Formulas, their size and depth in relation to communication complexity

Maroš Grego

DeMorgan language

An alphabet consisting of:

- an infinite set Atoms of atoms: $p, q, \ldots, x, y \ldots$
- logical connectives
- constants \top (true) and \perp (false)
- a unary connective \neg (negation)
- binary connectives \wedge (conjunction) and \vee (disjunction)
- brackets: (,)

Propositional (DeMorgan) formulas

Finite words of DeMorgan alphabet made by applying finitely many times in arbitrary order the following rules:

- constants and atoms are formulas
- if α is a formula, so is $(\neg \alpha)$
- if α, β are formulas, so are $(\alpha \wedge \beta)$ and $(\alpha \vee \beta)$

Capital letters A, B, \ldots will denote formulas.
A subformula of a formula α is any subword of α that is a formula.

Lemma of unique readability

If α is a formula then exactly one of the following occurs:

- α is a constant or an atom
- there are formulas β, γ such that $\alpha=(\beta \wedge \gamma)$
- there are formulas β, γ such that $\alpha=(\beta \vee \gamma)$

Definitions

A literal (ℓ) is an atom or its negation.
$\ell^{1}:=\ell$ and $p^{0}:=\neg p$ and $(\neg p)^{0}:=p$
A term is a conjunction of literals.
A clause is a disjunction of literals.
The expression $\alpha\left(p_{1}, \ldots, p_{n}\right)$ means all atoms in α are among p_{1}, \ldots, p_{n} (but not all of them have to occur)

Truth assignment

Any function

$$
h: \text { Atoms } \rightarrow\{0,1\}
$$

is extended to the function h^{*} assigning the truth value to any formula by the following:

- $h^{*}(\top)=1$ and $h^{*}(\perp)=0$
- $h^{*}(\neg \alpha)=1-h^{*}(\alpha)$
- $h^{*}(\alpha \wedge \beta)=\min \left(h^{*}(\alpha), h^{*}(\beta)\right)$
- $h^{*}(\alpha \vee \beta)=\max \left(h^{*}(\alpha), h^{*}(\beta)\right)$

Given $h\left(p_{i}\right)=: b_{i} \in\{0,1\}, h^{*}(\alpha)=: \alpha\left(b_{1}, \ldots, b_{n}\right)$.
1 and 0 represent the truth values true and false.

Boolean functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$ defines a Boolean truth table function:

$$
\mathbf{t t}_{\alpha}=\left(b_{1}, \ldots, b_{n}\right) \mapsto \alpha\left(b_{1}, \ldots, b_{n}\right)
$$

Every Boolean function f is equal to the $\mathbf{t t}$ function of the formula

$$
\bigvee_{\bar{b} \in\{0,1\}^{n}, f(\bar{b})=1} p_{1}^{b_{1}} \wedge \ldots \wedge p_{n}^{b_{n}} \quad(\text { disjunctive normal form (DNF)) }
$$

or of the function

$$
\bigwedge_{\bar{b} \in\{0,1\}^{n}, f(\bar{b})=0} p_{1}^{1-b_{1}} \vee \ldots \vee p_{n}^{1-b_{n}} \text { (conjunctive normal form (CNF)) }
$$

Monotone Boolean functions

A boolean function f is monotone iff $\bigwedge_{i}\left(a_{i} \leq b_{i}\right)$ implies $f\left(a_{1}, \ldots, a_{n}\right) \leq f\left(b_{1}, \ldots, b_{n}\right)$.
A DNF formula of a monotone f can be written without negation:
E.g. if $f\left(0, a_{2}, \ldots\right)=1$ then $f\left(1, a_{2}, \ldots\right)=0$ and the terms $p_{1}^{0} \wedge p_{2}^{a_{2}} \wedge \ldots$ and $p_{1}^{1} \wedge p_{2}^{a_{2}} \wedge \ldots$ can be merged into $p_{2}^{a_{2}} \wedge \ldots$.

Other connectives

Other languages may use other connectives, possibly with higher arity, such as:

$$
\begin{aligned}
a \mid b & =1 \text { iff }(a \wedge b)=0 \quad \text { (Sheffer's stroke (NAND)) } \\
\oplus\left(a_{1}, \ldots, a_{n}\right) & =1 \text { iff } \sum_{i} a_{i} \equiv 1 \quad \bmod 2 \quad \text { (parity) } \\
T H_{k}\left(a_{1}, \ldots, a_{n}\right) & =1 \text { iff } \sum_{i} a_{i} \geq k
\end{aligned}
$$

When passing from one language to another, how does the size of the formula grow?

