Formulas, their size and depth in relation to communication complexity

Maroš Grego

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

An alphabet consisting of:

▶ an infinite set *Atoms* of atoms: *p*, *q*, ..., *x*, *y*...

- logical connectives
 - constants \top (true) and \perp (false)
 - ► a unary connective ¬ (negation)
 - ▶ binary connectives ∧ (conjunction) and ∨ (disjunction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

brackets: (,)

Propositional (DeMorgan) formulas

Finite words of DeMorgan alphabet made by applying finitely many times in arbitrary order the following rules:

- constants and atoms are formulas
- if α is a formula, so is $(\neg \alpha)$
- if α, β are formulas, so are $(\alpha \land \beta)$ and $(\alpha \lor \beta)$

Capital letters A, B, \dots will denote formulas.

A **subformula** of a formula α is any subword of α that is a formula.

Lemma of unique readability

If α is a formula then exactly one of the following occurs:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- $\blacktriangleright \alpha$ is a constant or an atom
- there are formulas β, γ such that $\alpha = (\beta \land \gamma)$
- there are formulas β, γ such that $\alpha = (\beta \lor \gamma)$

Definitions

A **literal** (ℓ) is an atom or its negation. $\ell^1 := \ell$ and $p^0 := \neg p$ and $(\neg p)^0 := p$ A **term** is a conjunction of literals. A **clause** is a disjunction of literals. The expression $\alpha(p_1, ..., p_n)$ means all atoms in α are among $p_1, ..., p_n$ (but not all of them have to occur)

Truth assignment

Any function

 $h: Atoms \rightarrow \{0,1\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is extended to the function h^* assigning the truth value to any formula by the following:

Boolean functions

$$f: \{0,1\}^n \to \{0,1\}$$

Formula $\alpha(p_1, ..., p_n)$ defines a Boolean truth table function:

$$\mathbf{tt}_{\alpha} = (b_1, ..., b_n) \mapsto \alpha(b_1, ..., b_n)$$

Every Boolean function f is equal to the tt function of the formula

$$\bigvee_{\bar{b} \in \{0,1\}^n, f(\bar{b})=1} \rho_1^{b_1} \wedge ... \wedge \rho_n^{b_n} \quad \text{(disjunctive normal form (DNF))}$$

or of the function

 $\bigwedge_{\bar{b} \in \{0,1\}^n, f(\bar{b})=0} \rho_1^{1-b_1} \vee ... \vee \rho_n^{1-b_n} \text{ (conjunctive normal form (CNF))}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A boolean function f is **monotone** iff $\bigwedge_i (a_i \leq b_i)$ implies $f(a_1, ..., a_n) \leq f(b_1, ..., b_n)$. A DNF formula of a monotone f can be written without negation: E.g. if $f(0, a_2, ...) = 1$ then $f(1, a_2, ...) = 0$ and the terms $p_1^0 \wedge p_2^{a_2} \wedge ...$ and $p_1^1 \wedge p_2^{a_2} \wedge ...$ can be merged into $p_2^{a_2} \wedge ...$

Other connectives

Other languages may use other connectives, possibly with higher arity, such as:

$$a|b = 1 ext{ iff } (a \wedge b) = 0 ext{ (Sheffer's stroke (NAND))} \oplus (a_1, ..., a_n) = 1 ext{ iff } \sum_i a_i \equiv 1 ext{ mod } 2 ext{ (parity)}$$
 $TH_k(a_1, ..., a_n) = 1 ext{ iff } \sum_i a_i \geq k ext{ (threshold)}$

When passing from one language to another, how does the size of the formula grow?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Formula size

Given a DeMorgan formula α , we construct a labeled directed binary tree S_{α} inductively as follows:

 α is an atom or a constant

 (α)

 $\alpha = (\neg \beta)$

$$\alpha = (\beta \circ \gamma) \text{ where } \circ \text{ is } \land \text{ or } \lor \qquad \bigcirc \\ \beta \qquad \gamma$$

The size of a formula α is the number of vertices of S_{α} . Arrows in S_{α} define a partial order. Formula size and string length relationship

Since every connective comes with two brackets, the length of the string representing $\boldsymbol{\alpha}$ is

$$i + 3(|S_{\alpha}| - i) \leq 3|S_{\alpha}|$$

where *i* is the number of leaves of S_{α} .

