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Abstract

A proof of the (propositional) Craig interpolation theorem for cut-free
sequent, calculus yields that a sequent with a cut-free proof (or with a proof
with cut-formulas of restricted form; in particular, with only analytic cuts)
with k inferences has an interpolant whose circuit-size is at most k. We
give a new proof of the interpolation theorem based on a communication
complexity approach which allows a similar estimate for a larger class of

proofs. We derive from it several corollaries:
1. Feasible interpolation theorems for the following proof systems:
(a) resolution.
(b) a subsystem of LK corresponding to the bounded arithmetic
theory S5 (a).
(c) linear equational calculus.
(d) cutting planes.
2. New proofs of the exponential lower bounds (for new formulas)
(a) for resolution ([15]).
(b) for the cutting planes proof system with coefficients written in
unary ([4]).

3. An alternative proof of the independence result of [43] concerning
the provability of circuit-size lower bounds in the bounded arithmetic
theory S3 (o).
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In the other direction we show that a depth 2 subsystem of LK does
not admit feasible monotone interpolation theorem (the so called T.yndon
theorem), and that a feasible monotone interpolation theorem for the
depth 1 subsystem of LK would yield new exponential lower bounds for
resolution proofs of the weak pigeonhole principle.

Introduction

The interpolation theorem proved by Craig [11, 12] is a basic result, in logic. Tt
says that whenever an implication

A—R

is valid then there is a third formula T, an interpolant, which contains only
those symbols of the language occurring in both A and B and such that the two
implications

A—1T I—B

are both valid. The theorem holds for propositional logic as well as for the first
order logic but we shall confine our attention to propositional logic in this paper.

The question of finding an interpolant for the implication is quite relevant
to computational complexity theory. To see this let I/ and V' be two disjoint
NP-subsets {0, 1}*. Tt is well known that there are sequences of propositional
formulas A, (p1, .-, P, q1,---, g, ) and Bu(p1, ..., Pn, 71, ..., 75, ) such that the
o)

size of A, and B, 1s n and

Un{0,1}" = {(e1,...,6,) € {0,1}7 | ey, ..., 0, A, (€, @) holds}

and

V{0, 1Y = {(e1,...,60) €40,1Y" | 381, ..., Bs, Bu(7, B) holds} .

The assumption that 7 NV = @ is equivalent to the statement that the implic-
ations
An — _'Bn

are all tautologically valid. Tf I, (p) is an interpolant (hence only atoms py, ... p,
occur in I,) then the set

W= {7 € {0,1}" | T(7) holds }
separates U from V:

UDCWand WnNV =10.

Hence an estimate of the complexity of propositional interpolation formulas in
terms of the complexity of an implication yields an estimate to the compu-
tational complexity of a set separating [/ from V. For example, if one could



always find such an interpolant whose formula-size (or circuit-size; recall that a
circuit-size of a formula I is the number of different subformulas occurring in it)
is polynomial in the size of the implication then NP N ecoNP C NC' /poly (or
NP N eoNP CP/poly). This is because for U € NP N coNP we may take for
V the complement of I/ and hence it must hold that W = [J. This example can
be understood as a conditional lower bound to the size of interpolants; it was
first noted by Mundici [30, 31, 32]. For predicate logic there are lower bounds in
terms of recursion theory, see [28, 13], for other connections to computer science
see [14].

The question we shall study in this paper is a bit different.

Problem: Given a propositional proof system, estimate the circuit-size of
an interpolant of an tmplication in terms of the size of the shortest proof
of the implication.

Presumably one gets different estimates for different proof systems and, in par-
ticular, not all proof systems should admit polynomial upper bounds. However,
this is an open problem. The proof of Craig interpolation theorem [11, 12] via
cut-elimination (see, for example, [45] or [20, 4.3]) shows that an implication
whose cut-free proof in the sequent calculus has k steps has an interpolant with
circuit-size at most k.

The reason for studying this problem is that a good upper bound for a proof
system P yields lower bounds on the size of P-proofs. In particular, a pair of
NP-sets U and V inseparable by a set of small complexity yields a sequence
of implications A,, — —B,, which cannot have short P-proofs (as the assumed
good interpolation yields feasible upper bound to the complexity of [, and
hence of W). This idea was discussed in Krajicek [19] but no lower bounds were
obtained there in this way.

Our interest in this question was renewed by a remark in Razborov [43] that
the results underlying the unprovability results there are certain interpolation
theorems for fragments of second order bounded arithmetic. Tt occurred to us
that these interpolation theorems (and problems) are more rudimentary in the
propositional setting, and that a sufficiently sharp estimate to the complexity
of the interpolation theorem for resolution - together with the known relations
of propositional proof systems to bounded arithmetic theories - might yield an
alternative proof of the main result of [43]. We prove such an interpolation
theorem (in fact, a polynomial bound for resolution follows already from the
bound for cut-free systems via a translation of resolution refutations into cut-
free derivations, see 6.1(second proof)). Tn fact, we give a new proof of the Craig
interpolation theorem (as well as of the Lyndon version) allowing us to deduce
in a new way exponential lower bounds to the size of proofs in various systems
(a subsystem of LK stronger than the cut-free fragment, resolution, a version
of cutting planes). We formulate a general, syntax-free, framework for which
our proof of the interpolation theorem yields good bounds.



The paper is organized as follows. In the first section we define several
proof systems (sequent. calculus, resolution, linear equational calculus and cut-
ting planes). Tn the second section we recall some communication complexity
(Karchmer-Wigderson game) and we reformulate a bit the characterization of
the circuit-size in terms of PLS-problems from [43]. Tn the third section we give
a new proof of Craig interpolation theorem for cut-free sequent calculus. The
proof applies in a general, syntax-free, context. This is formalized by the notion
of semantic derivations defined in section 4. A general form of the interpolation
theorem for semantic derivations is proved in section 5. In section 6 we deduce
from it polynomial upper bounds for interpolation for resolution, a subsystem of
sequent calculus relevant to bounded arithmetic, linear equational calculus and
a variant of cutting planes. Tn section 7 we obtain new proofs of exponential
lower bounds for some of these systems and in section 8 we give an alternative
treatment of the proof of the main independence result of [43].

A question for which proof systems one can prove a non-trivial lower bound
for interpolation is discussed 1n section 9. Tt is linked with two topics, the exist-
ence of optimal propositional proof systems relative to a given theory (studied
earlier in [22]) and the question of implicit definability of inverse functions to
one-way functions. We also prove there that the depth 2 subsystem of LK does
not. admit feasible monotone interpolation theorem and that the validity of such
a theorem for the depth 1 subsystem would imply new exponential lower bounds
to the resolution proofs of the weak pigeonhole principle.

The reader is assumed to have some familiarity with the subjects involved,
in particular with some basic notions of complexity theory. A familiarity with
bounded arithmetic 1s assumed only in the last two sections. References to
original papers are often accompanied by a reference to a place in [20] which
offers a survey of basic results in the field.

A remark on notation: we denote n-tuples of numbers or bits simply a, b, z,y, ...

rather than @, ..., and the elements or the bits of @ are denoted ay,as, ... . Log-
arithm log 1s base 2.

1 Propositional proof systems

The propositional language of the sequent calculus I.K contains the following
connectives: constants 0 (false) and 1 (true), the negation —, the conjunction
A\ and the disjunction \/. The negation is allowed only in front of atoms, the
conjunction and the disjunction are of unbounded arity. The symbol = A denotes
the formula obtained from the formula A by interchanging 0 and 1, \/ and A
and p; and —p;.

The size |A] of A is the number of occurrences of connectives and atoms in

it. The depth dp(A) of A is the maximal nesting of \/ and A in A:



dp(0) = dp(1) = dp(p;) = dp(=p;) =0
dp(\/; Ai) = dp(\\; Ai) = 1+ maz;(dp(A;))-

We shall adopt the following version of the sequent calculus LK. The particular
modification is unimportant and used just for technical reasons, similarly as in
[19]. We shall keep the name LK as well. Further information on LK can he
found in [45] or [20, Section 4.3] (contains also information about resolution,
Section 4.2, and cutting planes, Section 13.1).

A cedentis is a finite (possibly empty) sequence of formulas denoted T, A .. ..
The basic object of K is a sequent, an ordered pair of cedents written ' — A.
A sequent is satisfied 1if at least one formula in A is satisfied or at least one
formula in T is falsified. Tn particular, the empty sequent cannot be satisfied.

The inference rules are the following:

1. the imitial sequents are:
—1 =1 — 00— — =0
p—p —"p—>7pP p,p—> —p,7P
2. the weak structural rules are:

the exchange:
r—A

T — A
where TV, A’ are any permutations of I', A

the contraction:
I —A

I — A/
where TV, A’ are obtained from T', A by deleting any multiple occur-

rences of formulas

the weakening:

r—A
I — A/
where T/ 2 T'and A’ D A
3. the propositional rules are:
Asintroduction
AT — A r—A A ... T —AA,
/\A7,F—>A F—>A,/\7<mA7

where A 1s one of A; in the left rule.



\/:introduction

A, T— A ... A, T — A r—AA
Viem Ais T — A F— AV, A

where A is one of A; in the right rule.

4. the cut rule:
r—AA AT -—A

r—A
An LK -proofof asequent S from the sequents Sy, ..., S, 1s asequence 7y, ..., 7k
such that 7, = S and each 7; is either an initial one or from {5y,...,Sn}, or

derived from the previous ones by an inference rule.

A proof-graph of an I K-proof 7 is a directed acyclic graph whose nodes are
the sequents of m and a directed edge goes from a hypothesis of a rule to its
conclusion. Hence the initial sequents correspond to the leaves.

A proof is tree-like if 1ts proof-graph is a forest, i.e., if every sequent is a
hypothesis of at most one inference.

k(7) is the number of sequents in 7. The size of a proof is the sum of the sizes
of the formulas in it (counting multiple occurrences of a formula separately).

A resolution refutation of sequents Sy, ..., S, which contain no \/, A is an
L K-proof of the empty sequent from Sy, ..., S, in which no \/; A occur. This
is obviously (essentially) equivalent to the more usual definition of resolution
with clauses and the resolution rule as a resolution clause

{_'piw- <oy T WPig s Py - 7p7h}

can be represented by the sequent

Pivy---yPi, —>p,717"'7p,7h

and the resolution rule by the cut rule (and vice versa). We shall freely slide
between the two definitions of resolution.

We define a linear equational calculus (LFEC) to be a proof system working
with linear equations
a1+ .t anr, =b

over a field F. F is either a finite field or the field of rationals Q. The rules
allow to add two equations and to multiply an equation by an element of F. An
L. EC-refutation of equations Fy, ..., F,, is an I FC-derivation of the equation
0=1from Ky,..., Fy. The size of an equation is ). ||a;|| + ||b]| where ||2]] is
the sum of the absolute values of w and v if F = Q and ||a|]| =1 for all a € F if
F s finite.

LEC is sound and complete (by Gauss elimination), if by completeness we
mean that every system of equations unsolvable in F' is refutable. When com-
pleteness is considered only w.r.t. the systems with no 0-1 solution then LFEC



is complete only for the two-element field F5. To get such completeness also for
other fields one would have to expand LFEC' to an equational logic working with
general polynomials and based on ring axioms.

However, not even all Boolean functions can be represented by a conjunction
of linear equations and so LF(C' cannot be considered, even for Fo, as a full
propositional proof system in the sense of [9].

An important example of a formula which can be so represented is the neg-
ation of the pigeonhole principle, formalizing that there is a bijection between
{1,...,n+ 1} and {1,...,n}. This formula is represented by the following sef,
of equations (over any F') with variables #;;, i=1,...n4+ 1T and j=1,... n:

ZT” =1, foralli

7

ZT” =1, forall j.

)

Tt is easy to see that there 1s an . FEC-refutation of this set of size polynomial
nn.

A system stronger than the resolution system is the cutting planes proof
system introduced in [10]. This system C'P works with inequalities of the form
a1z 4. ..anx, > b, where a;, b € Z and x; represent truth values of atoms. C'P
has few obvious rules: adding two inequalities, multiplying an inequality by a
positive constant, the division rule:

x4 .y, > b

c

provided cla;, all 7, and few initial inequalities: = > 0, —z > —1. C'P is a
refutation system which derives from an unsatisfiable system of inequalities the
inequality 0 > 1. The term unsatisfiable means that the system has no 0-1
solution. Tt is sound and complete and polynomially simulates resolution, see

[10] or [20, 13.1].

2 Protocols for Karchmer-Wigderson game

Karchmer-Wigderson game (see [16]) is played as follows. Tet U,V C {0,1}”
be two disjoint sets. The game is played by two players A and B. Player A
receives u € [/ while B receives v € V. They communicate bits of information
(following a protocol previously agreed on) until both players agree on the same
i € {1,...,n} such that u; # v;. Their objective is to minimize (over all
protocols) the number of bits they need to communicate in the worst case. This
minimum is called the communication complexity of the game and 1t 1s denoted

by C(U, V).



We say that the Boolean function B(p1,...,p,) separates U from V if and
only if B(2) = 1 holds (resp. = 0) for all & € U (resp. for all 2 € V).

The following is a rather simple but quite important result.

Theorem 2.1 ([16]) Let U,V C {0, 1}” be two disjoint sets. Then C(U,V) is
precisely the minimal depth of a formula with binary V, A\ separating U from V.

We shall need a bit finer version of the theorem. For that we need to define
the notion of a protocol in a particular way.

Definition 2.2 Tet U,V C {0,1}" be two disjoint sets. A protocol for the
game on the pair (U, V) is a labelled directed graph G satisfying the following
four conditions:

1. G is acyclic and has one source (the in-degree 0 node) denoted .

The nodes with the out-degree () are leaves, all other are inner nodes.

2. All leaves are labelled by one of the following formulas:
;= 1A, =0 or u; =0Av; =1
for somei=1,...  n.

3. There is a function S(u,v,x) (the strategy) such that S assigns to a node
x and a pairu € U and v € V the edge S(u,v, ) leaving from the node 1.

m G
= xy,...,%4, where 1 = x, the edge S(u,v, x;)
goes from x; to x;yq, and xp 1s a leaf.

Every pair w € U and v € V defines for every node x a directed path PJ

5
from the node x to a leaf: P,

4. For every u € U and v € V there is a set F(u,v) C (7 satisfying:

(a) B € F(u,v)
(b) x € F(u,v) = P7, C F(u,v)

U,

(¢) the label of any leaf from F(u,v) is valid for u, v.
Such a set F' 1s called the consistency condition.

A protocol 15 called monotone iff every leaf in it is labelled by one of the formulas
w=1Av; =0,1=1,... n.

The communication complerity of G 1s the minimal number t such that for every
x € G the players (one knowing uw and x, the other one v and x) decide whether
x € F(u,v) and compute S(u,v,x) with at most t bils exchanged in the worsi
case.



This definition is a variant of the formulation from [43] using P LS-problems.
We would like to replace the consistency condition 4. by a simpler one: for all
u,v the label of the leaf in P}?m 1s valid for u,». However, the example of a
linear size branching program finding ¢ < n such that u, # v; for all different,
u, v shows that that is not enough.

Tmportant examples of protocols are protocols formed from a circuit (later
we shall define protocols from proofs). Assume that C' is a circuit separating
U from V. Reverse the edges in (U, take for F(u,v) those subcircuits differing
in the value on u and v, and define the strategy and the labels of the leaves
in an obvious way. This determines a protocol for the game on (U, V) whose
communication complexity is 2. The next theorem says that there is a similar
converse construction.

Theorem 2.3 ([43]) Let U,V C {0,1}" be two disjoint sets. Let G be a pro-
tocol for the game on U,V which has k nodes and the communication complerity
i.

Then there is a circuit C' of size k2°") separating U from V. Moreover, if
(G 1s monotone so is (.

On the other hand, any circuit (monotone circuit) C' of size m separating U
from V' determines a protocol (a monotone protocol) G with m nodes whose
communication complerity is 2.

Proof :

Let (7 be a protocol from the game. The number of nodes reachable from
x via the edges defines a cost of 2. For any u, v, the set. F(u,v) together with
the cost function and with the neighborhood function given by the strategy is a
PLS-problem. By [43, Thm. 3.1] there is a circuit separating U from V of size
at most

| U Fu,v) | .900) — 1. 900) |

U,

If the protocol is monotone so 1s the circuit.

The second part of the statement was noted above.

q.e.d.

3 The Craig interpolation theorem

We define an inferpolant of a valid implication

A(p,q) — B(p,7)



where p = (p1,...,pn) are the atoms occurring in both A and B, while ¢ =
(¢1,---,95) occur only in A and » = (r,...,7) only in B, to be any Boolean
function 7(p) such that both implications

A(p,q) = (I(p) = 1) and (I(p) =1) — B(p,7)

are tautologically valid. Tf T(p) is defined by a formula (also denoted T) this
means that both implications

A>T and T = B

are tautologies.

In the calculus LK the implication A — B is represented by the sequent
A — B and, in general, the sequent Aq,... A, —> By, ..., By represents the
implication A\, A; — \/'7. B;.

Craig [11, 12] proved that every tautologically valid implication has an inter-
polant. Tn fact, the argument via the cut-elimination (see [45] or [20, 4.3]) gives
the following theorem (with the bound < k() instead of k(m)?(") in fact). We
shall give a new proof of the theorem which will later allow some generalizations
not offered by Craig’s original proof. For completeness we recall the standard
proof as well (the second proof below).

Theorem 3.1 ([11, 12]) let 7 be a cut-free LK -proof of the sequent:

A](l), q)7 ey Am(p7 q) — B1 (p7 7”)7 ey B/,(p7 7”)

with p = (p1,...,pn) the atoms occurring simultaneously in some A; and B;,
and g = (q1,...,q5) and r = (ry,...,r) all other atoms occurring only in some
A; or in some B; respectively.

Then there is an interpolant T(p) of the implication:

i<m i<t

whose circuit-size is at most k(m)0).
Moreover, if the atoms p occur only positively an all A; or in all B; then there
18 a monotone interpolant whose monotone circuit-size is at most k(ﬂ')o(”.

First proof:
Define two sets U,V C {0, 1}" by:

U={ue{0, 1} [3¢" € {01}, \ Ai(u,q")}

i<m

V={ve{0,1}" | I {01}, \ =B ")}

gt

10



Note that the fact that the sequent Ay, ..., A, — By, ..., By is tautologically
valid is equivalent to the fact that the sets [/, V are disjoint, and that any
Boolean function separates U/ from V iff it is an interpolant of the sequent.

Using the proof m we define a particular protocol for the game on U, V.
Assume that player A received u € U/ and B received v € V. Player A fixes
some ¢" € {0,1}° such that A, A;(u,¢") holds and player B fixes some
" € {0,1}" for which /\,7'</,_‘B,7(”7 ") holds.

Fxchanging some bits they will construct the path P = Sy, ..., S, of se-
quents of 7 satisfying the following conditions:

1. Sy in the end-sequent.
2. S;41 18 an upper sequent of the inference giving ;.
3. 55 i1s an initial sequent.

4. For any a = 0,..., h: if S, has the form:

E1(p7q)7"'7E€(p7q) — F1(p7r)7"'7Ff(p7r)

then A, <. Fi(u,¢") holds while \/ . ., F;(v, ") fails.

i<f

Note that as the proof is cut-free and there are no —rules, no formula in the
antecedent (resp. the succedent) of a sequent in the proof contains an atom r;
(resp. an atom g¢;).

To find S,41 they proceed as follows:

(a) Tf S, was deduced by an inference with only one hypothesis, they put S,44
to be that hypothesis and they exchange no bits.

(b) Tf the inference yielding S, was the introduction of A;. D to the suc-
cedent the player B, who thmkﬁ that /\7< D; is false, %end@ to A [log(g)]
bits identifying one particular D;(v, 7"}, 1 < g, Whl(’h is false. They take
for S,41 the upper sequent of the inference containing the minor formula
D;.

(c) Tf the inference yielding S, was the introduction of \/, i<y Pi o the ante-
cedent. then analogously Wlth (b) player A identifies to B a true D;(u, ¢")
and they take for S,41 the sequent containing that minor formula.

Let Si, be the initial sequent the players arrive at in the path P. Tt must be
one of the following:
pi — pPi O 7P — Tp;

for some 7 = 1,...,n. This is because all other the initial sequents either
contain an atom r; in the antecedent or an atom ¢; in the succedent, or violate

the condition 4. from the definition of P.

11



If Sy is the former then by 4. w; = 1 A w; = 0, 1f 1t is the latter then
w; = 0Av; = 1.

Formally, the protocol G is defined as follows: the nodes are the sequents
of m, the strategy is given by the definition of S,41 from S, and the sequent 1is
in the consistency condition F(u,v) iff it satisfies the condition 4. above. The
communication complexity of G is < [log(g)] + 2 < [log(k(m))] + 2.

By Theorem 2.3 there is a circuit of size k(ﬂ')o(” separating U/ from V. Note
that if the atoms p; occur only positively in the antecedent or in the succedent
of the end-sequent then the players always arrive to an initial sequent of the
form p; — p;. This yields the monotone case.

This concludes the first proof.

Second proof:

Let S be a sequent in the cut-free proof 7. By induction on the number of
inferences before S we define explicitly the interpolant I°(p) for S (this makes
sense as no r; occurs in an antecedent and no ¢; occurs in a succedent).

If S is initial then 1% is one of 0, 1, p;, =p; (because the only initial sequents
in m where ¢; or r; occur are ¢;, =¢; — and — r;, =r; which have interpolants
0 and 1 respectively).

If S was derived from one hypothesis S put 75 := 1(5) 1f § was derived
by the right A:introduction (resp. by the left \/:iintroduction) from Sy,...,5,
then put 7% := /\igg 7054 (resp. \/igg 754y,

The monotone case follows as then —p; cannot occur as the interpolant of
an initial sequent.

This concludes the second proof.

q.e.d.

Both proofs of Theorem 3.1 can be modified for the case when 7 is not
necessarily cut-free but no cut-formula contains atoms ¢ and »r at the same
time. To maintain the condition that ¢ (resp. ) do not occur in the succedent
(resp. in the antecedent) we picture a cut-inference with the cut-formula 1 as

=D, — A D,;T — A
r— A

or
r—AD T —A-D

I —A

according to whether atoms ¢ do or do not occur in D (this is equivalent to

considering a partition of formulas in a sequent S into the ancestors of the
formulas from the antecedent and from the succedent of the end-sequent, rather
than just into the antecedent and the succedent of S itself).

A modification of the first proof is then straightforward as the truth-value
of any cut-formula is known to one of the players and he can direct the path by

12



sending one bit. To modify the second proof note that if Iy and 75 are inter-
polants of the hypotheses of a cut-inference as above then 7y V I, respectively
I1 A Ty, 18 an interpolant of the lower sequent.

Corollary 3.2 lLet m be an LK -proof of the sequent:

A](l), q)7 ey Am(p7 q) — B1 (p7 7”)7 ey B/,(p7 7”)

with occurrences of atoms as shown. Assume that in no cut-formula some ¢;
and r; occur simultaneously.
Then there is an interpolant T(p) of the implication:

/\Ai—>\/Bz

i<m <t

whose circuit-size is at most k(m)0).
Moreover, if the atoms p occur only positively an all A; or in all B; then there
18 a monotone interpolant whose monotone circuit-size is at most k(ﬂ')o(”.

A third way how to obtain the corollary from Theorem 3.1 is provided by
the second proof of Theorem 6.1.

4 Semantic derivations

In the first proof of Theorem 3.1 we have not used any particular syntactic
property of formulas in an . K-proof. Rather the proof worked with the sets of
truth assignments satisfying the formulasin 7. The following notion is intended
to formalize a general situation in which a similar argument may work for proofs
allowing some form of cut-rule.

Definition 4.1 et N be a fired natural number.

1. The semantic rule allows to infer from two subsets A, B C {0, 11N a third
one:

A B
C
ifC D> ANB.
2. A semantic derivation of the set €' C {0, 1}V from the sets Ay, ..., A, C
{0, 1YY s a sequence of sets By,..., By, C {0, 1}V such that B, = C

?
each B; is either one of A; or derived from two premious By, B;, by the
semantic rule.

3. Let X C exp({0,1}N) be a family of subsets of {0,131V, A semantic de-
rwation By, ..., By 1s an X -deriwation iff all B; € X.

13



Recall that a filter of subsets of {0, 1}V is a family X' closed upwards (A €
XABDA—= BeX) and closed under intersection (A, B e X - ANB € X).
The following lemma is obvious.

Lemma 4.2 Let Ay, ..., A,,,C € {0,1}N. Then the following three conditions
are equivalent:

1. C' can be semantically derived from Ay, ... Ay,
2. C' can be semantically derived from Ay, ..., A, inm — 1 steps.

3. C'is in the smallest filter containing Aq, ..., Ap,.

It means that to have a non-trivial meaning of the length of semantic de-
rivations we must restrict to X-derivations for some family X which itself is
not a filter. For example, a family formed by subsets of {0, 1}V definable by
disjunctions of literals yields a non-trivial notion. The following technical defin-
ition abstracts a property of sets of truth assignments used in the first proof of
Theorem 3.1.

Definition 4.3 et N = n 4+ s+t be fivred and let A C {0,1}N. Let u,v €
{0,117, " € 0,1} and " € {0,1}".

Consider three tasks:

1. Decide whether (u,q", ") € A.

2. Decide whether (v,¢", ") € A.

3 If (u, g™, 7)€ AZ (v,¢",v") € A find i < n such thal u; # v;.

These tasks can be solved by two players, one knowing u, ¢" and the other one
knowing v,r". The communication complexity of A, CC(A), is the minimal
number of bits they need to exchange in the worst case in solving any of these
three tasks.

Consider two more tasks:

4. If (u,¢",r") € A and (v, q", ") & A either find i < n such that
w;, = 1Ay, =0
or learn that there is some u' satisfying
u' > uA @ ") ¢ A

(u <’ means N\, u; < uj.)
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5 If (u, g™, ") & A and (v,¢",7") € A either find i <n such that
w;, = 1Ay, =0
or learn that there is some v satisfying

V<oA% ") g AL

(Note that the players are not required to find v’ and v' in J. and 5. and that
the two cases in each task are not necessarily exclusive.)
The monotone communication complexity w.r.t. U of A, MCCy(A), is the
minimal t > CC(A) such that the task 4. can be solved communicating < t bils
m the worst case.

The monotone communication complexity w.r.t. V of A, MCCy (A), is the
minimal t > CC(A) such that the task 5. can be solved communicating <t bils
m the worst case.

In the example above, any set definable by a disjunction of literals has both
the communication complexity and the monotone communication complexity at

most [log(n)] + 2.

Note that proofs in any of the usual propositional calculi translate into se-
mantic derivations: simply replace a sequent (a formula, an equation, etc.) by
the set of its satisfying truth assignments. The inference rules translate into
instances of the semantic rule as they are all sound.

5 An interpolation theorem for semantic deriv-
ations

Let N =n+ s 41 be fixed for the whole section. For A C {0,1}"%* define the
set. A by:

A= | {(a,be) | ce{0,1}}

(a,b)eA

where @, b, ¢ range over {0,1}", {0,1}* and {0, 11" respectively, and similarly
for B C {0,1}"*" define B:

B= |J {(abe)|bef0,1}}.
(a,c)ER

Theorem 5.1 Let Ay, ..., Ay, C {0,117 and By,..., B, C {0,1}"+. As-
sume that there is a semantic derivation m = Dy, ..., Dy of the empty set ) = Dy,
from the sets Ay, ..., Am, B1,..., By such that:

comny) <t
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foralli <k.
Then the two sets

U={ue{0,1}" | 3¢" € 0,1} (u,q") € () A}

i<m

and

V={ve{0,1}" | 3" {01} (v,r") € () B}
j<s

can be separated by a circuil of size at most (k + 277,)20“).

Moreover, of the sets Ay, ..., An satisfy the following monotonicity condition
w.r.dt. U:
(u,q") € ﬂ Ajnu<u' — (v, ¢") € ﬂ A;

j<m j<m
and MCCy(D;) <t for all i <k, orif the sets By, ... By salisfy:

(v,r") € ﬂ BiAv>v — (v,r') e ﬂ B;
i< i<t

and MCCyv(D;) <1 for all i <k, then there is a monotone circuil separaling
U from V of size at most (k 4+ n)2°0).

Proof :

Tet # = Dy,..., Dy be a semantic derivation of @ from A, e B,. We shall
construct a protocol (¢ for the Karchmer-Wigderson game on U, V. Before we
define it formally we first explain its idea in terms of two players constructing
a path through .

The two players A and B, one knowing (u,q¢") € ﬂy. A; and the other one
knowing (v, r") € ﬂj B;, attempt to construct a path P = Sg,..., S, through
m. Sqg =0 = Dy, Syp1 is one of the two sets which are the hypotheses of the
semantic inference yielding S, and S;, € {/41 e F}z}. Moreover, both tuples
(u, g™, ") and (v,¢",7") are notin S,, a=0,... h.

If the players know S, which was deduced in the inference:

X Y
Sa

then they first determine whether (u,¢" ") € X and (v,¢",r") € X. There
are three possible outcomes:

1. both (u,q", ") and (v,q¢",7") are in X
2. none of (u,¢", 7"}, (v,q", ") isin X

3. only one of (u,q¢",7"), (v,¢",r") isin X.
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In the first case none of the two tuples can be in YV and the players put S,4¢ :=
Y. TIn the second case they take S,11 := X. TIn the third case they stop
constructing the path and enter a protocol aimed at finding i < n such that
u; # v;. Such ¢ must exists as necessarily v # v. As none of the initial sets
Ay, ..., By avoids both (u, g™, r"), (v,¢",r") the players must sooner or later
enter the possibility 3. and find ¢ < n such that u; # ;.

Now we define the protocol (7 formally. GG has (k+ 2n) nodes, the k steps of
the derivation 7 plus 2n additional nodes labelled by formulas u; = 1 Av; =0
and u; = 0Aw; = 1,4 =1,...,n. The consistency condition F(u,v) consists
of those D, such that (v,¢",r") ¢ D; and of those of the additional 2n nodes
whose label 1s valid for the particular pair u, v.

The strategy function (for 1, derived from X and V') is defined as follows:

1. Tf (u, ¢, 7") ¢ D then

X it (v )¢ X

S(H,?), D?) T { A% n(’ (1)7(]747707/) c X (a,nd hence (1)7(]“7707/) % y)

2. Tf (u,¢",7") € D; then the players use the protocol (whose existence is
guaranteed by the definition of CC(D;)) for finding ¢ < n such that u,; #
vi. S(u, v, D;) is then the one of the two nodes labelled by u; = 1Av; =0
and u; = 0 A v; = 1 whose label is valid for the pair u, v.

Note that both the strategy function S(u, v, #) and the membership relation
x € F(u,v) can be determined by the players exchanging at most O(#) bits. As
(G has (k4 2n) nodes, Theorem 2.3 yields the wanted circuit separating U from
V and having the size at most (k + 2n) . 90()

The protocol requires a modification for the monotone case. Assume that the
sets Ay, ..., A, satisfy the monotonicity condition w.r.t. U and that MCCy(D;)
<1 for all i < k (the case of the monotonicity w.r.t. V is analogous). The pro-
tocol has (k + n) nodes, the k steps of the derivation 7 plus n additional nodes
labelled by formulas u; = 1 Av; = 0,2 = 1,...,n. The consistency condition
F(u,v) is defined as before.

The strategy function 1s defined in a bit different way. The players use the
protocol for solving the task 4. from Definition 4.3. There are two possible
outcomes:

1. They decide that the condition:
Fu' >, (' q" ") & D

is true for u,v. Then they put:
) (v gr
S(H,?), D7) = { v nc (1)7(]74 7““) c X .
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2. They find ¢ < n such that u; = TAw; = 0. S(u, v, D;) is then the additional
node with the label u; = 1 A v; = 0.

By the monotonicity condition imposed on Ay, ..., A, for every 4 occurring

above 1t holds:
(11/7(]7‘77““) e ﬂ A7 )
j<m

This implies that the players have to find sooner or later ¢+ < n such that
w; = 1T Av; = 0.

By the assumption about the monotone communication complexity of all
D;, both the relation 2 € F(u,v) and the function S(u, v, ) can be computed
exchanging O(#) bits. As (G has (k + n) nodes, Theorem 2.3 yields the wanted
monotone circuit, separating U from V and having the size at most (k+n) 200

q.e.d.

6 Upper bounds for some interpolation theor-
ems

In this section we derive from Theorem 5.1 feasible bounds for interpolation
theorems for resolution, a subsystem of LK relevant to bounded arithmetic,

and for LEC and C'P.
Theorem 6.1 Assume that the set of clauses {A1,..., Am, B1,..., Bs} where:

1. A7 g {ph_‘l)h---vpm_‘quh_‘(]h---7(]s7_‘qs}’ (]H7S7’Tl
2. B? g {p17_'p17"'7pn7_'pn7r17_'r17"'77}7_'7}}’ H”] S/

has a resolution refutation with k clauses.
Then the implication:

AN A — \V(A-5)

i<m i<t

(where \/ A; denotes the disjunction of the literals in A; and A\ = B; denotes the
conjunction of the negations of the literals in B; ) has an interpolant 1(p) whose
circuit-size is kn®().

Moreover, if all atoms p occur only positively in all A;, or of all p occur
only negatively in all B;, then there 1s a monotone interpolant whose monotone
circuit-size is kn®().

First proof:

TLet m = C4,...,C) be a resolution refutation of Ay,..., B,. For a clause
¢ denote by ' the subset of {0,1}7T5%" of all those truth assignments satis-
fying C. Then ™ = Cy,...,Cy is a semantic derivation of § from Aq,..., By.

18



Obviously, for any clause (' both the communication complexity and the mono-
tone communication complexity of C'is at most (7(7((7) < [log(n)] + 2. Hence
Theorem 5.1 yields circuit of size (k + 2n) - nO) <k- n®) Similarly for the
monotone case. This concludes the first proof.

Second proof:

We give a second proof of a slightly worse bound via a translation of res-
olution refutation into cut-free proofs. Assume that C4, ..., C} is a resolution
refutation of clauses Ay, ..., B;. We show that for every a < k there are cedents
T, A, such that the following conditions hold:

1. Each formula in T';, has the form either p; V —p; or ¢; V —g;.
2. Each formula in A, has the form r; A —r;.

3. The sequent

T\ AL\ A — A\ =B\ B AL\ C

has a cut-free L K-proof with O(a - N) sequents, where N =n + s +1.

This is readily established by induction on a. For C, € {A+,..., Bs} apply
\ :left or A : right (O(N) sequents), otherwise replace the cut inference yielding
', with the cut formulap; or ¢; by introduction of p; V—p; or ¢; V—q; respectively
into the antecedent, and the cut inference with the cut formula r; by introduction
r; A —r; to the succedent. These new formulas form the cedents T', and A,
respectively.

By Theorem 3.1 the implication:

ATen N\ A4) — V(A\-B) VvV A

i<m i<t

has an interpolant T(p) of circuit size (KN)?U). Now note that, as ATy is a
tautology while \/ Ay is unsatisfiable, T(p) is, in fact, an interpolant for the

AN A)— (=B

i<m i<t

implication

as well.
This concludes the second proof.

q.e.d.

The following statement extends the previous theorem to a larger class of
I.K-proofs. This class appears naturally in connection with bounded arithmetic

(see [19, 2.2] or [20, 12.2.1]).
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Corollary 6.2 et m be an LK -proof of the sequent:

A](l), q)7 ey Am(p7 q) — B1 (p7 7”)7 ey B/,(p7 7”)

with atoms p, q,r occurring as displayed and such that the formulas A; (resp.
B; ) are literals or disjunctions (resp. conjunctions) of literals.
Assume that m satisfies:

1. 7w is tree-like.
2. Fvery formula in m has the depth at most two.

3. Fvery sequent in 7 contains at most ¢ depth 2 formulas, where ¢ is an
independent constant.

Then there is an interpolant T(p) of the implication:

/\Ai—>\/37

i<m <t

whose circuit-size is at most k(m)?()nO01)
Maoreover, if the atoms p occur only positively in all A; or an all B; then
there is a monotone interpolant whose monotone circuit-size 1s k(ﬂ')o(“)no(”.

Proof :

Assume that 7 satisfies the hypothesis of the corollary. Tt was shown in [19,
2.2] (or see [20, 12.2.1]) that 7 can be transformed into a tree-like proof n’ with
k(r") = k(ﬂ')o(c) in which every formula is of depth < 1.

Furthermore, by [19, 1.2] (or see [20, 12.2.1]) such 7’ can he transformed into
a resolution refutation 7' (which is not necessarily tree-like) of clauses repres-
enting the sequents — Ay, ..., — A, and =By —, ..., =B, —, and such
that k(r") = k(7')?0) = k(7). The corollary then follows from Theorem
6.1.

q.e.d.
Next, we deduce interpolation theorems for LFEC and C'P.

Theorem 6.3 Let Fy(z,y), ..., En(x,y) and Fy(x,2), ..., Fe(x, z) be a system
of linear equations over a finite field F' in which occur only the displayed variables

Tr = (,’I,‘],...,.’Ifn), y= (.Uh--w?/s) and z = (217"'7Zt)~
Assume that there is an LEC-refutation m of the system with k() inferences.

Then there is an interpolant I(x) of the implication:

N Fi(z.y) — \/ =Fi(x, 2)

i<m <t

whose circuit-size 1s at most k(ﬂ')no(”.
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Proof :

Put N :=n+ s+ t. For an equation C(z,y, z) denote by C the subset of
10,11V of those tuples satisfying C'. If 7 = C,...,Cy is an LFEC-refutation
then Y e Cy is a semantic refutation of F; e F,. For any linear equation
C the communication complexity of (' is at most O(log(n)). The theorem then
follows from Theorem 5.1.

q.e.d.

If F'= Q we do not get such an estimate on CC(() valid for all C. Rather
we need also to incorporate the sizes of the coefficients (see the definition of ||al|
in section 1). Tnstead of this we prove an interpolation theorem for C'P; the
case of LEC with F' = Q is similar.

Theorem 6.4 Let Fy(x,y),..., Fm(z,y), Fi(2,2),..., Fi(x,z) be a system of
C' P-inequalities in which occur only the displayed variables © = (x1,... 2,),
y=(y1,--.,ys) and z = (z1,...,2). Let N:=n+s+1. Assume thal there is
a C'P-refutation m of the system such that:

1. m contains k(m) inferences.
2. Rvery coefficient occurring in w has the absolute value at most M.

Then there is an interpolant I(x) of the implication:

N Fi(z,y) — \/ =Fj(x, 2)

i<m <t

whose circuit-size 1s at most k(ﬂ')(/\/[/\f)()“)(/\/[n)o(](’g”).

Moreover, if all x; occur wn all Fy, ... F, with non-negatiwe coefficients
only, or if all x; occur in aoll Fy, ..., Fy only with non-positive coefficients only,
then there 1s a monotone interpolant whose monotone circuit-size 1s at most

E(m) (M N)OM (Mn)©@lon)

Proof :
Assume that 7 is a (' P-refutation satisfying the hypothesis of the corollary.
Every inequality 1 in 7 has the form:

a-v+b-y+ec-z2>d

where a - 2 abbreviates the scalar product aj21 + ... 4+ a,z, (and similarly b -y
and ¢ - z). Tet D be the set of assignments satisfying 1.

Assume that player A received u € {0, 1}" such that all E;(u, y") are satisfied
for some y", while B received v € {0,1}" such that all F;(v,z") are satisfied
for some 2z”. As in the proof of Theorem 6.1 1t is sufficient to estimate the
(monotone) communication complexity of D.
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For the tasks to decide whether (u,y", z") € D and (v,y*,2") € D it is
sufficient if A sends to B the numbers a - v and b - y*, and B sends to A a-v
and ¢ - z”. This needs at most 2 - [log(M N)] bits each.

Tf (u, g™, 2") € D % (v,y",2") € D then necessarily a - u # a-v and the
players find i < n such that u; # v; by binary search. Here [logn] - [log(Mn)]
bits suffice.

This shows that for any 1 the communication complexity is at most:

CC(D) < O(log(MN) + logn -log(Mn)) .

Theorem 5.1 implies that the implication has an interpolant of circuit-size at
most:

k(x) - (MNP (Mn)©lesn)

For the monotone case assume that the variables x; occur only with non-negative
coefficients in all Ey, ... F,, (the other case is analogous). The monotonicity
condition of Theorem 5.1

uw > uAn /\ Ei(u,y") — /\ Fi(u’, y™)

i<m i<m

is then satisfied. Tt is thus sufficient to estimate MCC(](ﬁ).

Assume (u, y" 2") € D while (v,y*,2") ¢ D. Then a-u > a-v. Write the
vector a as a difference of two vectors with non-negative coefficients, a = a; —as.
There are two possibilities

1. a1 -u>a)-v.
2. a1 -u<ap-vAay-u<ay-v.

In the first case the players use binary search to find 7 < n such that u; =
1 Av; = 0. This needs at most [logn] - [log(Mn)] bits. Tn the second case they
know that for some u’ > wu it holds as - u > a5 - v and hence also a - v’ < a-v
and (v, y",2") ¢ D. To decide which case applies needs at most 2[log(Mn)]
bits. Hence

MCCy (D) < O(log(MN) + logn -log(Mn)) .

Theorem 5.1 yields the existence of a monotone interpolant with the monotone
circuit-size at most

k(x) - (MNP (Mn)©lesn)

q.e.d.
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7 Lower bounds for proof systems

Assume that for a propositional proof system P we have a good interpolation
theorem allowing, in particular, good estimates of the complexity of the mono-
tone interpolants. Then an implication which cannot have a small monotone
interpolant must have long P-proofs. A similar idea of lower bounds for proof
systems was discussed in the context of counting principles in [19, Sect.5].
Non-trivial lower bounds to the circuit size are known for monotone circuits
separating graphs with large cliques from those colorable by a small number of
colors, see [39, 2, 1]. Tt is thus natural to use the implications determined by

these two N'P-sets as explained in the introduction. Similar implications were
discussed in [43].

Definition 7.1 Let n,w,& > 1 be natural numbers, and let (g) denote the set

of two-element subsets of {1,...,n}. The set Cliquey, . (p,q) is a set of the
following formulas in the atoms p;;, {i,j} € (g), and qu;, v = 1, w and
1= 1,...,n:

(1a) Vi<, Qui, all u <w,
(1b) =qui V =gy, allu < v <w andi=1,... n,
(1e) =qui V —qu; Vpij, all u < v <w and {i,j} € (g)

The set Color, ¢(p,r) is the set of the following formulas in the atoms p,;,
fiib e (), and rig, i=1,...;n anda=1,....&:

(2a) \/GSE Tia, all i <,
(2b) —r;q NV =i, all a < b <& and i <mn,
(2¢) 1V =gV p, all @ < € and {i ) € (2).

The expression
Clique,, ,, — ~Clolor, ¢

is an abbreviation of the sequent whose antecedent consists of all formulas in (1
a-c) and whose succedent consists of the negations of the formulas in (2 a-c).

Truth assignments to p;; can be identified with graphs on n vertices. Truth
assignments to ¢,; such that Clique, . (p, ¢) is satisfied can be identified with 1-
to-1 maps from the set, {1,..., w} onto a clique in graph p, and truth assignments
to riq such that Color, ¢(p, r) is satisfied can be identified with colorings of graph
p by colors {1,...,&}. Thus the sef

{p | ¢ Clique, ., (p,q)}

is the set of graphs with a clique of size > w, while the set

{p| 3Ir Color, ¢(p,r)}
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is the set of graphs colorable by < ¢ colors. Hence the sequent
Clique,, ,, — ~Clolor, ¢

1s tautologically valid iff £ < w. The following theorem just restates the bound
from [1], replacing the class of graphs without a clique of size £ used in [1] by the
smaller class of &-colorable graphs (the bound to monotone circuits separating
these two classes is what is actually proved in [1]).

Theorem 7.2 ([1]) Assume that 3 < € < w and /Ew < Togn - Then the
sequent
Clique,, ,, — ~Clolor, ¢

has no interpolant of the monotone circuit-size smaller than:
90(\/8)

For the next statement note that all formulas in the set Cligue,, , UColor, ¢
are disjunctions of literals and thus can be identified with resolution clauses.
A resolution clause {#,, ..., %, 2%, ..., 2x; } can be represented by a C'P-
inequality

i+t xy, X, > 1—b.

Hence the set Clique, , U Color, ¢ can be considered also as a set of C'P-
inequalities in p, g, r.

Corollary 7.3 let n be sufficiently large and let ¢ = [/n |, w = £+ 1. Then:

1. Fvery resolution refutation of the clauses Clique,, ,, U Color, ¢ must have

1
at least 22"%) clauses.

2. Fwery C'P-refutation of the clauses Clique, ,, U Color, ¢ with all coeffi-
cients in the absolute value < M must have at least

20(71,17)
M O(logn)
mequalities.

Tn particular, if M < 2" then for ¢ a sufficiently small constant the
number of inequalities 15 at least gn (.

Proof :
By Theorem 6.1 a resolution refutation with k clauses would imply the ex-

istence of an interpolant with monotone circuit size kn®("). The hypothesis of
Theorem 7.2 1s fulfilled and so it must hold:

ISE

EnC() 5 9fin¥)
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and hence

as well.

The second part 1s proved analogously using Theorem 6.4 1n place of 6.1. By
6.4 and 7.2:

ISE

k(ﬂ_)(MN)O(U(Mn)O(Iogn) 2 QQ(W )

where N = (g) +n(s+1)= ()(77,2). This implies:

k(ﬂ') Mo(logn)n()(]ogn) > 20(7117)
and so 1
QQ(W,T)
k> ot

For M < 2", ¢ snitably small, the right-hand side is on)
q.e.d.

Note that by a suitable choice of & we can get a lower bound of the form

29nT7%) for arbitrary small € > 0.

8 Anindependence result for the bounded arith-
metic theory SZ(«)

The first bounded arithmetic theory was introduced in [34]. Current research is
centered around the theories defined in [5]. Tn this section we give a new present-
ation of the proof of the independence result for the theory S3(a) obtained in
[43]. For the definition of the theory as well as for the details of bounded arith-
metic the reader should consult [5] or [20, Chpt. 5] (in particular, the language
L(a) of S3(a) contains, in fact, countably many unary predicates a;). Tn the
latter can also be found details of various relations between the arithmetic sys-
tems and the propositional proof systems (in [20, Chpt. 9] in particular). We
shall recall briefly a translation of bounded L(«) formulas; [35] used it first in
a connection with bounded arithmetic.

A bounded formula A(a, aq, ..., a) with the predicate parameters «; and
the number parameter a can be for every value @ := N translated into a

o(1) . .
log N) formula: the atomic sentence j € a; translates

constant-depth, size 2!
into the atom p?, atrue (resp. false) first-order atomic sentence translates into 1
(resp. into 0) and a bounded universal (resp. existential) quantifier V& < ¢ B(x)

resp. Jda < 1B(z) translates into a conjunction (resp. a disjunction) of the



translations of B(x),2 =0,...,1— 1. We shall denote the translation of formula
Afor a= N by (An(p',...,p").

There are rather sophisticated relations between bounded arithmetic theories
and propositional proof systems, see [8, 35, 22, 23, 26, 27, 19, 21] or [20, Chpts.9
and 11-15].

The class of first-order bounded formulas in the language of bounded arith-
metic (no predicates a;) is denoted X" . We call a bounded L(a)-formula
Fi(o, %) if it has the form 3 A, where A is a disjunction of conjunctions
of atomic formulas and % -formulas. U (a, X )-formulas are defined dually,
replacing 3 by VS and a disjunction of conjunctions by a conjunction of dis-
junctions. The following theorem is known (see, for example, the simulation as

.proved in [21] or [20, Chpt. 9]).

Theorem 8.1 Assume that Vo < s(a)A(a,z,aq, ..., ag) is a bounded
Uiy, ... a5, X0 ) -formula and that Iy < t(a)B(a,y, a1, ..., ax) is a bounded
Ei(on, ..., o, ¥0)-formula.
Assume that the theory S5 (a) proves the sequent:
Ve < s(a) A(a, 2,04, ... o) — Jy <i(a) Bla,y,aq,... o) .

Then for every N the propositional sequent:
(AN, (Ansvy — (BIno, - (BYnev

where the formulas are built from atoms p', ..., p") has an LK -proof nn sat-
. . P, P proo,
1sfying the following conditions:

1. 7w is tree-like.
2. k(ﬂ-N) — Q(IOgN)OU).
3. Fvery formula in mx has depth at most 2.

4. Buvery sequent in wn contains al most ¢ depth 2 formulas (¢ an independent
constant ).

We turn now our attention to the provability of circuit-size lower bounds in
bounded arithmetic.

Razborov [42, 43] studies a formalization of Boolean complexity methods in
the bounded arithmetic theory V;' and in its fragments. Tn that formalization
Boolean functions and circuits are coded by sets while Boolean inputs are coded
by numbers. This allows to speak directly about exponential size circuits. In
[42] he demonstrated that all major lower bounds to the circuit-size of restricted
circuit models known at present can be also proved in V;'. On the other hand, in
[43] he showed - under a cryptographic assumption about the existence of strong
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pseudo-random number generators - that the subtheory S5(a) of V' does not
prove a superpolynomial lower bound to the size of general unrestricted circuits
computing the satisfiability predicate.

His proof relies on an interpolation theorem for second order bounded arith-
metic derived with the help of technical split versions' of bounded arithmetic
theories. We shall give below a direct proof via propositional interpolation.

We first very briefly recall the formalization of Boolean functions and cir-
cuits adopted in [42, 43]. Tet N be a number of the form N = 27, Any
subset f C {1,..., N} is thought of as a truth-table of a Boolean function
F 40,1} — {0, 1}. A first order bounded formula (no second order variables)
E(x,a) determines for every N the function Ey = {1 <i < N | E(i, N)}. We
shall call such functions explicit.

The formula:

Comp(a, N 1(N), f)

formalizes that o codes a circuit (with V, A of fan-in two) of size 1(N) in inputs
Z1, ..., Ty, together with the computations of the circuits on all @ < N of
length n, and that the circuit computes the function f C {1,... N}. Tt is a
Ui (o, 20 )-formula.

The formalization of the lower bound #(N) to the circuit-size of f is the
formula:

LB(N,t(N), f) :=Va,~Comp(a, N, 1(N), f).

Tt should be noted that the formalization of the notions of complexity theory
adopted in [42, 43] differs from the one usually accepted in bounded arithmetic
[36, 5, 8, 20, 22] in which all combinatorial objects (inputs, circuits,...) are coded
at the same level (by sets in the case of V') while (Boolean) functions are identi-
fied with definable classes. Tn the latter formalization one can speak only about
functions from the polynomial-time hierarchy (as only those are definable) and
only about circuits of polynomial size (as the existence of objects of superpoly-
nomial size is not provable in bounded arithmetic). Tt is this latter version in
which bounded arithmetic theories enjoy close relationship with propositional
proof systems (mutual simulation) and with computational complexity (defin-
ability, witnessing and natural forms of major problems).

Results in the two frameworks can be compared using the known relation
between first. and second order bounded arithmetic (the RSUV-isomorphism,
see [17, 40, 46]). Positive results like formalizations of particular exponential
lower bounds in the former formalization are apparently weaker than the cor-
responding proofs of the non-existence of polynomial size upper bounds in the

"Not only are the split theories reader-unfriendly but their notation is unpleasant as
well. T suggest to replace the original notation of [43] by the following more custom-
ary one: SEb = TP (o) + £ (8), ST = £UEL (0), 5 (8)), S(S2) = S2(a) + S2(6),
S8 = Si(2h (), 2% (), ete.
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latter formalization (in the same theory). On the other hand, negative results
like the unprovability of superpolynomial bounds are apparently stronger than
the corresponding statements in the latter formalization (the unprovability of
polynomial size upper bounds). For the latter formalization various (uncon-
ditional) independence results for the theory PV are known, see [20, Sections
7.6 and 15.3] and [24]. The theories occurring in [43] correspond to very weak
subtheories of PV.

The cryptographic assumption mentioned above is expressed by the phrase:
strong pseudo-random number generators do erist, which says that there1se > 0
such that for all n there is a function (a pseudo-random generator):

G {0, 11" = {0, 13"

which is computable by a circuit of size n®(") and has the hardness H(G,) > o
Here, H(({,) is the minimal S such that there is a circuit ' of size S com-
puting a Boolean function ' : {0,1}?™ — {0,1} such that:

| Probeeioy-[C(Gn(x)) = 1] — Probycqo 12 [C(y) =1] | >

Nl =

The reader should consult [43] or [29] for further details.

We are prepared to reprove the main conditional independence result from
[43]. The idea of the reduction of the independence to interpolation is the same
as in [43], we only use more friendly propositional version proved in earlier
sections. For the benefit of the reader we give all details.

Theorem 8.2 ([43]) Assume that strong pseudo-random number generators do
exist. Let E(x,a) be a first order bounded formula and t(N) a function such
that t(N) = (log N)*(") holds in the natural numbers.

Then the theory S3 () does not prove the circuit-size lower bound t(N) for
the function Fy, i.e. the theory S3(a) does not prove the formula:

Va; LB(a,t(a), F,) .

Proof :

Let s(N) be any function such that s(N) = (log N)“(") and the parity of
two circuits of size < s(N) is computable in size < 1(N).

Consider the implication:

Comp(a, N, s(N), f) = =Comp(3, N, s(N), f ® En)

where f @ F, 1s the parity of functions f and Fn definable from f and Fnx by
the bounded formula:

Ve,o e f®Ey=(x € f£x€ Ey).
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Assume that the implication fails. Then « codes, in particular, a circuit com-
puting f while 3 codes a circuit computing f @ F,,, and hence the two circuits
joined by @ compute En. By the choice of s(N) thisimplies = LB(N,t(N), Fn).
Hence to show that the lower bound to Fy is not provable in S3 () it is sufficient
to demonstrate that S2(a) does not prove the implication above.

Assume, for the sake of contradiction, that it does. Denote by

Ai(p17"'7pN7q17"'7qs)

the propositional formula formalizing that the computation on 7 coded in «
yields the value f(i) (with the atoms p; translating i € f and ¢; translating
J € @), and similarly denote by:

Bi(p1, .. PNy, )

the formula formalizing that the computation on i coded in 3 does not yield the
value f(j) ® En(j) (here r; translate j € 3). We have s = s(N).
By Theorem 8.1 the sequent:

Ay oo AN —— By, ... By

(log N)©

has an I K-proof 7 of size 2 @ satisfying the hypothesis of Corollary 6.2.2

By that corollary the implication admits an interpolant

[(p17"'7p]\7)

. o . n(1)
whose circnit-size is < 2008 M)

We shall further freely slight between the bits pq,...,py and the function
F€{0,1}N they define. Define the set [/ by:

U= Ar e 0. 1 30 A A, )}

and the set V by:

V=1{ref{0,1}V3r A=B;(p,7)} .

7

Note that the sets I/ and V' are disjoint and that:
fetlU = (faEn)eV

holds for any f € {0, 1}"N. This implies that the interpolant 7, which separates
U from V, has the following two properties:

2The reader familiar with the split theories of [43] might note at this point that our method
yields a propositional counter-part of the interpolation for full split version of S’; as well. The
propositional proof obtained analogously through Theorem 8.1 and Corollary 6.2 will not be a
resolution proof but rather a proof satisfying the hypothesis of Corollary 3.2; that is sufficient.
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1. =I(f) = f¢U,forany f,
2. I{f® FEn)— f ¢ U, for any f.

Define the property P(f) of functions f € {0,1}" by:

P(f) = =I(f) if at least a half of function satisfy =7
Yl I(f e En)  otherwise.

This property satisfies clearly all three conditions of the definition of a nat-
ural property against P/poly, see [44], with the effectivity condition weakened
to the requirement that P is computable in quasi-polynomial size. However, as
noted in [43], the proof of [44, Thm 4.1] works for this modification as well (take
k = n in place of k = en in its proof). Hence we conclude that the provability
of the lower bound in S2(a) implies the failure of the cryptographic assumption.

q.e.d.

9 A possibility of lower bounds for interpolation

It is important and interesting to find out for which proof systems one can
prove a good interpolation theorem. As mentioned in the introduction it was
noted in [30, 31, 32] that unless NP NecoNP C NC' /poly (resp. C P/poly) one
cannot bound the size (formula- or circuit-) of an interpolant in terms of the
size of the implication. However, it appears to be more difficult to find a natural
computational complexity conjecture which would rule out, for example, that
an interpolant of size polynomial in the number of sequents of an . K-proof of
the implication always exists. The size of the interpolant means circuit-size as
by the example in [19, Sect. 5] one cannot expect good bounds to formula-size
unless P/poly C NC'/poly.

Tn this section we discuss the possibility of such (conditional) lower bounds
for interpolation. We shall freely slide between corresponding pairs of a pro-
positional proof system P and a bounded arithmetic theory 7. For these cor-
respondences see [8, 22, 26, 27, 35, 21] or [20, Chpts 9 and 14]. Tnformally,
this correspondence essentially says that a formula A(a) is provable in T iff the
propositional translations (A)x of its instances have short P-proofs.

We shall first, examine this question via the method of [22]. Tet TAUT be
the set of propositional tautologies in the language of LK. TLet UV be two
disjoint N"P-sets. Take a polynomial-time reduction f of IJ to the complement
of TAUT which is an N"P-complete set. Then:

'V CTAUT



and if V = {x | JyB(x,y)}, where B(x,y) is a polynomial-time predicate impli-
citly bounding y, then the function:

Qy(w) = { fla) ifw=(e.y) AB(r,y)

B 1 otherwise.

is a propositional proof system in the sense of [9] (not necessarily complete). A
statement that U NV = B merely means that @Q; is sound and, in fact, it is
equivalent to it. Moreover, an interpolant T for the implication

Qi(w)=a—acTAUT
gives immediately an interpolant J(b) := T(f(b)) for the original implication:
beV —bgl .

The strongest such reflection principle provable in T is for P itself (see [22]).
That is, the instances of the reflection principle for P:

(Prfp(w,a))uyn — (b EaNN

(Prfp(w,a) formalizes that w is a P-proof of a and b | a formalizes that b is
a satisfying assignment for a) are the strongest reflection principles admitting
short P-proofs. (Tn fact, for most P these are as well the strongest tautologies
- over some base system Py - with short. P-proofs, see [22] or [20, Chpt. 14]).
Hence P admits a feasible interpolation theorem iff these particular implications
admit feasible interpolants. This yields the completeness result for the disjoint
NP-pair (SAT*, REF(P)) proved directly in [41]. To make use of this observa-
tion one has to establish the correspondence (P, T) for usual P and T. For most
P the corresponding T is known. For example, LK with the size measured by
the number of steps (that is, the Extended Frege system, see [9]) corresponds to
the theory Vi' (the particular correspondence of depth i subsystems of LK to
Sit2 () relevant to [41] follows from [19, 2.2 and 1.2] as in the proof of Corollary
6.2).

Now we shall consider another approach to lower bounds for interpolation
theorems. A simple corollary of Craig interpolation theorem is Beth definability
theorem, see [3]. Tt says, in particular, that if the formula A(p,q) implicitly
defines the bit ¢1, 1.e. the implication

A(p7 q)7 A(p7 7”) — q1 =7
is a tautology, then there is a function FE(p), an explicit definition, such that

A(p,q) — E(p) = ¢



is a tautology as well. This follows from the interpolation theorem immediately
considering the implication

(A(p,q) Ag1) — (11 V=A(p, 7))

whose any interpolant is an explicit definition of ¢;. This simple reduction
implies that the same bounds which hold for Craig interpolation theorem hold
for Beth definability theorem (and vice versa, in fact). Hence to prove a lower
bound for the interpolation theorem for a proof system P it is enough to find an
implicit definition A(p, ¢) of a function g(p) admitting polynomial size P-proofs
of the above implication, but which itself cannot be computed in P/poly.

The following particular definition of one-way functions is a slightly biased
definition from [33]. Tt defines an apparently weaker notion then the more
customary probabilistic versions (see e.g. [29]) but it suffices for our purposes.

Definition 9.1 A function f:{0,1}* — {0,1}* is one-way iff
1. f is polynomual-time computable.
2. f is 1-to-1.
3. There are constants e, k such that
2] < [ f(2)] < |of*
holds for all .

4. The inverse function = :

i,y [ ify€Rng(f) and f(x) =y
Fow = { 0 ify ¢ Rng(f)

is not in P/poly.

Tt is a simple observation that a one-way function exists iff UP & P/poly,
where U P is the class of NP-sets acceptable by a polynomial-time non-deterministic
Turing machine with at most one accepting computation on every input. The
following theorem follows from the remarks on connections between Craig in-
terpolation and Beth definability theorems.

Theorem 9.2 et a propositional proof system P and an arithmetic theory T
be a pair of corresponding proof systems (in the sense of [22] or [20, Chpts. 9
and 14]). Assume that f(x) is a one-way function with an N'P-graph such that
the theory T proves that f 1s 1-to-1:

TEfle) =y fle) =y —z=2".

Then the proof system P does not admit polynomial upper bound to the circuit-
size of interpolants.



No one-way function is known at present but there appear to be two chief
candidates (see [33, 29]), namely the (inverse function to the) factoring:

(Pg) —r-q

mapping two primes p, ¢ to the product p- ¢, and the (inverse function to the)
discrete logarithm:

(p,g,2) — (p,g,9"mod p)

mapping a prime p, a primitive root ¢ mod p and x € Z3 to p, g and g” mod p.
These function have N"P-graphs as primes are in NP N coN'P, see [38].

The hypothesis of the theorem can be fulfilled for Extended Frege system
and a conjectured one-way function f based on the RSA encryption scheme, see

[25].

The theorem makes sense, however, also for proof systems P working only with
constant depth formulas (or clauses) as the graph of f can be reduced to the
satisfiability of a set of clauses. Tt would be interesting to know whether the
hypothesis of the theorem can be satisfied for the depth 1 subsystem of LK.

For the monotone interpolation we have an unconditional lower bound, es-
sentially contained in [43, Section 8].

Theorem 9.3 The depth 2 subsystem of LK does not admit a polynomial bound
for the monotone interpolation theorem (Lyndon theorem).
In particular, the set of clauses:

Clique,, ,, U Color, ¢

forn =% and w := £” has a depth 2 LK -refutation of size 9010em) ™ bt the
implication:

/\ Cliquey, , — \/ —Clolor, ¢

. . . . (1)
has no monotone interpolant of monotone circuit-size smaller than 27 .

Proof :

Work in bounded arithmetic. Tet G = (V, F) be a graph with n nodes, and
let Fi:{1,...,wt—Vand Fy : V — {1,... &} be two maps.

As noted in [43] the implication that if Fy is a 1-to-1 map onto a clique in

(i then Fy cannot be a coloring of (¢ follows from the weak pigeonhole. This
principle is needed for a function f which is A%(G, Fy, Fy)-definable:

fluy=a = (Fi<n, F(u) =iA Fy(i) = a)

= (Vi<n, Fy(u) #iV Fy(i) =a) .



Tt says that f cannot be an injective map from w = €7 into € and is (by [37])
provable in T3(G, Fy, F3). The bounded arithmetic proof is translated into a
tree-like, depth 4 L K-proof in which every sequent contains at most constantly
many depth 4 formulas.

The existence of such a proof implies, analogously with the proof of Corollary
6.2, the existence of the wanted depth 2 I K-refutation.

q.e.d.

The only subsystem of LK for which the possibility of a feasible monotone
interpolation is open is the depth 1 subsystem. We conjecture that this sys-
tem does not admit a polynomial upper bound for the monotone interpolation,
but we observe that the existence of such a bound would have interesting con-
sequences.

Theorem 9.4 Assume that the depth 1 subsystem of LK admaits a polynomial
upper bound to the monotone interpolation theorem.

Then for any fired £, any resolution refutation of the clauses of the weak
pigeonhole principle ﬁWPHPnT’I :

1. \/a,<m Jua, all u < m!,
2. < fura VN fus,a, all uy < uy < m’ and a < m,
must have at least 2" clauses.

Proof :
Take w := m’, € := m and n := m’*". Assnme that = is a resolution
refutation of the clauses of ﬁWPHP;?’I(f“’,,). For any clause ' in literals

fu.as 2 fu.a denote by C' a clause in literals gy, ;, ¢y i, 7i 0, 774 4 Obtained from C'
as follows:

o replace every occurrence of f, , by the sequence ¢, 1 AT1 4, ..., Gun AT q
o replace every occurrence of —f, , by the sequence g, 1 A =ry 4, .., qun A
—Tp q.

Observe two simple facts:

1. For every C' € ﬁWPHPﬁI(f“ﬂ) the clause (' has a depth 1 LK-proof
from the clauses Clique, , U Color, ¢ with meM sequents.

2. If ' can be derived by the r(jsolutiorj rule from 7 and (5 then C' has
depth 1 I.K-derivation from 4 and 'y with meM sequents.



Hence we get a depth 1 L K-refutation of Clique,, , U Color, ¢ with meM k()
sequents. Assuming that a polynomial upper bound holds for the monotone
interpolation theorem for the system we get by Theorem 7.2:

(1) (1)

(m . k(ﬂ_))()“) 2 9n —9m

and so
Q(1)

k(r) > 2™

as well.
q.e.d.

At present such lower bounds are known only for £ = 2 — Q(1), see [6].
Another interesting corollary to the feasible interpolation for the above system
would be an independence proof of the Y0 (f)-formula WP H P(f) from T2 (f)
(similarly with the proof of Theorem 9.3). Such independence is known only for
S2(a) and SZ(f) (for several formulations of WP H P); for T3 (o) only ¥5(a)-
independent formulas are known (see [18, 7] or [20, Chpt. 11]).

Acknowledgement

A part of this work was done while T was visiting the Department of Mathematics
of the University of California at San Diego in April 1994. T replaced the original
statements about the linear equational calculus over Q by present Corollaries 6.4
and 7.3(2.) after learning about the proof system C'P* and the result of [4] from
a lecture by M. .. Bonet at the meeting Logic and Computational Complerity
(Tndianapolis, October 1994). T thank A.A.Razborov for explaining to me the
remarks on one-way functions made in [43, Sect. 8] but not described there.

I thank P. Pudldk and J. Sgall for helpful comments on the preliminary
version of this paper.

References

[1] Alon, N.; and Boppana, R. (1987) The monotone circuit complexity of
Boolean functions, Combinatorica, 7(1) : 1-22.

[2] Andreev, A. E. (1985) On a method for obtaining lower bounds for the
complexity of individual monotone functions (in Russian), Doklady AN

SSSR, 282(5) : 1033-1037.

[3] Beth E. W. (1959) The foundations of mathematics. North - Holland, Am-
sterdam.



[9]

[10]

[11]

[12]

[18]

Bonet, M. .., Pitassi, T., and Raz, R. (1994) Lower bounds for cutting
planes proofs with small coefficients, preprint.

Buss, S. R. (1986) Bounded Arithmetic. Naples, Bibliopolis.

Buss, S. R., and Turan, G. (1988) Resolution proofs of generalized pigeon-
hole principles, Theoretical Computer Science, 62: 311-317.

Chiari, M., and Krajicek, J. (1994) Witnessing functions in bounded arith-
metic and search problems, submitted.

Cook, S A. (1975) Feasibly constructive proofs and the propositional calcu-

lus, in: Proc. 7 Annual ACM Symp. on Theory of Computing, pp. 83-97.
ACM Press.

Cook, S. A., and Reckhow, A. R. (1979) The relative efficiency of proposi-
tional proof systems, J. Symbolic Logic, 44(1): 36-50.

Cook, W., Coullard, C. R., and Turan, G. (1987) On the complexity of
cutting plane proofs, Discrete Applied Mathematics, 18: 25-38.

Craig, W. (1957) Linear reasoning: A new form of the Herbrand-Gentzen
theorem, Journal of Symbolic Logic, 22(3): 250-268.

—— (1957) Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory, Journal of Symbolic Logic, 22(3): 269-
285.

Friedman, H. (1976) The complexity of explicit definitions, Advances in
mathematics, 20: 18-29.

Gurevich, Y. (1984) Towards logic tailored for computational complexity,
Proc. Logic Colloguium 1983, Springer LNM 1104: 175-216.

Haken,A. (1985) The intractability of resolution, Theoretical Computer Sei-
ence, 39: 297-308.

Karchmer, M. and Wigderson, A. (1988) Monotone circuits for connectiv-
ity require super - logarithmic depth, in: Proc. 20" Annual ACM Symp.
on Theory of Computing, pp.h39-b50. ACM Press.

Krajicek, J. (1989) Exponentiation and second-order bounded arithmetic,
Annals of Pure and Applied Logic, 48: 261-276.

—, (1992) No counter-example interpretation and interactive compu-
tation, in: Logic From Computer Science, Proceedings of a Workshop held
November 13-17, 1989 in Berkeley, ed. Y.N.Moschovakis, Mathematical
Sciences Research Institute Publication, 21: 287-293. Springer-Verlag.

36



[19] —— (1994) TLower hounds to the size of constant-depth propositional
proofs, Journal of Symbolic Logic, 59(1): 73-86.

[20] —— (1994) Bounded arithmelic, propositional logic and complexity theory,
Cambridge University Press, in print.

[21] —— (1995) On Frege and Extended Frege proof systems; in: Feasible
Mathematics T1, eds. P. Clote and J. Remmel, Birkhauser, pp.284-319.

[22] Krajicek, J., and Pudlik, P. (1989) Propositional proof systems, the consist-
ency of first order theories and the complexity of computations, J. Symbolic

Logic, 54(3):1063-1079

[23] —— (1990) Quantified propositional calculi and fragments of bounded
arithmetic, Zewtschrift f. Mathematikal Logik u. Grundlagen d. Mathematik,
36:29-46.

[24] ——  (1990) Propositional provability in models of weak arithmetic,
in:  Computer Science Logic (Kaiserlautern, Oct. ’89), eds.FE.Boerger,
H.Kleine-Bunning and M.M. Richter, LNCS 440: 193-210. Springer-Verlag.

[25] —— (1995) Some consequences of cryptographical conjectures for S4 and
EF,in: Proc. of the meeting Logic and Computational Complexity, (Tndi-
anapolis, October 1994), Ed. D. Leivant, to appear.

[26] Krajicek, J., and Takeuti, G. (1990) On bounded Z}po]ynomia] induc-
tion, in: Feasible Mathematics, eds. S.R. Buss and P.J. Scott, pp.259-280.
Birkhauser.

[27] —— (1992) On induction-free provability, Annals of Mathematics and
Artificial Intelligence, 6: 107-126.

[28] Kreisel, G. (1961) Technical report nb.3, Applied Mathematics and Stat-
istics Labs, Stanford University, unpublished.

[29] Tuby M. (1993) Pseudo-randomness and applications, Tnternational Com-
puter Science Institute |, Berkeley, lecture notes.

[30] Mundici, D. (1983) A lower bound for the complexity of Craig’s interpolants
in sentential logic, Archiv fur Math. Logik, 23 : 27-36.

[31] —— (1984) Tautologies with a unique Craig interpolant, uniform vs. non-
uniform complexity, Annals of Pure and Applied Logic, 27, pp.265-273.

[32] —— (1984) NP and Craig’s interpolation theorem, Proc. Logic Col-
loguium 1982, North-Holland, pp. 345-358.

[33] Papadimitriou, A. (1994) Computational complezity, Addison-Wesley.

37



[34] Parikh, R. (1971) Existence and feasibility in arithmetic, Journal of Sym-
bolic TLogic, 36: 494-508.

[35] Paris, J., and Wilkie, A. J. (1985) Counting problems in bounded arith-
metic, in: Methods in Mathematical Logic, Springer LNM 1130 : 317-340.

[36] —— (1987) On the scheme of induction for hounded arithmetic formulas,
Annals of Pure and Applied Logic, 35 : 261-302.

[37] Paris, J. B., Wilkie, A. J., and Woods, A. R. (1988) Provability of the
pigeonhole principle and the existence of infinitely many primes, Journal
of Symbolic Logic, 53: 1235 1244.

[38] Pratt, V.R. (1975) Every prime has a succinct certificate, STAM J. Com-
puting, 4, pp.214-220.

[39] Razborov, A. A. (1985) Lower bounds on the monotone complexity of some
Boolean functions, Sowviet Mathem. Doklady, 31 : 354-357.

[40] ——  (1993) An Equivalence between second order bounded domain
bounded arithmetic and first order bounded arithmetic, in:  Arith-
metic, Proof Theory and Computational Complerity, eds. P. Clote and J.
Krajicek, pp.247-277. Oxford University Press.

[41] —— (1994) On provably disjoint N P-pairs, preprint.

[42] —— (1995) Bounded arithmetic and lower bounds in Boolean complexity,
in : Feasible Mathematics 11, eds. P. Clote and JJ. Remmel, Birkhauser,
pp.344-386.

[43] —— (1995) Unprovability of lower bounds on the circuit size in certain
fragments of bounded arithmetic, lzvestiya of the R.A.N., 59(1), pp.201-
224.

[44] Razborov, A. A. and Rudich, S. (1994) Natural proofs, in: Proc. 26th
Annual ACM Symp. on Theory of Computing, pp. 204-213. ACM Press.

[45] Takeuti, G. (1975) Proof theory, North-Holland.

[46] —— (1993) RSUV isomorphism, in: Arithmetic, Proof Theory and Com-
putational Complexity, eds. P. Clote and J. Krajicek, pp.364-386. Oxford
University Press.

38