Formula size

Given a DeMorgan formula α, we construct a labeled directed binary tree S_{α} inductively as follows:
α is an atom or a constant

$$
\alpha=(\neg \beta)
$$

$$
\alpha=(\beta \circ \gamma) \text { where } \circ \text { is } \wedge \text { or } \vee
$$

The size of a formula α is the number of vertices of S_{α}. Arrows in S_{α} define a partial order.

Formula size and string length relationship

Since every connective comes with two brackets, the length of the string representing α is

$$
i+3\left(\left|S_{\alpha}\right|-i\right) \leq 3\left|S_{\alpha}\right|
$$

where i is the number of leaves of S_{α}.
When α has n atoms represented by binary words, this increases to

$$
\log n \cdot i+3\left(\left|S_{\alpha}\right|-i\right) \leq(3+\log n) \cdot\left|S_{\alpha}\right| \leq\left(3+\log \left|S_{\alpha}\right|\right) \cdot\left|S_{\alpha}\right|
$$

Negation normal form

The formulas α, β are logically equivalent (H) iff

$$
\forall \bar{a} \in\{0,1\}^{n}: \alpha(\bar{a})=\beta(\bar{a})
$$

DeMorgan laws state that

$$
\neg(\alpha \wedge \beta) \models(\neg \alpha \vee \neg \beta) \text { and } \neg(\alpha \vee \beta) \models(\neg \alpha \wedge \neg \beta)
$$

A formula is in negation normal form (NNF) iff negations are applied only to atoms and there are no constants.
Every formula can be transformed into NNF by DeMorgan laws and contracting subformulas with constants.
For a formula α in NNF, we define its size $\left(\left|S_{\alpha}\right|\right)$ to be the number of leaves in S_{α}.

Translating formulas: an example

Consider the binary parity (xor): $\alpha \oplus \beta \models(\alpha \wedge \neg \beta) \vee(\neg \alpha \wedge \beta)$ Subformulas with \oplus can be replaced iteratively this way (from simpler to complex ones).
E.g. $p_{1} \oplus\left(p_{2} \oplus\left(p_{3} \oplus \ldots\right) \ldots\right)$ (parity of n atoms) has size n, but this translation has size between 2^{n} and 2^{n+1}.

Logical depth

The logical depth of a formula α in a language $L(\ell d p(\alpha))$ is defined as

- $\ell d p$ of atoms and constants is 0
$-\ell d p\left(\circ\left(\beta_{1}, \ldots, \beta_{k}\right)\right)=1+\max \left(\ell d p\left(\beta_{1}\right), \ldots, \ell d p\left(\beta_{k}\right)\right.$ for \circ a k-ary connective in L

Spira's lemma

Lemma (Spira's lemma)

Let T be a finite rooted k-ary tree, ordered from root down to leaves, $|T|>1$.
For a node $a \in T$, let T_{a} be a subtree of nodes b such that $b \leq a$ and $T^{a}=T \backslash T_{a}$ (all b such that $b \nless a$).
Then there is a node a in T such that

$$
\frac{1}{k+1}|T| \leq\left|T_{a}\right|,\left|T^{a}\right| \leq \frac{k}{k+1}|T|
$$

Lemma (Spira's lemma)
$\forall T$ tree, $|T|>1 \exists a \in T: \frac{1}{k+1}|T| \leq\left|T_{a}\right|,\left|T^{a}\right| \leq \frac{k}{k+1}|T|$

Proof.

- Walk through T, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to $s^{\prime} \geq \frac{s-1}{k}$.

Lemma (Spira's lemma)
$\forall T$ tree, $|T|>1 \exists a \in T: \frac{1}{k+1}|T| \leq\left|T_{a}\right|,\left|T^{a}\right| \leq \frac{k}{k+1}|T|$

Proof.

- Walk through T, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to $s^{\prime} \geq \frac{s-1}{k}$.
- Stop at the first node a such that $\left|T_{a}\right| \leq(k /(k+1))|T|$. Then also $(1 /(k+1))|T| \leq\left|T_{a}\right|$ (since by the bound above, the previous subtree had size $s \leq k\left|T_{a}\right|$; if $\left|T_{a}\right|<(1 /(k+1))|T|$ then $s \leq(k /(k+1))|T|$ and we would have stopped then).

Lemma (Spira's lemma)
$\forall T$ tree, $|T|>1 \exists a \in T: \frac{1}{k+1}|T| \leq\left|T_{a}\right|,\left|T^{a}\right| \leq \frac{k}{k+1}|T|$

Proof.