When α has *n* atoms represented by binary words, this increases to

$$\log n \cdot i + 3(|S_{\alpha}| - i) \leq (3 + \log n) \cdot |S_{\alpha}| \leq (3 + \log |S_{\alpha}|) \cdot |S_{\alpha}|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Negation normal form

The formulas α, β are **logically equivalent** (\models) iff

$$\forall \bar{a} \in \{0,1\}^n : \alpha(\bar{a}) = \beta(\bar{a})$$

DeMorgan laws state that

$$\neg(\alpha \land \beta) \models (\neg \alpha \lor \neg \beta) \text{ and } \neg(\alpha \lor \beta) \models (\neg \alpha \land \neg \beta)$$

A formula is in **negation normal form** (NNF) iff negations are applied only to atoms and there are no constants. Every formula can be transformed into NNF by DeMorgan laws and contracting subformulas with constants. For a formula α in NNF, we define its **size** ($|S_{\alpha}|$) to be the number of leaves in S_{α} . Consider the binary parity (xor): $\alpha \oplus \beta \models (\alpha \land \neg \beta) \lor (\neg \alpha \land \beta)$ Subformulas with \oplus can be replaced iteratively this way (from simpler to complex ones). E.g. $p_1 \oplus (p_2 \oplus (p_3 \oplus ...)...)$ (parity of *n* atoms) has size *n*, but this

translation has size between 2^n and 2^{n+1} .

The **logical depth** of a formula α in a language $L(\ell dp(\alpha))$ is defined as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *ldp* of atoms and constants is 0
- ℓdp(◦(β₁,...,β_k)) = 1 + max(ℓdp(β₁),...,ℓdp(β_k)) for ◦ a k-ary connective in L

Spira's lemma

Lemma (Spira's lemma)

Let T be a finite rooted k-ary tree, ordered from root down to leaves, |T| > 1. For a node $a \in T$, let T_a be a subtree of nodes b such that $b \leq a$ and $T^a = T \setminus T_a$ (all b such that $b \not\leq a$). Then there is a node a in T such that

$$\frac{1}{k+1}|T| \le |T_a|, |T^a| \le \frac{k}{k+1}|T|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma (Spira's lemma)

 $\forall T \ tree, |T| > 1 \ \exists a \in T : \frac{1}{k+1} |T| \le |T_a|, |T^a| \le \frac{k}{k+1} |T|$

Proof.

Walk through *T*, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to s' ≥ ^{s-1}/_k.

Lemma (Spira's lemma)

 $\forall T \text{ tree}, |T| > 1 \exists a \in T : \frac{1}{k+1} |T| \le |T_a|, |T^a| \le \frac{k}{k+1} |T|$

Proof.

- Walk through *T*, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to s' ≥ s-1/k.
- Stop at the first node a such that |T_a| ≤ (k/(k+1))|T|. Then also (1/(k+1))|T| ≤ |T_a| (since by the bound above, the previous subtree had size s ≤ k|T_a|; if |T_a| < (1/(k+1))|T| then s ≤ (k/(k+1))|T| and we would have stopped then).</p>

Lemma (Spira's lemma)

 $\forall T \text{ tree}, |T| > 1 \exists a \in T : \frac{1}{k+1} |T| \le |T_a|, |T^a| \le \frac{k}{k+1} |T|$

Proof.

- Walk through *T*, starting at the root, always going into a maximal subtree (with respect to size). The size can decrease only to s' ≥ s-1/k.
- Stop at the first node a such that |T_a| ≤ (k/(k+1))|T|. Then also (1/(k+1))|T| ≤ |T_a| (since by the bound above, the previous subtree had size s ≤ k|T_a|; if |T_a| < (1/(k+1))|T| then s ≤ (k/(k+1))|T| and we would have stopped then).</p>

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► As $|T^a| = |T| - |T_a|$, also $(1/(k+1))|T| \le |T^a| \le (k/(k+1))|T|$

Lemma

Let α be a formula in a language with at most k-ary connectives and with size s.

