
next section.

Let us summarize this discussion by a simple formal statement. It follows
from the fact that for any proof system P and any polynomial p(n) the set of
b’s for which τ(g)b has a P -proof of size at most p(|τ(g)b|) is an NP/poly-set
in the complement of Rng(g).

6The name ”resultant” reflects a corresponding notion in model theory which itself
generalizes the well-known notion of resultant in field theory.

7On the other hand, finding any P for which the resultant contains a set intersecting all
{0, 1}n, n ≥ 1, is also unlikely to be easy: Assume that A is an NP-set in the complement
of the truth table function (see Definition 4.1), such that A ∩ {0, 1}n 6= ∅, for all n ≥ 1.
Then BPP ⊆ NP : Guess f ∈ A. So f is a function with large C(b). By [21, 10] such f

can be used for derandomization of BPP. I learned this example from R. Impagliazzo.
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Corollary 1.3 Let g = {Cn}n be a P/poly p-stretching map. Let P be an
arbitrary proof system and p(n) any polynomial.

Assume that there is a function ǫ : m → ǫ(m) < 1/2 such that the
density of any NP/poly-set A in the complement of Rng(g) is at most ǫ:
|A ∩ {0, 1}m| ≤ ǫ(m) · 2m.

Then the τ -formula τ(g)b determined by a randomly chosen b ∈ {0, 1}m

requires with the probability at least

1 − 2n−m(n) − ǫ(m) ≥ 1/2 − ǫ(m) > 0

P -proofs of size bigger than p(|τ(g)b|).

The question whether there are any P/poly p-stretching maps g = {Cn}n

allowing only small density NP/poly sets in their complement has been
considered by Rudich [29]. He defines a demi-hardness of such gn as the
minimum s such that there is a non-deterministic circuit of size ≤ s defining
a set in the complement of Rng(gn) of size at least s−12m(n), and he con-
jectures (see the demi-bit Conjecture 5 in [29]) that there exists such g with

m(n) = n+1 and the demi-bit hardness 2nΩ(1)
. The conjecture implies that,

for any P , with a probability exponentially close to 1 a random b /∈ Rng(g)
yields the τ -formula τ(g)b requiring an exponential size P -proof. In fact, he
proposes a candidate g based on the subset-sum. There are no results in
[29] supporting the conjecture.

2 Candidate τ -formulas

In this section we define a modification of the NW-generators as a candidate
for g yielding hard τ -formulas. To motivate the changes we first need to
briefly discuss how the NW-generators work.

Definition 2.1 ([21]) Let ℓ ≥ 1. An ℓ-sparse matrix A is an m × n 0 − 1
matrix having in each row i entry 1 in at most ℓ columns Si ⊆ [n].

Let A be an ℓ-sparse matrix and f : {0, 1}≤ℓ → {0, 1} be a boolean
function defined on vectors of size at most ℓ. The map

NWA,f : {0, 1}n → {0, 1}m

computes from x ∈ {0, 1}n vector y ∈ {0, 1}m with i-th bit yi := f(xj1 , . . . , xju)
for Si = {j1 < . . . < ju}, u ≤ ℓ.
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Assume that we have a predicate D on {0, 1}m. We consider D as an
oracle, and this oracle independence of the constructions around the NW-
generators is one of the reasons for trying to adapt them for our purposes.
One picks an ℓ-sparse m × n matrix A and a function f : {0, 1}≤ℓ → {0, 1}
with large hardness, and defines g := NWA,f . If A has a suitable com-
binatorial property (being the so called (ℓ, log(m))-design, cf.[21]) then by
[21, 10] the circuit complexity of f is CD(f) ≤ O(m2), assuming that D
distinguishes the pseudo-random strings produced by g from truly random
strings with the discrepancy at least 1/m.

Now assume that D is computable in (non-uniform) time mk. Then
CD(f) = O(m2) implies C(f) = O(m2k) and to find any f of such complex-
ity we need ℓ ≥ c · log(m), where the parameter c grows with k. The same is
true for D computable in a non-deterministic way (circuits querying D are
then non-uniform analogy of the ∆p

2 level of the polynomial-time hierarchy).
In other words, ℓ grows as the time complexity of D grows.

Let C(f) = s. So g is computed by a circuit of size O(ms) and the
τ(g)-formulas will have size O(ms) too. Hence an NP-oracle D asking if
there is a P -proof of τ(g)b of size ≤ |τ(g)b|

t has the time complexity at
least (ms)t >> s. We cannot thus choose ℓ, f and s in order to have a
”sufficiently” hard function for the predicates Ut from the proof of Lemma
1.2. Here it is irrelevant whether ℓ is small or large. The standard analysis
of the NW-generators does not work and we cannot reduce the problem of
the hardness of τ(g)-formulas to the hardness of f in this way.

For the derandomization purposes it is important that one can con-
struct (in uniform polynomial time even) suitable matrices A with n =
O(c2 log(m)). This is irrelevant for our purposes and we relax these condi-
tions as much as possible.

We propose to study maps g of the form g := NWA,f , where n < m <
nO(1), ℓ = O(log(m)), A is a random ℓ-sparse m × n matrix, and f is a
random function on {0, 1}≤ℓ. A suitable random process yielding an ℓ-
sparse matrix A is the following. For every i ≤ m and u ≤ ℓ let ji,u be
chosen independently and uniformly at random from [n]. Let Si ⊆ [n] be
the set of these values for fixed i, and define Ai,j = 1 iff j ∈ Si. Similarly,
random f on {0, 1}≤ℓ is constructed by filling its truth table by random
bits, independently and uniformly. Note that any such g is computed by a
circuit of size nO(1) (as each bit is expressible by a DNF for at most O(log n)
variables).

Our working conjecture is that all τ -formulas from such a g with
parameters m = n + 1 and ℓ = c · log(n), c ≥ 1 a sufficiently large constant,
are hard for EF and possibly even for some stronger systems, if not for all.
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In fact, we think that such a g may have a stronger property (defined in
the next section) of being pseudo-surjective for EF and free even for some
stronger proof systems (with m getting smaller as the proof system gets
stronger).