- Walk through T, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to $s^{\prime} \geq \frac{s-1}{k}$.
- Stop at the first node a such that $\left|T_{a}\right| \leq(k /(k+1))|T|$. Then also $(1 /(k+1))|T| \leq\left|T_{a}\right|$ (since by the bound above, the previous subtree had size $s \leq k\left|T_{a}\right|$; if $\left|T_{a}\right|<(1 /(k+1))|T|$ then $s \leq(k /(k+1))|T|$ and we would have stopped then).
- As $\left|T^{a}\right|=|T|-\left|T_{a}\right|$, also $(1 /(k+1))|T| \leq\left|T^{a}\right| \leq(k /(k+1))|T|$

On the logical depth

Lemma

Let α be a formula in a language with at most k-ary connectives and with size s.
Then, there is a logically equivalent DeMorgan formula β of logical depth $\ell d p(\beta) \leq O\left(\log _{(k+1) / k} s\right)=O(\log s)$.

Substitution

A substitution of formulas for atoms in a formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is a map assigning to each p_{i} a formula β_{i}.
The formula arising from applying the substitution is denoted by $\alpha\left(p_{1} / \beta_{1}, \ldots, p_{n} / \beta_{n}\right)$ and constructed by simultaneously replacing all occurences of p_{i} in α by $\beta_{i}, i=1, \ldots, n$.

On the logical depth

Lemma

$\forall \alpha$ formula with at most k-ary connectives, size s
$\exists \beta$ DeMorgan formula $\vDash \alpha: \ell d p(\beta) \leq O\left(\log _{(k+1) / k} s\right)=O(\log s)$.
Proof.

- Assume atoms of α are \bar{p}, let q be a new atom and $\gamma(\bar{p}, q)$ and $\delta(\bar{p})$ formulas such that $\alpha=\gamma(q / \delta)$ (α is created by substituting δ for q in γ).

On the logical depth

Lemma

$\forall \alpha$ formula with at most k-ary connectives, size s
$\exists \beta$ DeMorgan formula $\vDash \alpha: \ell d p(\beta) \leq O\left(\log _{(k+1) / k} s\right)=O(\log s)$.
Proof.

- Assume atoms of α are \bar{p}, let q be a new atom and $\gamma(\bar{p}, q)$ and $\delta(\bar{p})$ formulas such that $\alpha=\gamma(q / \delta)$ (α is created by substituting δ for q in γ).
- α is equivalent to $(\gamma(\bar{p}, 1) \wedge \delta) \vee(\gamma(\bar{p}, 0) \wedge \neg \delta)$.

The logical depth of the new formula is
$2+\max (\ell d p(\gamma), \ell d p(\delta))$.

On the logical depth

Lemma

$\forall \alpha$ formula with at most k-ary connectives, size s
$\exists \beta$ DeMorgan formula $\vDash \alpha: \ell d p(\beta) \leq O\left(\log _{(k+1) / k} s\right)=O(\log s)$.
Proof.

- Assume atoms of α are \bar{p}, let q be a new atom and $\gamma(\bar{p}, q)$ and $\delta(\bar{p})$ formulas such that $\alpha=\gamma(q / \delta)$ (α is created by substituting δ for q in γ).
- α is equivalent to $(\gamma(\bar{p}, 1) \wedge \delta) \vee(\gamma(\bar{p}, 0) \wedge \neg \delta)$.

The logical depth of the new formula is
$2+\max (\ell d p(\gamma), \ell d p(\delta))$.

- By Spira's lemma, choose γ such that $|\gamma|,|\delta| \leq k /(k+1) \cdot s$. By induction, we assume the statement holds for formulas of the size smaller than s.

Karchmer-Wigderson game

A multi-function defined on $U \times V$ with values in $I \neq \emptyset$
$(U \times V \xrightarrow{\text { multi } I)}$ is a relation $R \subseteq U \times V \times i$ such that $\forall \bar{u} \in U, \bar{v} \in V \exists i \in I: R(\bar{u}, \bar{v}, i)$.
The task to find, given $\bar{u} \in U, \bar{v} \in V$ any $i \in I$ such that $R(\bar{u}, \bar{v}, i)$ leads to to a two player game.
The U-player receives \bar{u}, then \mathbf{V}-player receives \bar{v}.
They exchange bits of information according to a
Karchmer-Wigderson protocol.

Karchmer-Wigderson protocol

The KW-protocol is a finite binary tree T such that

- each non-leaf is labeled by U or V and the two edges leaving it are labeled by 0 or 1
- each leaf is labeled by some $i \in I$
together with strategies S_{U}, S_{V} for the players, which are functions $U \times T_{0}\left(\right.$ resp $\left.V \times T_{0}\right) \rightarrow\{0,1\}\left(T_{0}\right.$ are the non-leaves of $\left.T\right)$.

Karchmer-Wigderson protocol

- The players start at the root of T.
- If the current node x is a non-leaf, its label tells them who should send a bit (if it's U, the U-player sends $S_{U}(\bar{u}, x)$, if V, the V-player sends $\left.S_{V}(\bar{v}, x)\right)$.
This bit determines the edge out of x and hence the next node $x^{\prime} \in T$.
- If the current node is a leaf, its label i is the output of the play on (\bar{u}, \bar{v}).
The label must be a valid value of the multi-function.
The communication complexity of $\mathrm{R}(C C(R))$ is the minimum height of a KW-protocol tree that computes R .

Karchmer-Wigderson multi-function

The KW-multi-function is a multi-function on disjoint $U, V \subseteq\{0,1\}^{n}$ with values in [n] for which a valid value for (\bar{u}, \bar{v}) is i iff $u_{i} \neq v_{i}$. It is denoted $K W[U, V]$.
If U is closed upwards or V downwards, the monotone $K W^{m}[U, V]$ has a valid value i iff $u_{i}=1 \wedge v_{i}=0$.

Karchmer-Wigderson theorem

Theorem (Karchmer and Wigderson)
Let $U, V \subseteq\{0,1\}^{n}$ be disjoint. Then $C C(K W[U, V])$ equals to the minimum depth of a DeMorgan formula φ in the negation normal form that separates U from V (i.e. φ is constantly 1 on U and 0 on V), where we count depth of a literal as 0 .
If U is closed upwards or V downwards then $C C\left(K W^{m}[U, V]\right)$ equals to the minimum depth of a DeMorgan formula φ without negations that separates U from V.

Theorem (Karchmer and Wigderson)

$U, V \subseteq\{0,1\}^{n}$ disjoint, $C C(K W[U, V])$ equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for $\bar{u} \in U$ and 0 for $\bar{v} \in V$.

Theorem (Karchmer and Wigderson)

$U, V \subseteq\{0,1\}^{n}$ disjoint, $C C(K W[U, V])$ equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for $\bar{u} \in U$ and 0 for $\bar{v} \in V$.
- That is true at the start. If the current connective is V, the U-player indicates by one bit whetere the left or right subformula is true.
If it is \wedge, the V-player indicates which one is false.

Theorem (Karchmer and Wigderson)

$U, V \subseteq\{0,1\}^{n}$ disjoint, $C C(K W[U, V])$ equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for $\bar{u} \in U$ and 0 for $\bar{v} \in V$.
- That is true at the start. If the current connective is V, the U-player indicates by one bit whetere the left or right subformula is true.
If it is \wedge, the V -player indicates which one is false.
- The literal they arrive at is a valid value for $K W[U, V]$ (and also for $K W^{m}[U, V]$ if there is no negation in φ).

Theorem (Karchmer and Wigderson)

$U, V \subseteq\{0,1\}^{n}$ disjoint, $C C(K W[U, V])$ equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for $\bar{u} \in U$ and 0 for $\bar{v} \in V$.
- That is true at the start. If the current connective is V, the U-player indicates by one bit whetere the left or right subformula is true.
If it is \wedge, the V -player indicates which one is false.
- The literal they arrive at is a valid value for $K W[U, V]$ (and also for $K W^{m}[U, V]$ if there is no negation in φ).
- For the opposite direction, construct φ by induction on the computational complexity of $K W[U, V]$ (resp. $K W^{m}[U, V]$).

Krapchenko's bound

Let Q_{n} denote the graph of the n-cube (node set $\{0,1\}^{n}$, two nodes adjacent iff they differ in one coordinate).
A subset $A \subseteq Q_{n}$ induces a subgraph G_{A} of Q_{n}; for a node x, denote $d_{A}(x)$, resp. $N_{A}(x)$ as the degree of x in A, resp. the set of neighbours of x in A.

Theorem (Krapchenko)
Let $U, V \subseteq\{0,1\}^{n}$ be disjoint, $A=Q_{n} \cap(U \times V)$. Then, for every formula φ separating U and V, we mave

$$
\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U||V|}=\log \frac{|A|}{|U|}+\log \frac{|A|}{|V|}
$$

Theorem (Krapchenko)
$U, V \subseteq\{0,1\}^{n}$ disjoint, $A=Q_{n} \cap(U \times V), \forall \varphi$ separating U, V : $\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U \| V|}$

Proof.

- Fix a protocol, let $C(\bar{u}, \bar{v})$ be the number of bits it uses on \bar{u}, \bar{v}. We will prove that for inputs taken uniformly from A $E(C(\bar{u}, \bar{v})) \geq \log \frac{|A|^{2}}{|U| V \mid}$ (where E is expected value).