Then, there is a logically equivalent DeMorgan formula β of logical depth $\ell dp(\beta) \leq O(\log_{(k+1)/k} s) = O(\log s)$.

A substitution of formulas for atoms in a formula $\alpha(p_1, ..., p_n)$ is a map assigning to each p_i a formula β_i . The formula arising from applying the substitution is denoted by $\alpha(p_1/\beta_1, ..., p_n/\beta_n)$ and constructed by simultaneously replacing all occurences of p_i in α by β_i , i = 1, ..., n.

Lemma

 $\forall \alpha \text{ formula with at most } k\text{-ary connectives, size } s \\ \exists \beta \text{ DeMorgan formula} \models \alpha : \ell dp(\beta) \leq O(\log_{(k+1)/k} s) = O(\log s).$

Proof.

Assume atoms of α are p
, let q be a new atom and γ(p
, q) and δ(p
) formulas such that α = γ(q/δ) (α is created by substituting δ for q in γ).

Lemma

 $\forall \alpha \text{ formula with at most } k\text{-ary connectives, size s} \\ \exists \beta \text{ DeMorgan formula} \models \alpha : \ell dp(\beta) \leq O(\log_{(k+1)/k} s) = O(\log s).$

Proof.

Assume atoms of α are p̄, let q be a new atom and γ(p̄, q) and δ(p̄) formulas such that α = γ(q/δ) (α is created by substituting δ for q in γ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• α is equivalent to $(\gamma(\bar{p}, 1) \land \delta) \lor (\gamma(\bar{p}, 0) \land \neg \delta)$. The logical depth of the new formula is $2 + max(\ell dp(\gamma), \ell dp(\delta))$.

Lemma

 $\forall \alpha \text{ formula with at most } k\text{-ary connectives, size } s \\ \exists \beta \text{ DeMorgan formula} \models \alpha : \ell dp(\beta) \leq O(\log_{(k+1)/k} s) = O(\log s).$

Proof.

- Assume atoms of α are p̄, let q be a new atom and γ(p̄, q) and δ(p̄) formulas such that α = γ(q/δ) (α is created by substituting δ for q in γ).
- α is equivalent to $(\gamma(\bar{p}, 1) \land \delta) \lor (\gamma(\bar{p}, 0) \land \neg \delta)$. The logical depth of the new formula is $2 + max(\ell dp(\gamma), \ell dp(\delta))$.
- By Spira's lemma, choose γ such that |γ|, |δ| ≤ k/(k + 1) ⋅ s. By induction, we assume the statement holds for formulas of the size smaller than s.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A multi-function defined on $U \times V$ with values in $I \neq \emptyset$ $(U \times V \xrightarrow{multi} I)$ is a relation $R \subseteq U \times V \times i$ such that $\forall \overline{u} \in U, \overline{v} \in V \exists i \in I : R(\overline{u}, \overline{v}, i).$ The task to find, given $\overline{u} \in U, \overline{v} \in V$ any $i \in I$ such that $R(\overline{u}, \overline{v}, i)$ leads to to a two player game. The **U-player** receives \overline{u} , then **V-player** receives \overline{v} . They exchange bits of information according to a **Karchmer-Wigderson protocol**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Karchmer-Wigderson protocol

The **KW-protocol** is a finite binary tree T such that

- each non-leaf is labeled by U or V and the two edges leaving it are labeled by 0 or 1
- each leaf is labeled by some $i \in I$

together with strategies S_U, S_V for the players, which are functions $U \times T_0$ (resp $V \times T_0$) $\rightarrow \{0, 1\}$ (T_0 are the non-leaves of T).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Karchmer-Wigderson protocol

- ► The players start at the root of *T*.
- If the current node x is a non-leaf, its label tells them who should send a bit

(if it's U, the U-player sends $S_U(\bar{u}, x)$, if V, the V-player sends $S_V(\bar{v}, x)$).