The intuition why this should be so is that a proof system P trying
to prove the unsolvability of the system of m equations g(x) = b (one for
each bit of b) is forced to operate with functions akin to f but defined on
many large sets of inputs (that differ a lot among themselves too) and these
functions are hard and thus inexpressible in P by small circuits. This should
happen if sets Si of ones in rows i ≤ m are interconnected in a random way
or sharing a suitable expansion property of a random collection of such sets.

The first step towards establishing the conjecture could be the following
question.

Problem 2.2 Let gn be of the form gn := NWA,f with parameters m :=
n + 1 and ℓ := c · log(n), c ≥ 1 a sufficiently large constant, and random A
and f .

Prove under some plausible hardness assumption that gn are hitting set
generators of super-polynomial hardness. That is, the minimal s such that
there is a circuit of size at most s defining a subset of {0, 1}n+1 \ Rng(gn)
of size at least s−12n+1 is not polynomial in n.

The τ -formulas of the form NWA,f were studied already by Alekhnovich
et.al.[2]. However, there are important differences from our set-up. In [2]
bigger ℓ are allowed and, in order to express the formulas succinctly, ex-
tension variables for various boolean functions are used. In particular, they
consider f that cannot be computed by small circuits from a circuit class
with which the proof system operates. More important, however, seems to
me be the differences in intuition why the τ -formulas for NWA,f should be
hard: According to [2] (see the 3rd paragraph on p.5 there) a key source of
the proof complexity of the τ -formulas should be the computational com-
plexity of f . In our case the f ’s are computationally easy (as they depend
only on logarithmically many inputs) and the presumed hardness of the τ -
formulas should depend on combinatorial properties of A, taking f random.

Allowing n of size close to m brigs us to the realm of strong pseudo-
random generators and one-way functions. Goldreich [8] has made an
independent8 suggestion to consider functions NWA,f with n = m, same ℓ

8I lectured about the candidate g and the motivation behind at the Workshop on

Complexity of Proofs and Computations at the IAS in Princeton in December 2000. I am
indebted to A. A. Razborov for pointing out reference [8] to me.
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and f as above, and an explicit A having a suitable ”expansion” property, as
candidates for one-way functions. [8] does not contain any result supporting
the conjecture.

Let me conclude with another motivation to look at the modification
of the NW-generator with the proposed change in parameters. Ajtai [1]
has proved a form of independence of the pigeonhole principle for bounded
arithmetic I∆0(F ) (or V 0

1 in other notation, cf. [13]). In particular, one can
construct suitable models of the theory containing a bijection F : [n + 1] →
[n] (the map F is represented by a symbol in the language, an oracle, not
by a circuit). So the (n + 1) × n matrix A in which Aij = 1 iff F (i) = j
defines a linear isomorphism between {0, 1}n+1 and {0, 1}n. It is an ideal
NW-generator: From n independent bits produces n + 1 independent bits.
Hence for finite n we should try to construct matrices A simulating this
property and it makes sense to start with matrices with analogous features
(genericity/randomness of the entries and sparsity).

3 Pseudo-surjective functions

For the next definition we do not explicitly show all variables of the τ -
formulas. Namely, the notation τ(C)b(x1, . . . , xn) means that x1, . . . , xn

are the variables of τ(C)b corresponding to the bits of an x ∈ {0, 1}n; the
auxiliary variables y’s corresponding to the bits of the computation of the
circuit C will not be shown. The symbol V ar(q) denotes the set of circuits
using variables from q.

Definition 3.1 Let P be any proof system.
Part 1.
Let s ≥ 1, and let C be a circuit computing a map g : {0, 1}n → {0, 1}m,

m = m(n) > n.
C is s-pseudo-surjective for P iff all disjunctions of the form

τ(C)B1(q
1) ∨ . . . ∨ τ(C)Bk

(q1, . . . , qk)

require P -proof of size ≥ s. Here k ≥ 1 is arbitrary, and B1, . . . , Bk are
circuits such that B1 ∈ V ar(∅), B2 ∈ V ar(q1), . . ., Bk ∈ V ar(q1, . . . , qk−1),
qi disjoint m-tuples of atoms.
Part 2. Let g = {Cn}n be a P/poly p-stretching map. Let s(n) ≥ 1 be a
function.

Then we say that g is s(n)-pseudo-surjective for P iff for all but finitely
many n ≥ 1 the circuit Cn is s(n)-pseudo-surjective for P .
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Map g is (exponentially) pseudo-surjective for P iff it is s(n)−pseudo−

surjective for some s(n) ≥ nω(1) (resp. for s(n) ≥ 2nΩ(1)
).

Note that, in particular, the parameter k in Definition 3.1 may change
with n and is bounded a priori only by the size of the whole proof, i.e. by
s(n). Free functions, defined in [14], are functions obeying this definition
but with any constant k only9.

The disjunction in the definition of the pseudo-surjectivity can be in-
terpreted as an interactive protocol for computing an element outside of
the range of g. The interaction goes on between an all-powerful Teacher
(supplying xi’s) and P/poly Student (suggesting Bi’s). See [15] for details
of this interpretation and [20] for more information about the interactive
computation model.

The pseudo-surjectivity of g is also equivalent to a model-theoretic prop-
erty of g. First a little terminology. Let M be any countable non-standard
model of true arithmetic in the language having symbols for all polynomial-
time algorithms, computing either a function or deciding a relation. Let
n ∈ M \ N be a non-standard element. Structures Mn and M∗

n are sub-
structures of M with the universes {u ∈ M | ∃k ∈ N, |u| ≤ nk} and

{u ∈ M | ∀k ∈ N, |u| ≤ 2n1/k
} respectively. Any structure of the form

Mn will be called a small canonical structure, and of the form M∗
n a

large canonical structure.
The following is proved analogously as [15, Thm.6.2], replacing PV by

S1
2 and Herbrand theorem for (Σb

2-consequences of) PV by a KPT-style wit-
nessing theorem for S1

2 where the number of disjuncts is unbounded (besides
implicit polynomial upper bound); see [24, 12] or [13, Sec.7.3]. That corre-
sponds exactly to the disjunctions in the definition of pseudo-surjectivity.

Theorem 3.2 Let P ⊇ EF and let g = {Cn}n be a P/poly p-stretching
map. Then g is pseudo-surjective (resp. exponentially pseudo-surjective)
for P iff any small canonical structure Mn (resp. large canonical structure
M∗

n) can be extended to a model of S1
2 in which P is sound and where gn :

{0, 1}n → {0, 1}m(n) is onto.

If g is only free for P then the extension can be guaranteed to satisfy
only theory PV , cf.[15, Thm.6.2]. If we only knew that all τ(g)-formulas

9Pseudo-surjective functions as well as iterable ones (to be defined in Def. 3.6) are
variants of the concept of free functions and thus could be named by adding some adjectives
to the term ”free”. However, we fear that this would lead to a confusion as there are enough
adjectives already, and so we decided to use two new names.
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are hard for P then for any b ∈ Mn outside of the range of g we can find an
extension in which b belongs to Rng(g) but we may not be able to do it for
two b’s at the same time.

For the next definition let C(x1, . . . , xn) be a circuit with m > n outputs.

Definition 3.3 An iteration protocol Θ for C is a sequence of conditions

C(u1) = v1, C(u2) = v2, . . . , C(ut) = vt

where

1. Each ui is an n-tuple of distinct variables, each vi is an m-tuple of
distinct variables.

2. Every variable occurs in at most one ui and in at most one vi.

3. If a variable occurs in ui, i > 1, then it also occurs in some vj, j < i.

The variables in u1 are the input variables of Θ, the variables vi
j that occur

in no ur are the output variables of Θ.
The size of Θ is t. The iteration protocol naturally defines a circuit

(whose input/output variables are the input/output variables of Θ). It will
be denoted Iter(C/Θ).

Theorem 3.4 Let P simulates resolution. Let C(x1, . . . , xn) be a circuit
with m > n outputs. Let Θ := (C(u1) = v1, C(u2) = v2, . . . , C(ut) = vt)
be an iteration protocol for C of size t. Let D(u1

1, . . . , u
1
n) be the circuit

Iter(C/Θ).
Assume that C is s-pseudo-surjective for P . Then D is Ω(s/t)-pseudo-

surjective for P .

Proof :
Let us start with an evident observation.

Claim: The formula ¬τ(D)y follows by a size O(t) P -proof from formulas

¬τ(C)v1(u1), . . . ,¬τ(C)vt(ut)

where the x-variables are substituted for by the variables in u1, and the y-
variables are substituted by the output variables of D (i.e. of Θ).

Assume that some disjunction of the form

τ(D)B1 ∨ . . . ∨ τ(D)Bk
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with the properties as in Definition 3.1 has a P -proof of size u. Hence the
set ¬τ(D)B1 , . . . ,¬τ(D)Bk

has a P -refutation of size O(u).
By Claim, each formula ¬τ(D)Bi has a size O(t|Bi|) P -derivation from

formulas ¬τ(C)v1(u1), . . . ,¬τ(C)vt(ut) with the output variables being sub-
stituted for by the outputs of Bi (the factor |Bi| estimates the increase in
the size due to the substitution).

Hence all formulas ¬τ(D)B1 , . . . ,¬τ(D)Bk
can be derived in P from in-

stances of formulas ¬τ(C) as above in the total size at most
∑

i≤t O(t|Bi|) =
O(tu). This means that the disjunction of these instances of the τ(C)-
formulas have a P -proof of size at most O(tu) + u = O(tu). As this O(tu)
must be at least s, u = Ω(s/t) follows.

It remains to verify that the disjunction so constructed obeys the condi-
tion on variables posed in Definition 3.1, which is straightforward.

q.e.d.

Assume we have a circuit C : {0, 1}n → {0, 1}2n and we want to boost its
output to 4n bits by defining D(x1, . . . , xn) = (z1, . . . , z4n) as follows: apply
C again to the first resp. to the second n bits of the output of C(x1, . . . , xn).
Assume that the τ(C)-formulas are hard. However, this does not imply that
the τ(D)-formulas are also hard. For example, it can happen that for some
b1, b2 ∈ {0, 1}n the disjunction τ(C)b1 ∨ τ(C)b2 has a short P -proof (see [15]
for other examples) and hence τ(D)(b1,b2) has a short P -proof too.

The moral of the pseudo-surjectivity is that by establishing this stronger
property for C we allow constructions of circuits by iterations, and the
resulting circuits will still be pseudo-surjective and so still yield hard τ -
formulas. This will be important in the next section, in the relation of the
hardness of τ -formulas and the provability of circuit lower bounds.

Corollary 3.5 Let P simulates resolution. Let g = {Cn}n be a P/poly
p-stretching map. Assume that g is pseudo-surjective (resp. exponentially
pseudo-surjective) for P . Let Θn, n ≥ 1, be iteration protocols for Cn of size

nO(1) (resp. of size 2no(1)
). Let Dn := Iter(Cn/Θn).

Then the function computed by {Dn}n is pseudo-surjective (resp. expo-
nentially pseudo-surjective) for P as well.

Let Θ := (C(u1) = v1, C(u2) = v2, . . . , C(ut) = vt) be an iteration proto-
col. As we noted in the proof of Theorem 3.4, the disjunction ¬τ(C)v1(u1)∨
. . . obeys, in particular, the restrictions from Definition 3.1. Moreover, if
D is the circuit obtained by iterating C along Θ, and there is a P -proof
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of size u of a disjunction ¬τ(D)q1(p1) ∨ . . . corresponding to an iteration
protocol Ψ := (D(p1) = q1, . . . , D(pr) = qr) for D then the proof of the
theorem constructs a P -proof of size O(tr) of a disjunction coming from an-
other iteration protocol for C, a “composition” of Θ and Ψ. Hence we can
get by in Theorem 3.4 with a little weaker notion than pseudo-surjectivity
and still preserve the iterability. It makes sense to formalize it as it may be,
in principle, easier to establish that property for C in a given proof system.
Indeed, this is what we do in Section 6 for resolution.

This weak notion is formalized in the next definition and theorem.

Definition 3.6 Let P simulates resolution. A circuit is s-iterable in proof
system P iff it satisfies the condition of Definition 3.1(Part 1.) with the
restriction that circuits B1, . . . , Bk are just substitutions of variables and
constants for variables.

A P/poly function g is s(n)-iterable iff the circuits computing it on inputs
from {0, 1}n are.

Theorem 3.7 Let P simulates resolution. Let C(x1, . . . , xn) be a circuit
with m > n outputs. Let Θ := (C(u1) = v1, C(u2) = v2, . . . , C(ut) = vt)
be an iteration protocol for C of size t. Let D(u1

1, . . . , u
1
n) be the circuit

Iter(C/Θ).
Assume that C is s-iterable for P . Then D is Ω(s/t)-iterable for P .

The properties of g we have introduced in this section are stronger
than just assuming the hardness of the τ(g)-formulas: If g is free, pseudo-
surjective or iterable for P then, in particular, the corresponding τ -formulas
are hard for P .

4 Provability of circuit lower bounds

A prominent example of dWPHP is its instance for the truth table function
(considered first by Razborov [26] in this context). It says that there is a
boolean function that requires large circuits. Recall that a circuit of size s
can be encoded by c0s log(s) bits, some fixed c0 > 0.

Definition 4.1 Let s ≥ k ≥ 1. The truth table function tts,k takes as input
c0s log(s) bits describing a size ≤ s circuit C with k inputs, and outputs 2k

bits: the truth table of the function computed by C.
tts,k is, by definition, equal to zero at inputs that do not encode a size

≤ s circuit with k inputs.
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We think of the truth table function as of a polynomial time function
defined on the whole {0, 1}∗, and the parameters s and k in the notation tts,k

just determine how large circuits the function considers when computing
truth tables of functions in k variables. Note that for δ < 1, s = 2δk, and
n = 2k, tts,k maps {0, 1}n(1−Ω(1))

into {0, 1}n, i.e. from a smaller set into a
bigger one.

The following theorem can be seen as a propositional version of a theorem
of Jeřábek [11] that the dWPHP for polynomial-time functions is axioma-
tized, over S1

2 , by the dWPHP for the function tts,k, where s = 2δk, any fixed
δ > 0. In fact, for P ⊇ EF and pseudo-surjectivity it can be deduced from
Jeřábek’s theorem using Theorem 3.2. We give instead a proof-theoretic
argument that applies to any P at least as strong as resolution and also to
iterability (for which a model-theoretic characterization analogous to The-
orem 3.2 is somewhat unnatural as it deals with substructures of models of
S1

2).

Theorem 4.2 Assume that P simulates resolution. Then the following
hold:

1. There exists a g (exponentially resp.) pseudo-surjective for P iff for
any 0 < δ < 1, the truth table function tts,k with s = 2δk is (exponen-
tially resp.) pseudo-surjective for P too.

2. There exists a g is exponentially pseudo-surjective for P iff there is
c ≥ 1 such that for s = kc the truth table function tts,k is exponentially
pseudo-surjective for P .

3. Both statements 1. and 2. hold if pseudo-surjectivity is replaced by
iterability.

This theorem is the chief (but not only) reason for introducing the
pseudo-surjectivity property. It is not known to be valid if the pseudo-
surjectivity is replaced by weaker properties of hardness of τ(g)-formulas or
freeness.

Proof :
The if-parts are trivial in all three statements, so we need to prove only

the only-if parts. We start with the first statement, and analyzing its proof
we derive the other two statements at the end.

We want to amplify first g to get at least n2 outputs. Assume m(n) < n2,
say m(n) = n+1 for the worst case. Compose Cn with itself n -times, always
applying Cn to the first n bits of the intermediate results. This gives C ′

n
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with 2n output bits. Then compose C ′
n with itself along the binary tree (as

in the remark after Theorem 3.4) of depth O(log n) to get n2 output bits.
The resulting C ′′

n : {0, 1}n → {0, 1}n2
was obtained from Cn by an iteration

protocol of size O(n) and so C ′′
n is, by Theorem 3.4, also (exponentially)

pseudo-surjective. So without a loss of generality we will assume in the next
that already Cn outputs n2 bits.

We could continue now by an iteration along the binary tree. However,
to get better estimate on the complexity of the resulting circuit (useful in
Theorem 4.3) we shall proceed differently. Compose Cn along the n-ary tree.

That is, define C
(1)
n (x) := Cn(x) and C

(i+1)
n (x) as (C

(i)
n (y1), . . . , C

(i)
n (yni

)),

where C
(i)
n (x) = (y1, . . . , yni

) and all y’s are from {0, 1}n. So C
(i)
n : {0, 1}n →

{0, 1}ni+1
. Note that C

(i)
n is defined by an iteration protocol of size O(ni)

and so is, for any fixed i ≥ 1, also (exponentially) pseudo-surjective by
Theorem 3.4.

Denote t := |Cn|. Assume ni0+1 = 2k (disregarding some of the bits if
ni0+1 is not a power of 2) and let w < 2k be arbitrary. Hence we may think

of w as a member of {0, 1}k. Let a ∈ {0, 1}n and b ∈ {0, 1}2k
be b = C

(i0)
n (a).

Think of b as the truth table of a function, denoted also b, from {0, 1}k to
{0, 1}. The w-th bit of b is simply the value of the function b on w. It is
easy to see that there is a circuit E that computes b(w) given a and w, and

whose circuit size is O(i0t): it computes as C
(i0)
n (hence the factor O(t))

but only along the branch of depth i0 (hence the factor i0) in the n-ary tree
leading to the part of b containing the w-th bit.

Given δ < 1 we fix i0 ≥ 1 such that O(ti0) ≤ nδ(i0+1). As t = nO(1), such
a constant i0 (depending on δ and the O(1)-exponent in t = nO(1) but not
on n) exists.

It remains to turn this informal argument into a proof of the (exponen-
tial) pseudo-surjectivity of tts,k. We have not been specific about a circuit
that computes tts,k. An inductive property we shall need is that if a circuit
F is F1 ∧ F2 then there is a polynomial size resolution proof of the fact
that tts,k(F ) is obtained from tts,k(F1) and tts,k(F2) by a coordinate-wise
conjunction (and similarly for other connectives).

We also need to fix an encoding of circuits with a particular property.
We think of the usual encoding, that describes circuit as a straight line
program with consecutively numbered nodes, and each node labelled by a
connective, variable, or a constant, and by indices of its input nodes. Some
constants in circuits we shall consider will have special role and we shall
denote this by semicolon F (p; x). We assume that the code ⌈F (p; x)⌉ of this
circuit is a string of 0, 1 and atoms from p. In this way for any particular
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substitution p := a ∈ {0, 1}n, the code ⌈F (a; x)⌉ of F (a; x) is obtained
by the same substitution from ⌈F (p; x)⌉. This can be achieved simply by
encoding when at position of a node with in-degree 0 corresponding to some
atom pi the code expects 0 or 1 and not the index of a variable. This is only
a technical requirement about the encodings of circuits, not about the truth
table function. It will be need only in the proof of Part 3. of the theorem.

Let us now continue with the proof of Part 1..

Claim 1: There is a P -proof of size 2O(k) of
∧

w∈{0,1}k E(p; w) = bw from
the hypothesis D(p) = b. Here D = Iter(Cn/Θ), where Θ is the protocol
used above for iterating Cn.

This is because for any fixed w, E(p; w) with p interpreted as input computes
exactly as Cn along the branch of the tree leading to bw, and the computation
of Cn along all branches is a part of the definition of D.

Claim 2: There is a P -proof of size 2O(k) of tts,k(⌈E(p; w)⌉) = b from the
hypothesis

∧
w∈{0,1}k E(p; w) = bw.

This amounts to proving that the truth table function indeed com-
putes the truth tables, and it is proved by induction on the size of E
using the inductive properties of tts,k we described before Claim 1. As
|E| = O(i0|Cn|) = nO(1) this can be done in size nO(1)2O(k) = 2O(k).

Now we are ready to conclude the proof of Part 1. Assume that there is
a P -refutation of some set of equations

tts,k(x
1) = B1, tts,k(x

2) = B2(x1), . . . , tts,k(x
u) = Bu(x1, . . . , xu−1)

Substitute x1 := ⌈E(p1; w)⌉ (p1 an n-tuple of new atoms) and derive the
substitution instance of the first equation tts,k(⌈E(p1; w)⌉) = B1 from
D(p1) = B1 by a P -proof of size 2O(k), using Claims 1 and 2. Then sub-
stitute x2 := ⌈E(p2; w)⌉ and derive the substitution instance of the second
equation tts,k(⌈E(p2; w)⌉) = B2(⌈E(p1; w)⌉) by a size 2O(k) P -proof from
the hypothesis D(p2) = B2(⌈E(p1; w)⌉).

In this way we transform the original refutation into a refutation of
equations D(p1) = F 1, D(p2) = F 2(p1), . . . where F 1 = B1, F 2(p1) =
B2(⌈E(p1; w)⌉), etc. The size of the new refutation is longer than the size of
the original refutation by a factor 2O(k). So if Cn is (exponentially) pseudo-
surjective, so is D (by Theorem 3.4), and hence tts,k is too.

To prove Part 2. assume that 2nǫ
is a lower bound from the hypothesis

of exponential pseudo-surjectivity of Cn. Pick 0 < δ < ǫ. We iterate Cn

as before along the n-ary tree but now creating 2nδ
outputs. The size of
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the protocol is O(2nδ
) and so D constructed in this way is exponentially

pseudo-surjective too (by Theorem 3.4).
The circuits E for functions in k := nδ unknowns have size O(|Cn|nδ) =

nO(1) = kO(1). Hence for s := kc, some suitably large c > 0, tts,k is expo-
nentially pseudo-surjective. This proves Part 2.

Part 3. follows by inspection of the proof of the first two parts. Namely,
we need only that the substitutions x1 := ⌈E(p1; w)⌉, . . . substitute atoms
from p1, . . . and constants for variables. Hence the requirement from the
definition of iterability that Bi’s are just substitutions of variables and con-
stants for variables is not altered by the substitutions x1 := ⌈E(p1; w)⌉, . . .
used in the construction.

q.e.d.

Informally, if P proves circuit lower bounds for a class of circuits then,
depending on the rate of the lower bounds and on the class, it rules out a
class of circuits as pseudo-surjective/iterable for P . In particular, we do not
expect that all proof systems will admit pseudo-surjective/iterable circuits.
This is because we hope that a strong lower bound can be eventually proved
for some explicit function (say in E). Then P associated to the theory in
which the proof is carried out will have short proof of the τ(tts,k)-formula
for the truth table of the function (if it is in E then its truth table can be
recognized in time polynomial in the size of the truth table). Hence such P
cannot admit pseudo-surjective/iterable functions.

On the other hand, I know of no such conditional limitation for free
functions: A model-theoretic characterization of freeness in [15] analogous
to Theorem 3.2 uses models of theory PV and PV does not seem to allow
a general iteration of functions needed in the proof of Theorem 4.2.

There is an a priori lower bound on the trade-off between the circuit
complexity and the output/input ratio of functions, should they be pseudo-
surjective or iterable for strong proof systems. Let us give an example.

Theorem 4.3 No AC0-map outputting at least n1+Ω(1) bits is iterable or
pseudo-surjective for a proof system that admits a polynomial size proof of
an 2Ω(n) lower bound to AC0-circuits..

Proof :
By the proof of Theorem 4.2, the iteration of an AC0-circuit C with

n1+Ω(1) outputs yields an AC0-circuit D, say of depth d (depending on the
depth of C and on the Ω(1) constant).
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q.e.d.

No lower bound to AC0-circuits of the rate 2Ω(n) is known at present.
But note that EF proves an exponential lower bound for constant depth
circuits computing the parity (unfortunately this lower bound is only of the

form 2nΩ(1)
). In [13, Sec.15.2] this is done in PV1+WPHP (PV1) but for the

formalization in which the function is given by its polynomial-time definition
and not by the truth table. In the latter case the WPHP is used only for
logarithmically small parameters, and for such parameters the WPHP is
provable in PV1 (cf. [13]).

It is not the case that we can simply take theory T proving (or axiom-
atized by) dWPHP, and hence to show that no g is pseudo-surjective for
the corresponding P . The reason is that T has to be universal in a lan-
guage with polynomial-time function and predicates (perhaps augmented
by S1

2(PV )) and we do not have, a priori, any such T proving dWPHP
for polynomial-time functions. Theorem 4.2 shows that the only way how
such a T can prove dWPHP is to prove an explicit (in the sense of the dis-
junction from the definition of freeness or pseudo-surjectivity) circuit lower
bound. No such theory is in sight, no matter how strong (e.g. the uni-
versal consequences of ZFC in the appropriate language). This yields some
additional credit to the conjecture that even strong P may admit free or
pseudo-surjective functions.

A connection between various forms of WPHP and circuit lower bounds
has been noted originally by Razborov [26]. However, his construction is
different. Namely, assume that we can consistently think in P (i.e. we
have strong lower bounds) that a map F is, say, a bijection between 2k and
t << 2k. Then all truth assignments to k variables can be enumerated using
F by numbers < t. Consequently, we cannot disprove that every boolean
function has a DNF with ≤ t clauses and, in particular, we cannot prove
>> O(tk) circuit lower bounds. By proving lower bounds for (various forms
of) WPHP(F ) in P one thus proves also the independence of circuit lower
bounds in P , i.e. lower bounds for the size of P -proofs of the τ -formulas for
suitable tts,k; see e.g. [27] for the strongest result of this form.

The construction has less to do with circuits; one simply enumerates a
large set by a smaller set of indices. Also, it cannot work even for systems
a bit stronger that resolution (like R(log)), as these systems do admit short
proofs of WPHP(F ). The remark on p.4 of [2] is meant to suggest a way
how to overcome this limit: Construct g of the form NWA,f yielding P -hard

τ -formulas with m ≥ 2nΩ(1)
. Then interpreting b ∈ {0, 1}m as the truth
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table of a boolean function b∗ in k ≥ nΩ(1) variables allows to compute b∗

by a size O(n + C(f)) circuit. If C(f) = nO(1) this yields C(b∗) = kO(1), i.e.
P cannot prove superpolynomial circuit lower bounds. The price to be paid
for this construction is that now ℓ (the number of ones in a row) cannot be
small (must be at least nΩ(1)) and one cannot take a random function on ℓ
variables but some suitable polynomial size computable one (or, at least, in
NP ∩ coNP), and encode the circuit computing it into the τ -formula.

The notions of pseudo-surjective and iterable circuits offer an alternative
approach towards lower bounds for the τ(tts,k)-formulas.

Let me conclude the section with a general comment. We are not inter-
ested in an interpretation of the hardness of the τ(tts,k)-formulas as saying
that NP 6⊆ P/poly (or its variants depending on the actual s) are unprov-
able in some weak formal systems. If one is interested in such unprovability
of complexity conjectures then I think still the strongest such statement is
that a theory corresponding to a proof system (containing EF ) does not
prove super-polynomial lower bounds for the system, cf.[18].

We are interested in τ(tts,k) as they are, in the sense of pseudo-surjectivity,
the canonical hard τ -formulas. But we may note in this context that it is
well-know (see [17, 13]) that any super-polynomial lower bound for P im-
plies that P does not disprove the conjecture NP 6⊆ P/poly (this seems
to me be the most interesting of the possible independence/consistency re-
sults about complexity, cf. the last page in [13]). Formally, in propositional
logic, this means that if Satn(x, y) is a canonical circuit expressing that
x = (x1, . . . , xn) is a truth assignment satisfying the formula (encoded by)
y = (y1, . . . , yn) and D(y) is any size nO(1) circuit with n outputs then no
implication of the form Satn(x, y) → Satn(D(y), y) has a polynomial size
P -proof.

5 Pseudo-surjective functions and WF

Jeřábek [11] has found an elegant extension of EF corresponding to the
theory BT (mentioned in the introduction). Let CF (Circuit Frege) be a
formulation of EF as a Frege system working directly with circuits, cf. [11]
for a formulation.

Definition 5.1 ([11]) Associate with all circuits C(x1, . . . , xn) with m out-
puts, m > n, an m-tuple of different variables yC

1 , . . . , yC
m. Different circuits

are assigned disjoint tuples of variables.
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WF is CF together with new axioms of the form:

C(D1, . . . , Dn) 6≡ (yC
1 , . . . , yC

m)

where D1, . . . , Dn are arbitrary circuits (that may contain yC
i ’s as well as

yE
j ’s for other circuits E).10

It is not known if EF simulates WF but WF itself p-simulates (by
[11]) the Unrestricted Extended Nullstellensatz proof system UENS of [5].
UENS p-simulates EF and is not known to be simulated by it.

Theorem 5.2 Let P ⊇ CF be a proof system that does not admit any
pseudo-surjective circuit. Then P ≥ WF .

Proof :
Let Mn be a canonical structure. Let π ∈ Mn be a WF -proof of formula

α. It is enough to prove that in any cofinal extension N of Mn, that is a
model of S1

2 and in which P is sound, the formula α is a tautology.
Let Ci(Di,j

1 , . . . , Di,j
ni

) 6≡ (yCi

1 , . . . , yCi

mi
), mi > ni, and 1 ≤ i ≤ t, 1 ≤ j ≤

si be all special axioms of WF used in π.
By the hypothesis of the theorem no Ci is pseudo-surjective for P . So

no Ci is pseudo-surjective for P in N either. The P -provable disjunctions
witnessing these facts are, by the soundness of P , tautologically valid in N .

Claim: No Ci is onto in N . In N , there is a t-tuple b = (b1, . . . , bt),
bi ∈ {0, 1}mi, such that bi /∈ Rng(Ci), for all i ≤ t.

Fix one i ≤ t, and let

τ(Ci)B1 ∨ . . . ∨ τ(Ci)Bk

be a tautological disjunction in N witnessing the non-pseudo-surjectivity of
Ci. By S1

2 find maximal r ≤ k such that there is an r-tuple a1, . . . , ar ∈
{0, 1}ni for which it holds

Ci(a1) = B1 ∧ . . . ∧ Ci(ar) = Br(a1, . . . , ar−1)

As the above disjunction is a tautology in N , r < k, and Br+1(a1, . . . , ar) is
outside the range of Ci. Doing this simultaneously for all i ≤ t gives us the
wanted t-tuple b.

Substituting (in N) for yCi

j := bi
j makes all special axioms in π tauto-

logically valid. Hence π becomes an CF derivation of α from tautologically
valid formulas. As CF is sound, α is a tautology in N too.

q.e.d.

10Jeřábek [11] defines WF in an equivalent but slightly different way in order to simplify
the proof of its soundness in BT .
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6 Iterability of the NW-generator in resolution

The notion of iterability (pseudo-surjectivity) and theorems in Sections 3
and 4 (with the exception of Theorem 3.2) hold for all proof systems con-
taining at least resolution. While our primary goal are strong systems, we
will prove here a particular form of iterability for resolution. In particular,
we shall consider NWB,⊕ based on a sparse n2−Ω(1)×n-matrix and the parity
function, and we shall prove that it is exponentially iterable in resolution by
a protocol that is a particular depth 1 tree. This will yield an output/input
ratio n3−ǫ, any ǫ > 0, which is somewhat better that o(n2) obtained by a
direct construction in [2] (although Razborov [28] has announced recently
an improvement to no(log n) and even for systems R(k) with small k).

Let us clarify the output/input ratio of what we want to maximize. As
shown in Section 4, a way to get lower bounds for the τ -formulas from tts,k

(and for as small s as possible) is to show lower bounds for iterability along
protocols with as much outputs as possible. Hence we aim at proving expo-
nential lower bounds for iterability of NWB,⊕ along a particular iteration
protocol with many outputs.

The corresponding thing in the direct approach of [2] is to prove lower
bounds for τ -formulas from g with as many outputs m(n) as possible (see
the remark after Theorem 4.3). This enforces large ℓ (say, at least nΩ(1))
and a need for encodings of computations of g. Specifically, they need lower
bounds for τ -formulas from g with as many outputs as possible and under
the functional encoding (cf.[2, 2.3]).

These two approaches are analogous to two ways how to get a pseudo-
random function generator: either by iteration of a pseudo-random number
generator or by a direct construction.

Thus, for the consequences about τ(tts,k), one is not particularly inter-
ested in lower bounds for τ -formulas based on a sparse m × n matrix with
large m. In fact, exponential lower bounds for such formulas for any m = nk

follow quite easily by the same proof as we shall give for Theorem 6.6, or
from [2, Thm.3.1] if one disregards the terms coming in from the encoding.

Definition 6.1 ([2, Def.2.1]) Let A be an m × n matrix. A boundary of
a set of rows I ⊆ [m], denoted ∂A(I), is the set of j ∈ [n] such that exactly
one entry Aij equals 1 for i ∈ I.

Let 1 ≤ r ≤ m, ℓ ≤ n and c > 0 be any parameters. An m × n
matrix is an (r, ℓ, c)-expander iff A is ℓ-sparse and for all I ⊆ [m], |I| ≤ r,
|∂A(I)| ≥ c|I|.

Recall from Section 2 the random process for getting an ℓ-sparse m × n
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matrices. The following theorem is proved by estimating the expected size
of |

⋃
i∈I Si| for I ⊆ [m] of size |I| ≤ r.

Theorem 6.2 ([2, Thm.5.1]) There is α > 0 such that for any parame-
ters 1 ≤ ℓ ≤ n the random ℓ-sparse n2 × n-matrix is an (αn

ℓ n−(1/αℓ), ℓ, 3
4ℓ)-

expander with probability at least 1/2.
In particular, for any δ > 0 there is ℓ > 1 such that for all n large

enough the random ℓ-sparse n2 × n-matrix is an (n1−δ, ℓ, 3
4ℓ)-expander with

probability at least 1/2.

Proof :
The first part is exactly [2, Thm.5.1], and it immediately implies the

second part.

q.e.d.

Let us fix for the next few definitions and lemmas an m × n (r, ℓ, 3
4ℓ)-

expander A. For I ⊆ [m] let J(I) := {j ∈ [n] | ∃i ∈ I, Aij = 1} and let AI

be the (m− |I|)× (n− |J(I)|) matrix obtained from A by deleting all rows
in I and columns in J(I). Note that J(I) =

⋃
u∈I Su.

In the next lemma we slightly append the original formulation, adding
to it what is really proved.

Lemma 6.3 ([2, L.4.6]) For any set of rows I ⊆ [m] of size |I| ≤ r/2
there is Î ⊇ I, |Î| ≤ 2|I|, such that

(*) For any i /∈ Î, |Si \ J(Î)| ≥ ℓ/2.

Moreover, for any Î of size |Î| ≤ r having this property (∗), AÎ is an
(r, ℓ, 1

4ℓ)-expander. Furthermore, there exists the smallest (w.r.t inclusion)

such an Î.

Definition 6.4 1. Any I satisfying the condition (∗) from Lemma 6.3 is
called a safe set of rows.

2. A partial assignment ρ :⊆ {x1, . . . , xn} → {0, 1} is called safe iff
dom(ρ) =

⋃
i∈I Si, for some safe I.

We pick any such I and call it the support of ρ, denoted supp(ρ).

3. Let b ∈ {0, 1}m. A safe partial assignment ρ with support I is a safe
partial solution of A · x = b iff for all Si ⊆ J(I),

⊕
j∈Si

ρ(xj) = bi.
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4. For ρ a safe partial solution with support I, bρ is an (m − |I|)-vector
with the ith coordinate being bi ⊕

⊕
j∈Si∩dom(ρ) ρ(xj), for i such that

Si 6⊆ dom(ρ).

Vector xI consists of those variables not in J(I).

Note that if ρ is a safe solution with support I, and ξ is a solution of
AI · xI = bρ, then ρ ∪ ξ is a solution of A · x = b.

Lemma 6.5 Let I ⊆ I ′ ⊆ [m] be two safe systems, with |I ′\I| ≤ r. Assume
that ρ is a safe assignment with support I. Let bi ∈ {0, 1}, i ∈ I ′ \ I, be
arbitrary.

Then ρ can be extended to a safe assignment ρ′ with support I ′ such that⊕
j∈Si

ρ′(xj) = bi, for all i ∈ I ′ \ I.

Proof :
By Lemma 6.3, AI is an (r, ℓ, 1

4ℓ)-expander. By the expansion property,
every nonempty subset of I ′ \ I has a non-empty border in AI and hence, in
particular, cannot constitute a linearly dependent set of rows of AI . Thus
the linear system

⊕

j∈Si\dom(ρ)

xj = bi ⊕
⊕

j∈Si∩dom(ρ)

ρ(xj)

has a solution ξ. Put ρ′ := ρ ∪ ξ.

q.e.d.

For ǫ > 0 let Bǫ be the submatrix of A consisting of the first n2−ǫ

rows. We shall denote (the circuit computing) NWBǫ,⊕ as Bǫ · x. For the
next theorem let Θǫ be the iteration protocol consisting of the following
formulas:

• Bǫ · x = (y1
1 , . . . , y

1
n, . . . , yn1−ǫ

1 , . . . , yn1−ǫ

n )

• Bǫ · yi = (z(i−1)n2−ǫ+1, . . . , zin2−ǫ)

where yi = (yi
1, . . . , y

i
n) for i ≤ n1−ǫ, and z is an n3−2ǫ-tuple of variables.

The following theorem will be proved by proving a lower bound on the
width of the proof in a way analogous to the width lower bound for resolution
proofs of Ramsey theorem in [14].
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Theorem 6.6 For any ǫ > 0 there is δ > 0 such that the following holds.
Let Bǫ and Θǫ be as above. Let b ∈ {0, 1}n3−2ǫ

be arbitrary.
Then any resolution refutation of Θǫ(z/b) must have the size at least

2n1−δ
.

Proof :
Denote by bi the n2−ǫ-tuple (b(i−1)n2−ǫ+1, . . . , bin2−ǫ). We shall denote

the coordinate in y corresponding to yi
j simply also yi

j rather than (i−1)n+j,
and the set of ones in the corresponding row of Bǫ by Syi

j
.

Let π be a resolution refutation of Θǫ(z/b). Let w denote the width
of π, i.e. the maximal cardinality of a clause in π. We shall construct a
sequence of clauses C0, . . . , Ce occurring in π and a sequence of partial safe
assignments αt :⊆ {x1, . . . , xn} → {0, 1} and βi

t :⊆ {yi
1, . . . , y

i
n} → {0, 1},

i ≤ n1−ǫ, t = 0, . . . , e such that the following conditions are satisfied:

1. C0 := ∅ is the end clause of π, i.e. the empty clause. Any Ct+1 is a
hypothesis of an inference in π yielding Ct, and Ce is an initial clause.

2. If xj occurs in Ct then xj ∈ dom(αt), and if yi
j occurs in Ct then

yi
j ∈ dom(βi

t).

3. yi
j gets a value by αt (i.e. if the row Syi

j
⊆ dom(αt)) then yi

j ∈ dom(βi
t)

and βi
t(y

i
j) =

⊕
x∈S

yi
j

αt(x).

4. βi
t is a partial safe solution of Bǫ · yi = bi.

5. Ct is false under the assignments αt, βi
t’s.

6. Let wx(C) and wy(C) denote the number of occurrences of the x-
literals and y-literals in C respectively. Then |supp(αt)| ≤ 2wx(Ct)
and

∑
i |supp(βi

t)| ≤ 4wx(Ct) + 2wy(Ct).

Put all α0 and βi
0 equal to ∅. Assume we have Ct and αt, βi

t’s, and that
Ct has been inferred in π

(a) either from D1 ∪ {yi
j} and D2 ∪ {¬yi

j},

(b) or from D1 ∪ {xj} and D2 ∪ {¬xj}.

In case (a) extend the support of βi
t by some row containing j, and let

I be the smallest safe set of rows containing this row and supp(βi
t). Such I
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exists, by Lemma 6.3, provided |supp(βi
t)| + 1 ≤ 4wx(Ct) + 2wy(Ct) + 1 ≤

4w + 1 ≤ r/2, i.e. if w < r/8. Extend βi
t to γ, a partial safe solution to

Bǫ · yi = bi, with support I. This can be done by Lemma 6.5. If γ(yi
j) = 0,

put Ct+1 := D1∪{yi
j}, else put Ct+1 := D2∪{¬yi

t}. Let βi
t+1 ⊆ γ be minimal

safe solution of Bǫ · yi = bi covering all yi-variables occurring in Ct+1 and
satisfying the condition 3. w.r.t. αt. Further put αt+1 ⊆ αt and βv

t+1 ⊆ βv
t

for all v 6= i to be the minimal assignments satisfying the conditions 2.-6..
In case (b) we proceed as follows. Let I ⊇ supp(αt) be a minimal safe set

with some row containing j. Let Ii ⊇ supp(βi
t) be minimal safe systems such

that any j for which Syi
j
⊆ J(Ii) (this is in order to extend βi

t’s to all yi
j ’s that

will get a value by αt+1). Let β′i
t+1 be a partial safe solution of Bǫ · yi = bi

with support Ii (it exists by Lemma 6.5 as long as |Ii| ≤ r/2). Let α′
t+1

extend αt to a safe solution of all equations
⊕

x∈S
yi
j

α′
t+1(x) = β′i

t+1(y
i
j).

Finally, let αt+1 ⊆ α′
t+1 and βi

t+1 ⊆ β′i
t+1 be minimal assignments obeying

conditions 2. and 3.
Condition 6. remains valid throughout the construction as supp(αt) is

obtained by Lemma 6.3 from, at most, one row per x-variable in Ct (i.e.
|supp(αt)| ≤ 2wx(Ct)) and supp(βi

t) from, at most, one row per yi-variable
in Ct (≤ wy(Ct)) and one row per variable yi

j getting a value by αt (at most
2wx(Ct) of them).

Now note that conditions on Ce and the assignments lead to a contra-
diction. Ce is an initial clause and so its asserts either the validity of an
equation in Bǫ · x = yi or of an equation in Bǫ · yi = bi. But all those equa-
tions are indeed satisfied by conditions 3. and 4. This contradicts condition
5.

We have constructed the sequence under the assumption that w < r/8.
Hence w ≥ r/8. The width-size relation proved in [4] implies that the size

of π is at least exp(Ω( (w−ℓ)2

n )), as ℓ bounds the width of the initial clauses.

By Theorem 6.2 there is Bǫ with r ≥ n1−δ/2 and ℓ a constant. For such Bǫ,
the size of π is at least exp(Ω(n1−δ)).

q.e.d.

It would be interesting to modify this argument to get an exponential
iterability of Bǫ · x in resolution, irrespective of an iteration protocol.11

11Razborov [28] pointed out subsequently that any proof of an exponential lower bound
for τb that uses only an “expansion property” of matrix A automatically yields also expo-
nential iterability. Hence the question has an affirmative answer, see [28].
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Proc. of the 1st Int.Symp. on Randomization and Approximation
Techniques in Computer Science, LN in Comp.Sci., Springer-Verlag,
Vol.1269, (1997), pp.85-93.

Mailing address:

31



Mathematical Institute
Academy of Sciences
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