Theorem (Krapchenko)
$U, V \subseteq\{0,1\}^{n}$ disjoint, $A=Q_{n} \cap(U \times V)$, $\forall \varphi$ separating U, V :
$\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U||V|}$

Proof.

- Fix a protocol, let $C(\bar{u}, \bar{v})$ be the number of bits it uses on \bar{u}, \bar{v}. We will prove that for inputs taken uniformly from A $E(C(\bar{u}, \bar{v})) \geq \log \frac{|A|^{2}}{|U| V \mid}$ (where E is expected value).
- Let $b_{X}(\bar{u}, \bar{v})$ be the number of bits the player X sends on the given input, then:

$$
\begin{aligned}
& E(C(\bar{u}, \bar{v}))=\frac{1}{|A|} \sum_{(\bar{u}, \bar{v}) \in A}\left(b_{U}(\bar{u}, \bar{v})+b_{V}(\bar{u}, \bar{v})\right) \\
= & \frac{1}{|A|}\left[\sum_{\bar{v} \in V} \sum_{\bar{u} \in N(\bar{v})} b_{U}(\bar{u}, \bar{v})+\sum_{\bar{u} \in U} \sum_{\bar{v} i n N(\bar{u})} b_{V}(\bar{u}, \bar{v})\right]
\end{aligned}
$$

Theorem (Krapchenko)
$U, V \subseteq\{0,1\}^{n}$ disjoint, $A=Q_{n} \cap(U \times V), \forall \varphi$ separating U, V :
$\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U| V \mid}$
Proof.

- For any $\bar{v} \in V, \sum_{\bar{u} \in N(\bar{v})} b_{U}(\bar{u}, \bar{v}) \geq d(\bar{v}) \log d(\bar{v})$ (since even if player U knows \bar{v}, they need to tell V what \bar{u} they have). Analogically for $\bar{u} \in U$.

Theorem (Krapchenko)
$U, V \subseteq\{0,1\}^{n}$ disjoint, $A=Q_{n} \cap(U \times V), \forall \varphi$ separating U, V :
$\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U| V \mid}$
Proof.

- For any $\bar{v} \in V, \sum_{\bar{u} \in N(\bar{v})} b_{U}(\bar{u}, \bar{v}) \geq d(\bar{v}) \log d(\bar{v})$ (since even if player U knows \bar{v}, they need to tell V what \bar{u} they have). Analogically for $\bar{u} \in U$.
- $E(C(\bar{u}, \bar{v})) \geq \frac{1}{|A|}\left[\sum_{\bar{v} \in V} d(\bar{v}) \log d(\bar{v})+\sum_{\bar{u} \in U} d(\bar{u}) \log d(\bar{u})\right]$

$$
\geq \frac{1}{|A|}\left[\sum_{\bar{v} \in V} \frac{|A|}{|V|} \log \frac{|A|}{|V|}+\sum_{\bar{u} \in U} \frac{|A|}{|U|} \log \frac{|A|}{\mid U}\right]=\log \frac{|A|^{2}}{|U||V|}
$$

Theorem (Krapchenko)
$U, V \subseteq\{0,1\}^{n}$ disjoint, $A=Q_{n} \cap(U \times V), \forall \varphi$ separating U, V : $\ell d p(\varphi) \geq \log \frac{|A|^{2}}{|U||V|}$

Proof.

- For any $\bar{v} \in V, \sum_{\bar{u} \in N(\bar{v})} b_{U}(\bar{u}, \bar{v}) \geq d(\bar{v}) \log d(\bar{v})$ (since even if player U knows \bar{v}, they need to tell V what \bar{u} they have). Analogically for $\bar{u} \in U$.
- $E(C(\bar{u}, \bar{v})) \geq \frac{1}{|A|}\left[\sum_{\bar{v} \in V} d(\bar{v}) \log d(\bar{v})+\sum_{\bar{u} \in U} d(\bar{u}) \log d(\bar{u})\right]$
$\geq \frac{1}{|A|}\left[\sum_{\bar{v} \in V} \frac{|A|}{|V|} \log \frac{|A|}{|V|}+\sum_{\bar{u} \in U} \frac{|A|}{|U|} \log \frac{|A|}{|U|}\right]=\log \frac{|A|^{2}}{|U||V|}$
- The result follows from the KW-theorem.

Sources

- J.Krajíček, Proof Complexity, CUP, 2019
- M.Karchmer and A.Wigderson, Monotone circuits for connectivity require super-logarithmic depth, SIAM Journal on Discrete Mathematics, 1990

Thank you for attention!