This bit determines the edge out of x and hence the next node $x' \in T$.

► If the current node is a leaf, its label *i* is the output of the play on (*ū*, *v*).

The label must be a valid value of the multi-function.

The **communication complexity** of R(CC(R)) is the minimum height of a KW-protocol tree that computes R.

The **KW-multi-function** is a multi-function on disjoint $U, V \subseteq \{0, 1\}^n$ with values in [n] for which a valid value for (\bar{u}, \bar{v}) is *i* iff $u_i \neq v_i$. It is denoted KW[U, V]. If *U* is closed upwards or *V* downwards, the monotone $KW^m[U, V]$ has a valid value *i* iff $u_i = 1 \land v_i = 0$.

Let $U, V \subseteq \{0,1\}^n$ be disjoint. Then CC(KW[U, V]) equals to the minimum depth of a DeMorgan formula φ in the negation normal form that separates U from V (i.e. φ is constantly 1 on U and 0 on V),

where we count depth of a literal as 0.

If U is closed upwards or V downwards then $CC(KW^m[U, V])$ equals to the minimum depth of a DeMorgan formula φ without negations that separates U from V.

 $U, V \subseteq \{0,1\}^n$ disjoint, CC(KW[U, V]) equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for ū ∈ U and 0 for v̄ ∈ V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $U, V \subseteq \{0,1\}^n$ disjoint, CC(KW[U, V]) equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for ū ∈ U and 0 for v̄ ∈ V.
- ► That is true at the start. If the current connective is ∨, the U-player indicates by one bit whetere the left or right subformula is true.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If it is \wedge , the V-player indicates which one is false.

 $U, V \subseteq \{0,1\}^n$ disjoint, CC(KW[U, V]) equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for ū ∈ U and 0 for v̄ ∈ V.
- ► That is true at the start. If the current connective is ∨, the U-player indicates by one bit whetere the left or right subformula is true.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If it is \wedge , the V-player indicates which one is false.

The literal they arrive at is a valid value for KW[U, V] (and also for KW^m[U, V] if there is no negation in φ).

 $U, V \subseteq \{0,1\}^n$ disjoint, CC(KW[U, V]) equals to the minimum depth of a DeMorgan formula φ in NNF separating U from V.

Proof.

- Given a separating φ, the players start at the top connective and walk down to smaller subformulas, maintaining an invariant that the the surrent subformula gives value 1 for ū ∈ U and 0 for v̄ ∈ V.
- ► That is true at the start. If the current connective is ∨, the U-player indicates by one bit whetere the left or right subformula is true.

If it is \wedge , the V-player indicates which one is false.

- The literal they arrive at is a valid value for KW[U, V] (and also for KW^m[U, V] if there is no negation in φ).
- For the opposite direction, construct φ by induction on the computational complexity of KW[U, V] (resp. KW^m[U, V]).

Krapchenko's bound

Let Q_n denote the graph of the *n*-cube (node set $\{0,1\}^n$, two nodes adjacent iff they differ in one coordinate). A subset $A \subseteq Q_n$ induces a subgraph G_A of Q_n ; for a node x, denote $d_A(x)$, resp. $N_A(x)$ as the degree of x in A, resp. the set of neighbours of x in A.

Theorem (Krapchenko)

Let $U, V \subseteq \{0,1\}^n$ be disjoint, $A = Q_n \cap (U \times V)$. Then, for every formula φ separating U and V, we mave

$$\ell dp(arphi) \geq \log rac{|A|^2}{|U||V|} = \log rac{|A|}{|U|} + \log rac{|A|}{|V|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Krapchenko)

 $U, V \subseteq \{0,1\}^n$ disjoint, $A = Q_n \cap (U \times V)$, $\forall \varphi$ separating U, V: $\ell dp(\varphi) \ge \log \frac{|A|^2}{|U||V|}$

Proof.

Fix a protocol, let $C(\bar{u}, \bar{v})$ be the number of bits it uses on \bar{u}, \bar{v} . We will prove that for inputs taken uniformly from A $E(C(\bar{u}, \bar{v})) \ge \log \frac{|A|^2}{|U||V|}$ (where E is expected value).

Theorem (Krapchenko)

 $U, V \subseteq \{0,1\}^n$ disjoint, $A = Q_n \cap (U \times V)$, $\forall \varphi$ separating U, V: $\ell dp(\varphi) \ge \log \frac{|A|^2}{|U||V|}$

Proof.

- Fix a protocol, let $C(\bar{u}, \bar{v})$ be the number of bits it uses on \bar{u}, \bar{v} . We will prove that for inputs taken uniformly from A $E(C(\bar{u}, \bar{v})) \ge \log \frac{|A|^2}{|U||V|}$ (where E is expected value).
- Let b_X(ū, v) be the number of bits the player X sends on the given input, then:

$$E(C(\bar{u},\bar{v})) = \frac{1}{|A|} \sum_{(\bar{u},\bar{v})\in A} (b_U(\bar{u},\bar{v}) + b_V(\bar{u},\bar{v}))$$
$$= \frac{1}{|A|} [\sum_{\bar{v}\in V} \sum_{\bar{u}\in N(\bar{v})} b_U(\bar{u},\bar{v}) + \sum_{\bar{u}\in U} \sum_{\bar{v}inN(\bar{u})} b_V(\bar{u},\bar{v})]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Krapchenko) $U, V \subseteq \{0,1\}^n$ disjoint, $A = Q_n \cap (U \times V)$, $\forall \varphi$ separating U, V: $\ell dp(\varphi) \ge \log \frac{|A|^2}{|U||V|}$

Proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Krapchenko) $U, V \subseteq \{0,1\}^n$ disjoint, $A = Q_n \cap (U \times V)$, $\forall \varphi$ separating U, V: $\ell dp(\varphi) \ge \log \frac{|A|^2}{|U||V|}$

Proof.

- For any v

 ∈ V, ∑_{u∈N(v)} b_U(u

 , v

) ≥ d(v) log d(v) (since even if player U knows v

 , they need to tell V what u

 they have). Analogically for u

 ∈ U.
- $\mathsf{E}(C(\bar{u},\bar{v})) \geq \frac{1}{|A|} [\sum_{\bar{v}\in V} d(\bar{v}) \log d(\bar{v}) + \sum_{\bar{u}\in U} d(\bar{u}) \log d(\bar{u})] \\ \geq \frac{1}{|A|} [\sum_{\bar{v}\in V} \frac{|A|}{|V|} \log \frac{|A|}{|V|} + \sum_{\bar{u}\in U} \frac{|A|}{|U|} \log \frac{|A|}{|U|}] = \log \frac{|A|^2}{|U||V|}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Krapchenko) $U, V \subseteq \{0,1\}^n$ disjoint, $A = Q_n \cap (U \times V)$, $\forall \varphi$ separating U, V: $\ell dp(\varphi) \ge \log \frac{|A|^2}{|U||V|}$

Proof.

- For any v

 ∈ V, ∑_{u∈N(v)} b_U(u

 , v

) ≥ d(v) log d(v) (since even if player U knows v

 , they need to tell V what u

 they have). Analogically for u

 ∈ U.
- $$\begin{split} \blacktriangleright \ E(C(\bar{u},\bar{v})) \geq \frac{1}{|A|} [\sum_{\bar{v}\in V} d(\bar{v}) \log d(\bar{v}) + \sum_{\bar{u}\in U} d(\bar{u}) \log d(\bar{u})] \\ \geq \frac{1}{|A|} [\sum_{\bar{v}\in V} \frac{|A|}{|V|} \log \frac{|A|}{|V|} + \sum_{\bar{u}\in U} \frac{|A|}{|U|} \log \frac{|A|}{|U|}] = \log \frac{|A|^2}{|U||V|} \end{split}$$

The result follows from the KW-theorem.

Sources

- J.Krajíček, Proof Complexity, CUP, 2019
- M.Karchmer and A.Wigderson, Monotone circuits for connectivity require super-logarithmic depth, SIAM Journal on Discrete Mathematics, 1990

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for attention!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで