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In the other direction we show that a depth 2 subsystem of LK doesnot admit feasible monotone interpolation theorem (the so called Lyndontheorem), and that a feasible monotone interpolation theorem for thedepth 1 subsystem of LK would yield new exponential lower bounds forresolution proofs of the weak pigeonhole principle.IntroductionThe interpolation theorem proved by Craig [11, 12] is a basic result in logic. Itsays that whenever an implication A �! Bis valid then there is a third formula I, an interpolant, which contains onlythose symbols of the language occurring in both A and B and such that the twoimplications A �! I I �! Bare both valid. The theorem holds for propositional logic as well as for the �rstorder logic but we shall con�ne our attention to propositional logic in this paper.The question of �nding an interpolant for the implication is quite relevantto computational complexity theory. To see this let U and V be two disjointNP-subsets f0; 1g�. It is well known that there are sequences of propositionalformulasAn(p1; : : : ; pn; q1; : : : ; qtn) and Bn(p1; : : : ; pn; r1; : : : ; rsn) such that thesize of An and Bn is nO(1) andU \ f0; 1gn = f(�1; : : : ; �n) 2 f0; 1gn j 9�1; : : : ; �tn An(�; �) holdsgand V \ f0; 1gn = f(�1; : : : ; �n) 2 f0; 1gn j 9�1; : : : ; �sn Bn(�; �) holdsg :The assumption that U \ V = ; is equivalent to the statement that the implic-ations An �! :Bnare all tautologically valid. If In(p) is an interpolant (hence only atoms p1; : : : ; pnoccur in In) then the setW :=[n f� 2 f0; 1gn j In(�) holds gseparates U from V : U � W and W \ V = ; :Hence an estimate of the complexity of propositional interpolation formulas interms of the complexity of an implication yields an estimate to the compu-tational complexity of a set separating U from V . For example, if one could2



always �nd such an interpolant whose formula-size (or circuit-size; recall that acircuit-size of a formula I is the number of di�erent subformulas occurring in it)is polynomial in the size of the implication then NP \ coNP � NC1=poly (orNP \ coNP � P=poly). This is because for U 2 NP \ coNP we may take forV the complement of U and hence it must hold that W = U . This example canbe understood as a conditional lower bound to the size of interpolants; it was�rst noted by Mundici [30, 31, 32]. For predicate logic there are lower bounds interms of recursion theory, see [28, 13], for other connections to computer sciencesee [14].The question we shall study in this paper is a bit di�erent.Problem: Given a propositional proof system, estimate the circuit-size ofan interpolant of an implication in terms of the size of the shortest proofof the implication.Presumably one gets di�erent estimates for di�erent proof systems and, in par-ticular, not all proof systems should admit polynomial upper bounds. However,this is an open problem. The proof of Craig interpolation theorem [11, 12] viacut-elimination (see, for example, [45] or [20, 4.3]) shows that an implicationwhose cut-free proof in the sequent calculus has k steps has an interpolant withcircuit-size at most k.The reason for studying this problem is that a good upper bound for a proofsystem P yields lower bounds on the size of P -proofs. In particular, a pair ofNP-sets U and V inseparable by a set of small complexity yields a sequenceof implications An �! :Bn which cannot have short P -proofs (as the assumedgood interpolation yields feasible upper bound to the complexity of In andhence ofW ). This idea was discussed in Kraj���cek [19] but no lower bounds wereobtained there in this way.Our interest in this question was renewed by a remark in Razborov [43] thatthe results underlying the unprovability results there are certain interpolationtheorems for fragments of second order bounded arithmetic. It occurred to usthat these interpolation theorems (and problems) are more rudimentary in thepropositional setting, and that a su�ciently sharp estimate to the complexityof the interpolation theorem for resolution - together with the known relationsof propositional proof systems to bounded arithmetic theories - might yield analternative proof of the main result of [43]. We prove such an interpolationtheorem (in fact, a polynomial bound for resolution follows already from thebound for cut-free systems via a translation of resolution refutations into cut-free derivations, see 6.1(second proof)). In fact, we give a new proof of the Craiginterpolation theorem (as well as of the Lyndon version) allowing us to deducein a new way exponential lower bounds to the size of proofs in various systems(a subsystem of LK stronger than the cut-free fragment, resolution, a versionof cutting planes). We formulate a general, syntax-free, framework for whichour proof of the interpolation theorem yields good bounds.3



The paper is organized as follows. In the �rst section we de�ne severalproof systems (sequent calculus, resolution, linear equational calculus and cut-ting planes). In the second section we recall some communication complexity(Karchmer-Wigderson game) and we reformulate a bit the characterization ofthe circuit-size in terms of PLS-problems from [43]. In the third section we givea new proof of Craig interpolation theorem for cut-free sequent calculus. Theproof applies in a general, syntax-free, context. This is formalized by the notionof semantic derivations de�ned in section 4. A general form of the interpolationtheorem for semantic derivations is proved in section 5. In section 6 we deducefrom it polynomial upper bounds for interpolation for resolution, a subsystem ofsequent calculus relevant to bounded arithmetic, linear equational calculus anda variant of cutting planes. In section 7 we obtain new proofs of exponentiallower bounds for some of these systems and in section 8 we give an alternativetreatment of the proof of the main independence result of [43].A question for which proof systems one can prove a non-trivial lower boundfor interpolation is discussed in section 9. It is linked with two topics, the exist-ence of optimal propositional proof systems relative to a given theory (studiedearlier in [22]) and the question of implicit de�nability of inverse functions toone-way functions. We also prove there that the depth 2 subsystem of LK doesnot admit feasible monotone interpolation theorem and that the validity of sucha theorem for the depth 1 subsystem would imply new exponential lower boundsto the resolution proofs of the weak pigeonhole principle.The reader is assumed to have some familiarity with the subjects involved,in particular with some basic notions of complexity theory. A familiarity withbounded arithmetic is assumed only in the last two sections. References tooriginal papers are often accompanied by a reference to a place in [20] whicho�ers a survey of basic results in the �eld.A remark on notation: we denote n-tuples of numbers or bits simply a; b; x; y; : : :rather than a; : : :, and the elements or the bits of a are denoted a1; a2; : : : . Log-arithm log is base 2.1 Propositional proof systemsThe propositional language of the sequent calculus LK contains the followingconnectives: constants 0 (false) and 1 (true), the negation :, the conjunctionV and the disjunction W. The negation is allowed only in front of atoms, theconjunction and the disjunction are of unbounded arity. The symbol:A denotesthe formula obtained from the formula A by interchanging 0 and 1, W and Vand pi and :pi.The size jAj of A is the number of occurrences of connectives and atoms init. The depth dp(A) of A is the maximal nesting of W and V in A:4



dp(0) = dp(1) = dp(pi) = dp(:pi) = 0dp(WiAi) = dp(ViAi) = 1 +maxi(dp(Ai)).We shall adopt the following version of the sequent calculus LK. The particularmodi�cation is unimportant and used just for technical reasons, similarly as in[19]. We shall keep the name LK as well. Further information on LK can befound in [45] or [20, Section 4.3] (contains also information about resolution,Section 4.2, and cutting planes, Section 13.1).A cedent is is a �nite (possibly empty) sequence of formulas denoted �;�; : : :.The basic object of LK is a sequent, an ordered pair of cedents written � �! �.A sequent is satis�ed if at least one formula in � is satis�ed or at least oneformula in � is falsi�ed. In particular, the empty sequent cannot be satis�ed.The inference rules are the following:1. the initial sequents are:�! 1 :1 �! 0 �! �! :0p �! p :p �! :p p;:p �! �! p;:p2. the weak structural rules are:the exchange: � �! ��0 �! �0where �0;�0 are any permutations of �;�the contraction: � �! ��0 �! �0where �0;�0 are obtained from �;� by deleting any multiple occur-rences of formulasthe weakening: � �! ��0 �! �0where �0 � � and �0 � �3. the propositional rules are:V:introductionA;� �! �VAi;� �! � � �! �; A1 : : : � �! �; Am� �! �;Vi�m Aiwhere A is one of Ai in the left rule.5



W:introductionA1;� �! � : : : Am;� �! �Wi�mAi;� �! � � �! �; A� �! �;WiAiwhere A is one of Ai in the right rule.4. the cut rule: � �! �; A A;� �! �� �! �An LK-proof of a sequent S from the sequents S1; : : : ; Sm is a sequence Z1; : : : ; Zksuch that Zk = S and each Zi is either an initial one or from fS1; : : : ; Smg, orderived from the previous ones by an inference rule.A proof-graph of an LK-proof � is a directed acyclic graph whose nodes arethe sequents of � and a directed edge goes from a hypothesis of a rule to itsconclusion. Hence the initial sequents correspond to the leaves.A proof is tree-like if its proof-graph is a forest, i.e., if every sequent is ahypothesis of at most one inference.k(�) is the number of sequents in �. The size of a proof is the sum of the sizesof the formulas in it (counting multiple occurrences of a formula separately).A resolution refutation of sequents S1; : : : ; Sm which contain no W;V is anLK-proof of the empty sequent from S1; : : : ; Sm in which no W;V occur. Thisis obviously (essentially) equivalent to the more usual de�nition of resolutionwith clauses and the resolution rule as a resolution clausef:pi1 ; : : : ;:pia; pj1; : : : ; pjbgcan be represented by the sequentpi1 ; : : : ; pia �! pj1 ; : : : ; pjband the resolution rule by the cut rule (and vice versa). We shall freely slidebetween the two de�nitions of resolution.We de�ne a linear equational calculus (LEC) to be a proof system workingwith linear equations a1x1 + : : :+ anxn = bover a �eld F . F is either a �nite �eld or the �eld of rationals Q. The rulesallow to add two equations and to multiply an equation by an element of F . AnLEC-refutation of equations E1; : : : ; Em is an LEC-derivation of the equation0 = 1 from E1; : : : ; Em. The size of an equation is Pi kaik+ kbk where kuv k isthe sum of the absolute values of u and v if F = Q and kak = 1 for all a 2 F ifF is �nite.LEC is sound and complete (by Gauss elimination), if by completeness wemean that every system of equations unsolvable in F is refutable. When com-pleteness is considered only w.r.t. the systems with no 0-1 solution then LEC6



is complete only for the two-element �eld F2. To get such completeness also forother �elds one would have to expand LEC to an equational logic working withgeneral polynomials and based on ring axioms.However, not even all Boolean functions can be represented by a conjunctionof linear equations and so LEC cannot be considered, even for F2, as a fullpropositional proof system in the sense of [9].An important example of a formula which can be so represented is the neg-ation of the pigeonhole principle, formalizing that there is a bijection betweenf1; : : : ; n+ 1g and f1; : : : ; ng. This formula is represented by the following setof equations (over any F ) with variables xij, i = 1; : : :n+ 1 and j = 1; : : : ; n:Xj xij = 1 ; for all iXi xij = 1 ; for all j :It is easy to see that there is an LEC-refutation of this set of size polynomialin n.A system stronger than the resolution system is the cutting planes proofsystem introduced in [10]. This system CP works with inequalities of the forma1x1+ : : :anxn � b, where ai; b 2 Z and xi represent truth values of atoms. CPhas few obvious rules: adding two inequalities, multiplying an inequality by apositive constant, the division rule:a1x1 + : : :anxn � ba1c x1 + : : : anc xn � d bceprovided cjai, all i, and few initial inequalities: x � 0, �x � �1. CP is arefutation system which derives from an unsatis�able system of inequalities theinequality 0 � 1. The term unsatis�able means that the system has no 0-1solution. It is sound and complete and polynomially simulates resolution, see[10] or [20, 13.1].2 Protocols for Karchmer-Wigderson gameKarchmer-Wigderson game (see [16]) is played as follows. Let U; V � f0; 1gnbe two disjoint sets. The game is played by two players A and B. Player Areceives u 2 U while B receives v 2 V . They communicate bits of information(following a protocol previously agreed on) until both players agree on the samei 2 f1; : : : ; ng such that ui 6= vi. Their objective is to minimize (over allprotocols) the number of bits they need to communicate in the worst case. Thisminimum is called the communication complexity of the game and it is denotedby C(U; V ). 7



We say that the Boolean function B(p1; : : : ; pn) separates U from V if andonly if B(x) = 1 holds (resp. = 0) for all x 2 U (resp. for all x 2 V ).The following is a rather simple but quite important result.Theorem 2.1 ([16]) Let U; V � f0; 1gn be two disjoint sets. Then C(U; V ) isprecisely the minimal depth of a formula with binary _;^ separating U from V .We shall need a bit �ner version of the theorem. For that we need to de�nethe notion of a protocol in a particular way.De�nition 2.2 Let U; V � f0; 1gn be two disjoint sets. A protocol for thegame on the pair (U; V ) is a labelled directed graph G satisfying the followingfour conditions:1. G is acyclic and has one source (the in-degree 0 node) denoted ;.The nodes with the out-degree 0 are leaves, all other are inner nodes.2. All leaves are labelled by one of the following formulas:ui = 1 ^ vi = 0 or ui = 0 ^ vi = 1for some i = 1; : : : ; n.3. There is a function S(u; v; x) (the strategy) such that S assigns to a nodex and a pair u 2 U and v 2 V the edge S(u; v; x) leaving from the node x.Every pair u 2 U and v 2 V de�nes for every node x a directed path P xuv in Gfrom the node x to a leaf: P xuv = x1; : : : ; xh, where x1 = x, the edge S(u; v; xi)goes from xi to xi+1, and xh is a leaf.4. For every u 2 U and v 2 V there is a set F (u; v) � G satisfying:(a) ; 2 F (u; v)(b) x 2 F (u; v)! P xu;v � F (u; v)(c) the label of any leaf from F (u; v) is valid for u; v.Such a set F is called the consistency condition.A protocol is called monotone i� every leaf in it is labelled by one of the formulasui = 1 ^ vi = 0, i = 1; : : : ; n.The communication complexity of G is the minimal number t such that for everyx 2 G the players (one knowing u and x, the other one v and x) decide whetherx 2 F (u; v) and compute S(u; v; x) with at most t bits exchanged in the worstcase. 8



This de�nition is a variant of the formulation from [43] using PLS-problems.We would like to replace the consistency condition 4. by a simpler one: for allu; v the label of the leaf in P ;u;v is valid for u; v. However, the example of alinear size branching program �nding i � n such that ui 6= vi for all di�erentu; v shows that that is not enough.Important examples of protocols are protocols formed from a circuit (laterwe shall de�ne protocols from proofs). Assume that C is a circuit separatingU from V . Reverse the edges in C, take for F (u; v) those subcircuits di�eringin the value on u and v, and de�ne the strategy and the labels of the leavesin an obvious way. This determines a protocol for the game on (U; V ) whosecommunication complexity is 2. The next theorem says that there is a similarconverse construction.Theorem 2.3 ([43]) Let U; V � f0; 1gn be two disjoint sets. Let G be a pro-tocol for the game on U; V which has k nodes and the communication complexityt. Then there is a circuit C of size k2O(t) separating U from V . Moreover, ifG is monotone so is C.On the other hand, any circuit (monotone circuit) C of size m separating Ufrom V determines a protocol (a monotone protocol) G with m nodes whosecommunication complexity is 2.Proof :Let G be a protocol from the game. The number of nodes reachable fromx via the edges de�nes a cost of x. For any u; v, the set F (u; v) together withthe cost function and with the neighborhood function given by the strategy is aPLS-problem. By [43, Thm. 3.1] there is a circuit separating U from V of sizeat most j [u;vF (u; v) j � 2O(t) = k � 2O(t) :If the protocol is monotone so is the circuit.The second part of the statement was noted above. q.e.d.3 The Craig interpolation theoremWe de�ne an interpolant of a valid implicationA(p; q)! B(p; r)9



where p = (p1; : : : ; pn) are the atoms occurring in both A and B, while q =(q1; : : : ; qs) occur only in A and r = (r1; : : : ; rt) only in B, to be any Booleanfunction I(p) such that both implicationsA(p; q)! (I(p) = 1) and (I(p) = 1)! B(p; r)are tautologically valid. If I(p) is de�ned by a formula (also denoted I) thismeans that both implicationsA! I and I ! Bare tautologies.In the calculus LK the implication A ! B is represented by the sequentA �! B and, in general, the sequent A1; : : : ; Am �! B1; : : : ; B` represents theimplication ViAi ! Wj Bj .Craig [11, 12] proved that every tautologically valid implication has an inter-polant. In fact, the argument via the cut-elimination (see [45] or [20, 4.3]) givesthe following theorem (with the bound � k(�) instead of k(�)O(1), in fact). Weshall give a new proof of the theorem which will later allow some generalizationsnot o�ered by Craig's original proof. For completeness we recall the standardproof as well (the second proof below).Theorem 3.1 ([11, 12]) Let � be a cut-free LK-proof of the sequent:A1(p; q); : : : ; Am(p; q) �! B1(p; r); : : : ; B`(p; r)with p = (p1; : : : ; pn) the atoms occurring simultaneously in some Ai and Bj ,and q = (q1; : : : ; qs) and r = (r1; : : : ; rt) all other atoms occurring only in someAi or in some Bj respectively.Then there is an interpolant I(p) of the implication:^i�mAi �! _j�`B`whose circuit-size is at most k(�)O(1).Moreover, if the atoms p occur only positively in all Ai or in all Bj then thereis a monotone interpolant whose monotone circuit-size is at most k(�)O(1).First proof:De�ne two sets U; V � f0; 1gn by:U = fu 2 f0; 1gn j 9qu 2 f0; 1gs; î�mAi(u; qu)gV = fv 2 f0; 1gn j 9rv 2 f0; 1gt; ĵ�`:B(v; rv)g :10



Note that the fact that the sequent A1; : : : ; Am �! B1; : : : ; B` is tautologicallyvalid is equivalent to the fact that the sets U , V are disjoint, and that anyBoolean function separates U from V i� it is an interpolant of the sequent.Using the proof � we de�ne a particular protocol for the game on U; V .Assume that player A received u 2 U and B received v 2 V . Player A �xessome qu 2 f0; 1gs such that Vi�mAi(u; qu) holds and player B �xes somerv 2 f0; 1gt for which Vj�`:Bj(v; rv) holds.Exchanging some bits they will construct the path P = S0; : : : ; Sh of se-quents of � satisfying the following conditions:1. S0 in the end-sequent.2. Si+1 is an upper sequent of the inference giving Si.3. Sh is an initial sequent.4. For any a = 0; : : : ; h: if Sa has the form:E1(p; q); : : : ; Ee(p; q) �! F1(p; r); : : : ; Ff (p; r)then Vi�eEi(u; qu) holds while Wj�f Fj(v; rv) fails.Note that as the proof is cut-free and there are no :-rules, no formula in theantecedent (resp. the succedent) of a sequent in the proof contains an atom ri(resp. an atom qi).To �nd Sa+1 they proceed as follows:(a) If Sa was deduced by an inference with only one hypothesis, they put Sa+1to be that hypothesis and they exchange no bits.(b) If the inference yielding Sa was the introduction of Vi�gDi to the suc-cedent the player B, who thinks that Vi�gDi is false, sends to A dlog(g)ebits identifying one particular Di(v; rv), i � g, which is false. They takefor Sa+1 the upper sequent of the inference containing the minor formulaDi.(c) If the inference yielding Sa was the introduction of Wi�gDi to the ante-cedent then analogously with (b) player A identi�es to B a true Di(u; qu)and they take for Sa+1 the sequent containing that minor formula.Let Sh be the initial sequent the players arrive at in the path P . It must beone of the following: pi ! pi or :pi ! :pifor some i = 1; : : : ; n. This is because all other the initial sequents eithercontain an atom ri in the antecedent or an atom qi in the succedent, or violatethe condition 4. from the de�nition of P .11



If Sh is the former then by 4. ui = 1 ^ vi = 0, if it is the latter thenui = 0 ^ vi = 1.Formally, the protocol G is de�ned as follows: the nodes are the sequentsof �, the strategy is given by the de�nition of Sa+1 from Sa and the sequent isin the consistency condition F (u; v) i� it satis�es the condition 4. above. Thecommunication complexity of G is � dlog(g)e + 2 � dlog(k(�))e + 2.By Theorem 2.3 there is a circuit of size k(�)O(1) separating U from V . Notethat if the atoms pi occur only positively in the antecedent or in the succedentof the end-sequent then the players always arrive to an initial sequent of theform pi �! pi. This yields the monotone case.This concludes the �rst proof.Second proof:Let S be a sequent in the cut-free proof �. By induction on the number ofinferences before S we de�ne explicitly the interpolant IS(p) for S (this makessense as no ri occurs in an antecedent and no qi occurs in a succedent).If S is initial then IS is one of 0; 1; pi;:pi (because the only initial sequentsin � where qi or ri occur are qi;:qi �! and �! ri;:ri which have interpolants0 and 1 respectively).If S was derived from one hypothesis S1 put IS := I(S1). If S was derivedby the right V:introduction (resp. by the left W:introduction) from S1; : : : ; Sgthen put IS := Vi�g I(Si) (resp. Wi�g I(Si)).The monotone case follows as then :pi cannot occur as the interpolant ofan initial sequent.This concludes the second proof. q.e.d.Both proofs of Theorem 3.1 can be modi�ed for the case when � is notnecessarily cut-free but no cut-formula contains atoms q and r at the sametime. To maintain the condition that q (resp. r) do not occur in the succedent(resp. in the antecedent) we picture a cut-inference with the cut-formula D as:D;� �! � D;� �! �� �! �or � �! �; D � �! �;:D� �! �according to whether atoms q do or do not occur in D (this is equivalent toconsidering a partition of formulas in a sequent S into the ancestors of theformulas from the antecedent and from the succedent of the end-sequent, ratherthan just into the antecedent and the succedent of S itself).A modi�cation of the �rst proof is then straightforward as the truth-valueof any cut-formula is known to one of the players and he can direct the path by12



sending one bit. To modify the second proof note that if I1 and I2 are inter-polants of the hypotheses of a cut-inference as above then I1 _ I2, respectivelyI1 ^ I2, is an interpolant of the lower sequent.Corollary 3.2 Let � be an LK-proof of the sequent:A1(p; q); : : : ; Am(p; q) �! B1(p; r); : : : ; B`(p; r)with occurrences of atoms as shown. Assume that in no cut-formula some qiand rj occur simultaneously.Then there is an interpolant I(p) of the implication:^i�mAi �! _j�`B`whose circuit-size is at most k(�)O(1).Moreover, if the atoms p occur only positively in all Ai or in all Bj then thereis a monotone interpolant whose monotone circuit-size is at most k(�)O(1).A third way how to obtain the corollary from Theorem 3.1 is provided bythe second proof of Theorem 6.1.4 Semantic derivationsIn the �rst proof of Theorem 3.1 we have not used any particular syntacticproperty of formulas in an LK-proof. Rather the proof worked with the sets oftruth assignments satisfying the formulas in �. The following notion is intendedto formalize a general situation in which a similar argument may work for proofsallowing some form of cut-rule.De�nition 4.1 Let N be a �xed natural number.1. The semantic rule allows to infer from two subsets A;B � f0; 1gN a thirdone: A BCi� C � A \B.2. A semantic derivation of the set C � f0; 1gN from the sets A1; : : : ; Am �f0; 1gN is a sequence of sets B1; : : : ; Bk � f0; 1gN such that Bk = C,each Bi is either one of Aj or derived from two previous Bi1 ; Bi2 by thesemantic rule.3. Let X � exp(f0; 1gN) be a family of subsets of f0; 1gN . A semantic de-rivation B1; : : : ; Bk is an X -derivation i� all Bi 2 X .13



Recall that a �lter of subsets of f0; 1gN is a family X closed upwards (A 2X ^B � A! B 2 X ) and closed under intersection (A;B 2 X ! A \B 2 X ).The following lemma is obvious.Lemma 4.2 Let A1; : : : ; Am; C 2 f0; 1gN . Then the following three conditionsare equivalent:1. C can be semantically derived from A1; : : : ; Am.2. C can be semantically derived from A1; : : : ; Am in m � 1 steps.3. C is in the smallest �lter containing A1; : : : ; Am.It means that to have a non-trivial meaning of the length of semantic de-rivations we must restrict to X -derivations for some family X which itself isnot a �lter. For example, a family formed by subsets of f0; 1gN de�nable bydisjunctions of literals yields a non-trivial notion. The following technical de�n-ition abstracts a property of sets of truth assignments used in the �rst proof ofTheorem 3.1.De�nition 4.3 Let N = n + s + t be �xed and let A � f0; 1gN . Let u; v 2f0; 1gn, qu 2 f0; 1gs and rv 2 f0; 1gt.Consider three tasks:1. Decide whether (u; qu; rv) 2 A.2. Decide whether (v; qu; rv) 2 A.3. If (u; qu; rv) 2 A 6� (v; qu; rv) 2 A �nd i � n such that ui 6= vi.These tasks can be solved by two players, one knowing u; qu and the other oneknowing v; rv. The communication complexity of A, CC(A), is the minimalnumber of bits they need to exchange in the worst case in solving any of thesethree tasks.Consider two more tasks:4. If (u; qu; rv) 2 A and (v; qu; rv) =2 A either �nd i � n such thatui = 1 ^ vi = 0or learn that there is some u0 satisfyingu0 � u ^ (u0; qu; rv) =2 A(u � u0 means Vi�n ui � u0i.) 14



5. If (u; qu; rv) =2 A and (v; qu; rv) 2 A either �nd i � n such thatui = 1 ^ vi = 0or learn that there is some v0 satisfyingv0 � v ^ (v0; qu; rv) =2 A :(Note that the players are not required to �nd u0 and v0 in 4. and 5. and thatthe two cases in each task are not necessarily exclusive.)The monotone communication complexity w.r.t. U of A, MCCU(A), is theminimal t � CC(A) such that the task 4. can be solved communicating � t bitsin the worst case.The monotone communication complexity w.r.t. V of A, MCCV (A), is theminimal t � CC(A) such that the task 5. can be solved communicating � t bitsin the worst case.In the example above, any set de�nable by a disjunction of literals has boththe communication complexity and the monotone communication complexity atmost dlog(n)e + 2.Note that proofs in any of the usual propositional calculi translate into se-mantic derivations: simply replace a sequent (a formula, an equation, etc.) bythe set of its satisfying truth assignments. The inference rules translate intoinstances of the semantic rule as they are all sound.5 An interpolation theorem for semantic deriv-ationsLet N = n+ s + t be �xed for the whole section. For A � f0; 1gn+s de�ne theset ~A by: ~A := [(a;b)2Af(a; b; c) j c 2 f0; 1gtgwhere a; b; c range over f0; 1gn, f0; 1gs and f0; 1gt respectively, and similarlyfor B � f0; 1gn+t de�ne ~B:~B := [(a;c)2Bf(a; b; c) j b 2 f0; 1gsg :Theorem 5.1 Let A1; : : : ; Am � f0; 1gn+s and B1; : : : ; B` � f0; 1gn+t. As-sume that there is a semantic derivation � = D1; : : : ; Dk of the empty set ; = Dkfrom the sets ~A1; : : : ; ~Am; ~B1; : : : ; ~B` such that:CC(Di) � t15



for all i � k.Then the two setsU = fu 2 f0; 1gn j 9qu 2 f0; 1gs; (u; qu) 2 \j�mAjgand V = fv 2 f0; 1gn j 9rv 2 f0; 1gt; (v; rv) 2 \j�`Bjgcan be separated by a circuit of size at most (k + 2n)2O(t).Moreover, if the sets A1; : : : ; Am satisfy the following monotonicity conditionw.r.t. U : (u; qu) 2 \j�mAj ^ u � u0 ! (u0; qu) 2 \j�mAjand MCCU(Di) � t for all i � k, or if the sets B1; : : : ; B` satisfy:(v; rv) 2 \j�`Bj ^ v � v0 ! (v0; rv) 2 \j�`Bjand MCCV (Di) � t for all i � k, then there is a monotone circuit separatingU from V of size at most (k + n)2O(t).Proof :Let � = D1; : : : ; Dk be a semantic derivation of ; from ~A1; : : : ; ~B`. We shallconstruct a protocol G for the Karchmer-Wigderson game on U; V . Before wede�ne it formally we �rst explain its idea in terms of two players constructinga path through �.The two players A and B, one knowing (u; qu) 2 Tj Aj and the other oneknowing (v; rv) 2 Tj Bj , attempt to construct a path P = S0; : : : ; Sh through�. S0 = ; = Dk, Sa+1 is one of the two sets which are the hypotheses of thesemantic inference yielding Sa and Sh 2 f ~A1; : : : ; ~B`g. Moreover, both tuples(u; qu; rv) and (v; qu; rv) are not in Sa, a = 0; : : : ; h.If the players know Sa which was deduced in the inference:X YSathen they �rst determine whether (u; qu; rv) 2 X and (v; qu; rv) 2 X. Thereare three possible outcomes:1. both (u; qu; rv) and (v; qu; rv) are in X2. none of (u; qu; rv); (v; qu; rv) is in X3. only one of (u; qu; rv); (v; qu; rv) is in X.16



In the �rst case none of the two tuples can be in Y and the players put Sa+1 :=Y . In the second case they take Sa+1 := X. In the third case they stopconstructing the path and enter a protocol aimed at �nding i � n such thatui 6= vi. Such i must exists as necessarily u 6= v. As none of the initial sets~A1; : : : ; ~B` avoids both (u; qu; rv); (v; qu; rv) the players must sooner or laterenter the possibility 3. and �nd i � n such that ui 6= vi.Now we de�ne the protocol G formally. G has (k+2n) nodes, the k steps ofthe derivation � plus 2n additional nodes labelled by formulas ui = 1 ^ vi = 0and ui = 0 ^ vi = 1, i = 1; : : : ; n. The consistency condition F (u; v) consistsof those Dj such that (v; qu; rv) =2 Dj and of those of the additional 2n nodeswhose label is valid for the particular pair u; v.The strategy function (for Dj derived from X and Y ) is de�ned as follows:1. If (u; qu; rv) =2 Dj thenS(u; v;Dj) := � X if (v; qu; rv) =2 XY if (v; qu; rv) 2 X (and hence (v; qu; rv) =2 Y ).2. If (u; qu; rv) 2 Dj then the players use the protocol (whose existence isguaranteed by the de�nition of CC(Dj)) for �nding i � n such that ui 6=vi. S(u; v;Dj) is then the one of the two nodes labelled by ui = 1^vi = 0and ui = 0 ^ vi = 1 whose label is valid for the pair u; v.Note that both the strategy function S(u; v; x) and the membership relationx 2 F (u; v) can be determined by the players exchanging at most O(t) bits. AsG has (k+2n) nodes, Theorem 2.3 yields the wanted circuit separating U fromV and having the size at most (k + 2n) � 2O(t).The protocol requires a modi�cation for the monotone case. Assume that thesets A1; : : : ; Am satisfy the monotonicity condition w.r.t. U and thatMCCU(Di)� t for all i � k (the case of the monotonicity w.r.t. V is analogous). The pro-tocol has (k + n) nodes, the k steps of the derivation � plus n additional nodeslabelled by formulas ui = 1 ^ vi = 0, i = 1; : : : ; n. The consistency conditionF (u; v) is de�ned as before.The strategy function is de�ned in a bit di�erent way. The players use theprotocol for solving the task 4. from De�nition 4.3. There are two possibleoutcomes:1. They decide that the condition:9u0 � u; (u0; qu; rv) =2 Djis true for u; v. Then they put:S(u; v;Dj ) := � X if (v; qu; rv) =2 XY if (v; qu; rv) 2 X.17



2. They �nd i � n such that ui = 1^vi = 0. S(u; v;Dj) is then the additionalnode with the label ui = 1 ^ vi = 0.By the monotonicity condition imposed onA1; : : : ; Am, for every u0 occurringabove it holds: (u0; qu; rv) 2 \j�mAj :This implies that the players have to �nd sooner or later i � n such thatui = 1 ^ vi = 0.By the assumption about the monotone communication complexity of allDj, both the relation x 2 F (u; v) and the function S(u; v; x) can be computedexchanging O(t) bits. As G has (k + n) nodes, Theorem 2.3 yields the wantedmonotone circuit separating U from V and having the size at most (k+n)�2O(t).q.e.d.6 Upper bounds for some interpolation theor-emsIn this section we derive from Theorem 5.1 feasible bounds for interpolationtheorems for resolution, a subsystem of LK relevant to bounded arithmetic,and for LEC and CP .Theorem 6.1 Assume that the set of clauses fA1; : : : ; Am; B1; : : : ; B`g where:1. Ai � fp1;:p1; : : : ; pn;:pn; q1;:q1; : : : ; qs;:qsg, all i � m2. Bj � fp1;:p1; : : : ; pn;:pn; r1;:r1; : : : ; rt;:rtg, all j � `has a resolution refutation with k clauses.Then the implication: î�m(_Ai) �! _j�`(^:Bj)(where WAi denotes the disjunction of the literals in Ai and V:Bj denotes theconjunction of the negations of the literals in Bj) has an interpolant I(p) whosecircuit-size is knO(1).Moreover, if all atoms p occur only positively in all Ai, or if all p occuronly negatively in all Bj , then there is a monotone interpolant whose monotonecircuit-size is knO(1).First proof:Let � = C1; : : : ; Ck be a resolution refutation of A1; : : : ; B`. For a clauseC denote by ~C the subset of f0; 1gn+s+t of all those truth assignments satis-fying C. Then ~� = ~C1; : : : ; ~Ck is a semantic derivation of ; from ~A1; : : : ; ~B`.18



Obviously, for any clause C both the communication complexity and the mono-tone communication complexity of ~C is at most CC( ~C) � dlog(n)e + 2. HenceTheorem 5.1 yields circuit of size (k + 2n) � nO(1) � k � nO(1) Similarly for themonotone case. This concludes the �rst proof.Second proof:We give a second proof of a slightly worse bound via a translation of res-olution refutation into cut-free proofs. Assume that C1; : : : ; Ck is a resolutionrefutation of clauses A1; : : : ; B`. We show that for every a � k there are cedents�a;�a such that the following conditions hold:1. Each formula in �a has the form either pi _ :pi or qi _ :qi.2. Each formula in �a has the form ri ^ :ri.3. The sequent�a;_A1; : : : ;_Am �!^:B1; : : : ;^:B`;�a;_Cahas a cut-free LK-proof with O(a �N ) sequents, where N = n + s + t.This is readily established by induction on a. For Ca 2 fA1; : : : ; B`g applyW : left orV : right (O(N ) sequents), otherwise replace the cut inference yieldingCa with the cut formula pi or qi by introduction of pi_:pi or qi_:qi respectivelyinto the antecedent, and the cut inference with the cut formula ri by introductionri ^ :ri to the succedent. These new formulas form the cedents �a and �arespectively.By Theorem 3.1 the implication:^�k ^ î�m(_Ai) �! _j�`(^:Bj) __�khas an interpolant I(p) of circuit size (kN )O(1). Now note that, as V�k is atautology while W�k is unsatis�able, I(p) is, in fact, an interpolant for theimplication ^i�m(_Ai) �! _j�`(^:Bj)as well.This concludes the second proof. q.e.d.The following statement extends the previous theorem to a larger class ofLK-proofs. This class appears naturally in connection with bounded arithmetic(see [19, 2.2] or [20, 12.2.1]). 19



Corollary 6.2 Let � be an LK-proof of the sequent:A1(p; q); : : : ; Am(p; q) �! B1(p; r); : : : ; B`(p; r)with atoms p; q; r occurring as displayed and such that the formulas Ai (resp.Bj ) are literals or disjunctions (resp. conjunctions) of literals.Assume that � satis�es:1. � is tree-like.2. Every formula in � has the depth at most two.3. Every sequent in � contains at most c depth 2 formulas, where c is anindependent constant.Then there is an interpolant I(p) of the implication:î�mAi �! _j�`Bjwhose circuit-size is at most k(�)O(c)nO(1).Moreover, if the atoms p occur only positively in all Ai or in all Bj thenthere is a monotone interpolant whose monotone circuit-size is k(�)O(c)nO(1).Proof :Assume that � satis�es the hypothesis of the corollary. It was shown in [19,2.2] (or see [20, 12.2.1]) that � can be transformed into a tree-like proof �0 withk(�0) = k(�)O(c) in which every formula is of depth � 1.Furthermore, by [19, 1.2] (or see [20, 12.2.1]) such �0 can be transformed intoa resolution refutation �00 (which is not necessarily tree-like) of clauses repres-enting the sequents �! A1; : : : ;�! Am and :B1 �!; : : : ;:B` �!, and suchthat k(�00) = k(�0)O(1) = k(�)O(c). The corollary then follows from Theorem6.1. q.e.d.Next we deduce interpolation theorems for LEC and CP .Theorem 6.3 Let E1(x; y); : : : ; Em(x; y) and F1(x; z); : : : ; F`(x; z) be a systemof linear equations over a �nite �eld F in which occur only the displayed variablesx = (x1; : : : ; xn), y = (y1; : : : ; ys) and z = (z1; : : : ; zt).Assume that there is an LEC-refutation � of the system with k(�) inferences.Then there is an interpolant I(x) of the implication:^i�mEi(x; y) �! _j�`:Fj(x; z)whose circuit-size is at most k(�)nO(1).20



Proof :Put N := n + s + t. For an equation C(x; y; z) denote by ~C the subset off0; 1gN of those tuples satisfying C. If � = C1; : : : ; Ck is an LEC-refutationthen ~C1; : : : ; ~Ck is a semantic refutation of ~E1; : : : ; ~F`. For any linear equationC the communication complexity of ~C is at most O(log(n)). The theorem thenfollows from Theorem 5.1. q.e.d.If F = Q we do not get such an estimate on CC( ~C) valid for all C. Ratherwe need also to incorporate the sizes of the coe�cients (see the de�nition of kakin section 1). Instead of this we prove an interpolation theorem for CP ; thecase of LEC with F = Q is similar.Theorem 6.4 Let E1(x; y); : : : ; Em(x; y); F1(x; z); : : : ; F`(x; z) be a system ofCP -inequalities in which occur only the displayed variables x = (x1; : : : ; xn),y = (y1; : : : ; ys) and z = (z1; : : : ; zt). Let N := n + s + t. Assume that there isa CP -refutation � of the system such that:1. � contains k(�) inferences.2. Every coe�cient occurring in � has the absolute value at most M .Then there is an interpolant I(x) of the implication:^i�mEi(x; y) �! _j�`:Fj(x; z)whose circuit-size is at most k(�)(MN )O(1)(Mn)O(logn).Moreover, if all xi occur in all E1; : : : ; Em with non-negative coe�cientsonly, or if all xi occur in all F1; : : : ; F` only with non-positive coe�cients only,then there is a monotone interpolant whose monotone circuit-size is at mostk(�)(MN )O(1)(Mn)O(logn).Proof :Assume that � is a CP -refutation satisfying the hypothesis of the corollary.Every inequality D in � has the form:a � x+ b � y + c � z � dwhere a �x abbreviates the scalar product a1x1+ : : :+ anxn (and similarly b � yand c � z). Let ~D be the set of assignments satisfying D.Assume that playerA received u 2 f0; 1gn such that allEi(u; yu) are satis�edfor some yu, while B received v 2 f0; 1gn such that all Fj(v; zv) are satis�edfor some zv. As in the proof of Theorem 6.1 it is su�cient to estimate the(monotone) communication complexity of ~D.21



For the tasks to decide whether (u; yu; zv) 2 ~D and (v; yu; zv) 2 ~D it issu�cient if A sends to B the numbers a � u and b � yu, and B sends to A a � vand c � zv. This needs at most 2 � dlog(MN )e bits each.If (u; yu; zv) 2 ~D 6� (v; yu; zv) 2 ~D then necessarily a � u 6= a � v and theplayers �nd i � n such that ui 6= vi by binary search. Here dlogne � dlog(Mn)ebits su�ce.This shows that for any ~D the communication complexity is at most:CC( ~D) � O(log(MN ) + logn � log(Mn)) :Theorem 5.1 implies that the implication has an interpolant of circuit-size atmost: k(�) � (MN )O(1)(Mn)O(logn) :For the monotone case assume that the variables xi occur only with non-negativecoe�cients in all E1; : : : ; Em (the other case is analogous). The monotonicitycondition of Theorem 5.1u0 � u ^ î�mEi(u; yu) �! ^i�mEi(u0; yu)is then satis�ed. It is thus su�cient to estimate MCCU( ~D).Assume (u; yu; zv) 2 ~D while (v; yu; zv) =2 ~D. Then a � u > a � v. Write thevector a as a di�erence of two vectors with non-negative coe�cients, a = a1�a2.There are two possibilities1. a1 � u > a1 � v.2. a1 � u � a1 � v ^ a2 � u < a2 � v.In the �rst case the players use binary search to �nd i � n such that ui =1^ vi = 0. This needs at most dlogne � dlog(Mn)e bits. In the second case theyknow that for some u0 � u it holds a2 � u0 � a2 � v and hence also a � u0 � a � vand (u0; yu; zv) =2 ~D. To decide which case applies needs at most 2dlog(Mn)ebits. Hence MCCU( ~D) � O(log(MN ) + logn � log(Mn)) :Theorem 5.1 yields the existence of a monotone interpolant with the monotonecircuit-size at most k(�) � (MN )O(1)(Mn)O(logn) : q.e.d.22



7 Lower bounds for proof systemsAssume that for a propositional proof system P we have a good interpolationtheorem allowing, in particular, good estimates of the complexity of the mono-tone interpolants. Then an implication which cannot have a small monotoneinterpolant must have long P -proofs. A similar idea of lower bounds for proofsystems was discussed in the context of counting principles in [19, Sect.5].Non-trivial lower bounds to the circuit size are known for monotone circuitsseparating graphs with large cliques from those colorable by a small number ofcolors, see [39, 2, 1]. It is thus natural to use the implications determined bythese two NP-sets as explained in the introduction. Similar implications werediscussed in [43].De�nition 7.1 Let n; !; � � 1 be natural numbers, and let �n2� denote the setof two-element subsets of f1; : : : ; ng. The set Cliquen;!(p; q) is a set of thefollowing formulas in the atoms pij , fi; jg 2 �n2�, and qui, u = 1; : : : ; ! andi = 1; : : : ; n:(1a) Wi�n qui, all u � !,(1b) :qui _ :qvi, all u < v � ! and i = 1; : : : ; n,(1c) :qui _ :qvj _ pij, all u < v � ! and fi; jg 2 �n2�.The set Colorn;�(p; r) is the set of the following formulas in the atoms pij,fi; jg 2 �n2�, and ria, i = 1; : : : ; n and a = 1; : : : ; �:(2a) Wa�� ria, all i � n,(2b) :ria _ :rib, all a < b � � and i � n,(2c) :ria _ :rja _ :pij, all a � � and fi; jg 2 �n2�.The expression Cliquen;! �! :Colorn;�is an abbreviation of the sequent whose antecedent consists of all formulas in (1a-c) and whose succedent consists of the negations of the formulas in (2 a-c).Truth assignments to pij can be identi�ed with graphs on n vertices. Truthassignments to qui such that Cliquen;!(p; q) is satis�ed can be identi�ed with 1-to-1 maps from the set f1; : : : ; !g onto a clique in graph p, and truth assignmentsto ria such thatColorn;�(p; r) is satis�ed can be identi�ed with colorings of graphp by colors f1; : : : ; �g. Thus the setfp j 9q Cliquen;!(p; q)gis the set of graphs with a clique of size � !, while the setfp j 9r Colorn;�(p; r)g23



is the set of graphs colorable by � � colors. Hence the sequentCliquen;! �! :Colorn;�is tautologically valid i� � < !. The following theorem just restates the boundfrom [1], replacing the class of graphs without a clique of size � used in [1] by thesmaller class of �-colorable graphs (the bound to monotone circuits separatingthese two classes is what is actually proved in [1]).Theorem 7.2 ([1]) Assume that 3 � � < ! and p�! � n8 logn . Then thesequent Cliquen;! �! :Colorn;�has no interpolant of the monotone circuit-size smaller than:2
(p�) :For the next statement note that all formulas in the set Cliquen;![Colorn;�are disjunctions of literals and thus can be identi�ed with resolution clauses.A resolution clause fxi1; : : : ; xia;:xj1; : : : ;:xjbg can be represented by a CP -inequality xi1 + : : :+ xia � xj1 : : :� xjb � 1� b :Hence the set Cliquen;! [ Colorn;� can be considered also as a set of CP -inequalities in p; q; r.Corollary 7.3 Let n be su�ciently large and let � = dpn e, ! = � + 1. Then:1. Every resolution refutation of the clauses Cliquen;! [Colorn;� must haveat least 2
(n14 ) clauses.2. Every CP -refutation of the clauses Cliquen;! [ Colorn;� with all coe�-cients in the absolute value �M must have at least2
(n14 )MO(logn)inequalities.In particular, if M � 2n� then for � a su�ciently small constant thenumber of inequalities is at least 2n
(1) .Proof :By Theorem 6.1 a resolution refutation with k clauses would imply the ex-istence of an interpolant with monotone circuit size knO(1). The hypothesis ofTheorem 7.2 is ful�lled and so it must hold:knO(1) � 2
(n14 )24



and hence k � 2
(n14 )as well.The second part is proved analogously using Theorem 6.4 in place of 6.1. By6.4 and 7.2: k(�)(MN )O(1)(Mn)O(logn) � 2
(n14 )where N = �n2� + n(s + t) = O(n2). This implies:k(�)MO(logn)nO(logn) � 2
(n14 )and so k � 2
(n14 )MO(logn) :For M � 2n�, � suitably small, the right-hand side is 2n
(1) . q.e.d.Note that by a suitable choice of � we can get a lower bound of the form2
(n13��), for arbitrary small � > 0.8 An independence result for the bounded arith-metic theory S22(�)The �rst bounded arithmetic theory was introduced in [34]. Current research iscentered around the theories de�ned in [5]. In this section we give a new present-ation of the proof of the independence result for the theory S22 (�) obtained in[43]. For the de�nition of the theory as well as for the details of bounded arith-metic the reader should consult [5] or [20, Chpt. 5] (in particular, the languageL(�) of S22 (�) contains, in fact, countably many unary predicates �i). In thelatter can also be found details of various relations between the arithmetic sys-tems and the propositional proof systems (in [20, Chpt. 9] in particular). Weshall recall briey a translation of bounded L(�) formulas; [35] used it �rst ina connection with bounded arithmetic.A bounded formula A(a; �1; : : : ; �k) with the predicate parameters �i andthe number parameter a can be for every value a := N translated into aconstant-depth, size 2(logN)O(1) formula: the atomic sentence j 2 �i translatesinto the atom pij , a true (resp. false) �rst-order atomic sentence translates into 1(resp. into 0) and a bounded universal (resp. existential) quanti�er 8x < tB(x)resp. 9x < tB(x) translates into a conjunction (resp. a disjunction) of the25



translations of B(x); x = 0; : : : ; t�1. We shall denote the translation of formulaA for a = N by hAiN (p1; : : : ; pk).There are rather sophisticated relations between bounded arithmetic theoriesand propositional proof systems, see [8, 35, 22, 23, 26, 27, 19, 21] or [20, Chpts.9and 11-15].The class of �rst-order bounded formulas in the language of bounded arith-metic (no predicates �i) is denoted �b1. We call a bounded L(�)-formulaE1(�;�b1) if it has the form 9�A, where A is a disjunction of conjunctionsof atomic formulas and �b1-formulas. U1(�;�b1)-formulas are de�ned dually,replacing 9� by 8� and a disjunction of conjunctions by a conjunction of dis-junctions. The following theorem is known (see, for example, the simulation asproved in [21] or [20, Chpt. 9]).Theorem 8.1 Assume that 8x � s(a)A(a; x; �1; : : : ; �k) is a boundedU1(�1; : : : ; �k;�b1)-formula and that 9y � t(a)B(a; y; �1; : : : ; �k) is a boundedE1(�1; : : : ; �k;�b1)-formula.Assume that the theory S22 (�) proves the sequent:8x � s(a) A(a; x; �1; : : : ; �k) �! 9y � t(a) B(a; y; �1; : : : ; �k) :Then for every N the propositional sequent:hAiN;0; : : : ; hAiN;s(N) �! hBiN;0; : : : ; hBiN;t(N)(where the formulas are built from atoms p1; : : : ; pk) has an LK-proof �N sat-isfying the following conditions:1. � is tree-like.2. k(�N ) = 2(logN)O(1) .3. Every formula in �N has depth at most 2.4. Every sequent in �N contains at most c depth 2 formulas (c an independentconstant).We turn now our attention to the provability of circuit-size lower bounds inbounded arithmetic.Razborov [42, 43] studies a formalization of Boolean complexity methods inthe bounded arithmetic theory V 11 and in its fragments. In that formalizationBoolean functions and circuits are coded by sets while Boolean inputs are codedby numbers. This allows to speak directly about exponential size circuits. In[42] he demonstrated that all major lower bounds to the circuit-size of restrictedcircuit models known at present can be also proved in V 11 . On the other hand, in[43] he showed - under a cryptographic assumption about the existence of strong26



pseudo-random number generators - that the subtheory S22(�) of V 12 does notprove a superpolynomial lower bound to the size of general unrestricted circuitscomputing the satis�ability predicate.His proof relies on an interpolation theorem for second order bounded arith-metic derived with the help of technical split versions1 of bounded arithmetictheories. We shall give below a direct proof via propositional interpolation.We �rst very briey recall the formalization of Boolean functions and cir-cuits adopted in [42, 43]. Let N be a number of the form N = 2n. Anysubset f � f1; : : : ; Ng is thought of as a truth-table of a Boolean functionf : f0; 1gn ! f0; 1g. A �rst order bounded formula (no second order variables)E(x; a) determines for every N the function EN = f1 � i � N j E(i; N )g. Weshall call such functions explicit.The formula: Comp(�;N; t(N ); f)formalizes that � codes a circuit (with _;^ of fan-in two) of size t(N ) in inputsx1; : : : ; xn, together with the computations of the circuits on all a � N oflength n, and that the circuit computes the function f � f1; : : : ; Ng. It is aU1(�;�b1)-formula.The formalization of the lower bound t(N ) to the circuit-size of f is theformula: LB(N; t(N ); f) := 8�;:Comp(�;N; t(N ); f):It should be noted that the formalization of the notions of complexity theoryadopted in [42, 43] di�ers from the one usually accepted in bounded arithmetic[36, 5, 8, 20, 22] in which all combinatorial objects (inputs, circuits,...) are codedat the same level (by sets in the case of V 11 ) while (Boolean) functions are identi-�ed with de�nable classes. In the latter formalization one can speak only aboutfunctions from the polynomial-time hierarchy (as only those are de�nable) andonly about circuits of polynomial size (as the existence of objects of superpoly-nomial size is not provable in bounded arithmetic). It is this latter version inwhich bounded arithmetic theories enjoy close relationship with propositionalproof systems (mutual simulation) and with computational complexity (de�n-ability, witnessing and natural forms of major problems).Results in the two frameworks can be compared using the known relationbetween �rst and second order bounded arithmetic (the RSUV -isomorphism,see [17, 40, 46]). Positive results like formalizations of particular exponentiallower bounds in the former formalization are apparently weaker than the cor-responding proofs of the non-existence of polynomial size upper bounds in the1Not only are the split theories reader-unfriendly but their notation is unpleasant aswell. I suggest to replace the original notation of [43] by the following more custom-ary one: S�b0 = �b1(�) + �b1(�), S�bi = �bi (�b1(�);�b1(�)), S(S2) = S2(�) + S2(�),SSi2 = Si2(�b1(�);�b1(�)), etc. 27



latter formalization (in the same theory). On the other hand, negative resultslike the unprovability of superpolynomial bounds are apparently stronger thanthe corresponding statements in the latter formalization (the unprovability ofpolynomial size upper bounds). For the latter formalization various (uncon-ditional) independence results for the theory PV are known, see [20, Sections7.6 and 15.3] and [24]. The theories occurring in [43] correspond to very weaksubtheories of PV .The cryptographic assumption mentioned above is expressed by the phrase:strong pseudo-random number generators do exist, which says that there is " > 0such that for all n there is a function (a pseudo-random generator):Gn : f0; 1gn! f0; 1g2nwhich is computable by a circuit of size nO(1) and has the hardnessH(Gn) � 2n".Here, H(Gn) is the minimal S such that there is a circuit C of size S com-puting a Boolean function C : f0; 1g2n! f0; 1g such that:j Probx2f0;1gn[C(Gn(x)) = 1]� Proby2f0;1g2n[C(y) = 1] j � 1S :The reader should consult [43] or [29] for further details.We are prepared to reprove the main conditional independence result from[43]. The idea of the reduction of the independence to interpolation is the sameas in [43], we only use more friendly propositional version proved in earliersections. For the bene�t of the reader we give all details.Theorem 8.2 ([43]) Assume that strong pseudo-random number generators doexist. Let E(x; a) be a �rst order bounded formula and t(N ) a function suchthat t(N ) = (logN )!(1) holds in the natural numbers.Then the theory S22 (�) does not prove the circuit-size lower bound t(N ) forthe function EN , i.e. the theory S22(�) does not prove the formula:8a;LB(a; t(a); Ea) :Proof :Let s(N ) be any function such that s(N ) = (logN )!(1) and the parity oftwo circuits of size � s(N ) is computable in size � t(N ).Consider the implication:Comp(�;N; s(N ); f)! :Comp(�;N; s(N ); f � EN )where f �En is the parity of functions f and EN de�nable from f and EN bythe bounded formula:8x; x 2 f � EN � (x 2 f 6� x 2 EN ):28



Assume that the implication fails. Then � codes, in particular, a circuit com-puting f while � codes a circuit computing f � En, and hence the two circuitsjoined by � computeEN . By the choice of s(N ) this implies :LB(N; t(N ); EN ).Hence to show that the lower bound to EN is not provable in S22 (�) it is su�cientto demonstrate that S22 (�) does not prove the implication above.Assume, for the sake of contradiction, that it does. Denote byAi(p1; : : : ; pN ; q1; : : : ; qs)the propositional formula formalizing that the computation on i coded in �yields the value f(i) (with the atoms pi translating i 2 f and qj translatingj 2 �), and similarly denote by:Bi(p1; : : : ; pN ; r1; : : : rs)the formula formalizing that the computation on i coded in � does not yield thevalue f(j) �EN (j) (here rj translate j 2 �). We have s = s(N ).By Theorem 8.1 the sequent:A1; : : : ; AN �! B1; : : : ; BNhas an LK-proof � of size 2(logN)O(1) satisfying the hypothesis of Corollary 6.2.2By that corollary the implication admits an interpolantI(p1; : : : ; pN)whose circuit-size is � 2(logN)0(1) .We shall further freely slight between the bits p1; : : : ; pN and the functionf 2 f0; 1gN they de�ne. De�ne the set U by:U = ff 2 f0; 1gN j 9q î Ai(p; q)gand the set V by: V = ff 2 f0; 1gN j 9r ĵ :Bj(p; r)g :Note that the sets U and V are disjoint and that:f 2 U � (f � EN ) 2 Vholds for any f 2 f0; 1gN . This implies that the interpolant I, which separatesU from V , has the following two properties:2The reader familiar with the split theories of [43] might note at this point that our methodyields a propositional counter-part of the interpolation for full split version of S22 as well. Thepropositional proof obtained analogously through Theorem 8.1 and Corollary 6.2 will not be aresolution proof but rather a proof satisfying the hypothesis of Corollary 3.2; that is su�cient.29



1. :I(f) ! f =2 U , for any f ,2. I(f �EN )! f =2 U , for any f .De�ne the property P (f) of functions f 2 f0; 1gN by:P (f) := � :I(f) if at least a half of function satisfy :II(f �EN ) otherwise.This property satis�es clearly all three conditions of the de�nition of a nat-ural property against P=poly, see [44], with the e�ectivity condition weakenedto the requirement that P is computable in quasi-polynomial size. However, asnoted in [43], the proof of [44, Thm 4.1] works for this modi�cation as well (takek = n� in place of k = �n in its proof). Hence we conclude that the provabilityof the lower bound in S22(�) implies the failure of the cryptographic assumption.q.e.d.9 A possibility of lower bounds for interpolationIt is important and interesting to �nd out for which proof systems one canprove a good interpolation theorem. As mentioned in the introduction it wasnoted in [30, 31, 32] that unless NP \ coNP � NC1=poly (resp. � P=poly) onecannot bound the size (formula- or circuit-) of an interpolant in terms of thesize of the implication. However, it appears to be more di�cult to �nd a naturalcomputational complexity conjecture which would rule out, for example, thatan interpolant of size polynomial in the number of sequents of an LK-proof ofthe implication always exists. The size of the interpolant means circuit-size asby the example in [19, Sect. 5] one cannot expect good bounds to formula-sizeunless P=poly � NC1=poly.In this section we discuss the possibility of such (conditional) lower boundsfor interpolation. We shall freely slide between corresponding pairs of a pro-positional proof system P and a bounded arithmetic theory T . For these cor-respondences see [8, 22, 26, 27, 35, 21] or [20, Chpts 9 and 14]. Informally,this correspondence essentially says that a formula A(a) is provable in T i� thepropositional translations hAiN of its instances have short P -proofs.We shall �rst examine this question via the method of [22]. Let TAUT bethe set of propositional tautologies in the language of LK. Let U; V be twodisjoint NP-sets. Take a polynomial-time reduction f of U to the complementof TAUT which is an NP-complete set. Then:f 00V � TAUT30



and if V = fx j 9yB(x; y)g, where B(x; y) is a polynomial-time predicate impli-citly bounding y, then the function:Qf (w) := � f(x) if w = hx; yi ^B(x; y)1 otherwise.is a propositional proof system in the sense of [9] (not necessarily complete). Astatement that U \ V = ; merely means that Qf is sound and, in fact, it isequivalent to it. Moreover, an interpolant I for the implicationQf (w) = a �! a 2 TAUTgives immediately an interpolant J(b) := I(f(b)) for the original implication:b 2 V �! b =2 U :The strongest such reection principle provable in T is for P itself (see [22]).That is, the instances of the reection principle for P :hPrfP (w; a)iM;N �! hb j= aiN;N(PrfP (w; a) formalizes that w is a P -proof of a and b j= a formalizes that b isa satisfying assignment for a) are the strongest reection principles admittingshort P -proofs. (In fact, for most P these are as well the strongest tautologies- over some base system P0 - with short P -proofs, see [22] or [20, Chpt. 14]).Hence P admits a feasible interpolation theorem i� these particular implicationsadmit feasible interpolants. This yields the completeness result for the disjointNP-pair (SAT �; REF (P )) proved directly in [41]. To make use of this observa-tion one has to establish the correspondence (P; T ) for usual P and T . For mostP the corresponding T is known. For example, LK with the size measured bythe number of steps (that is, the Extended Frege system, see [9]) corresponds tothe theory V 11 (the particular correspondence of depth i subsystems of LK toSi+22 (�) relevant to [41] follows from [19, 2.2 and 1.2] as in the proof of Corollary6.2).Now we shall consider another approach to lower bounds for interpolationtheorems. A simple corollary of Craig interpolation theorem is Beth de�nabilitytheorem, see [3]. It says, in particular, that if the formula A(p; q) implicitlyde�nes the bit q1, i.e. the implicationA(p; q); A(p; r) �! q1 � r1is a tautology, then there is a function E(p), an explicit de�nition, such thatA(p; q) �! E(p) � q131



is a tautology as well. This follows from the interpolation theorem immediatelyconsidering the implication(A(p; q) ^ q1) �! (r1 _ :A(p; r))whose any interpolant is an explicit de�nition of q1. This simple reductionimplies that the same bounds which hold for Craig interpolation theorem holdfor Beth de�nability theorem (and vice versa, in fact). Hence to prove a lowerbound for the interpolation theorem for a proof system P it is enough to �nd animplicit de�nition A(p; q) of a function g(p) admitting polynomial size P -proofsof the above implication, but which itself cannot be computed in P=poly.The following particular de�nition of one-way functions is a slightly biasedde�nition from [33]. It de�nes an apparently weaker notion then the morecustomary probabilistic versions (see e.g. [29]) but it su�ces for our purposes.De�nition 9.1 A function f : f0; 1g� ! f0; 1g� is one-way i�1. f is polynomial-time computable.2. f is 1-to-1.3. There are constants �; k such thatjxj� � jf(x)j � jxjkholds for all x.4. The inverse function f�1:f�1(y) := � x if y 2 Rng(f) and f(x) = y0 if y =2 Rng(f)is not in P=poly.It is a simple observation that a one-way function exists i� UP 6� P=poly,where UP is the class ofNP-sets acceptable by a polynomial-timenon-deterministicTuring machine with at most one accepting computation on every input. Thefollowing theorem follows from the remarks on connections between Craig in-terpolation and Beth de�nability theorems.Theorem 9.2 Let a propositional proof system P and an arithmetic theory Tbe a pair of corresponding proof systems (in the sense of [22] or [20, Chpts. 9and 14]). Assume that f(x) is a one-way function with an NP-graph such thatthe theory T proves that f is 1-to-1:T ` f(x) = y; f(x0) = y �! x = x0 :Then the proof system P does not admit polynomial upper bound to the circuit-size of interpolants. 32



No one-way function is known at present but there appear to be two chiefcandidates (see [33, 29]), namely the (inverse function to the) factoring:(p; q) �! p � qmapping two primes p; q to the product p � q, and the (inverse function to the)discrete logarithm: (p; g; x) �! (p; g; gxmod p)mapping a prime p, a primitive root g mod p and x 2 Z�p to p; g and gx mod p.These function have NP-graphs as primes are in NP \ coNP, see [38].The hypothesis of the theorem can be ful�lled for Extended Frege systemand a conjectured one-way function f based on the RSA encryption scheme, see[25].The theorem makes sense, however, also for proof systems P working only withconstant depth formulas (or clauses) as the graph of f can be reduced to thesatis�ability of a set of clauses. It would be interesting to know whether thehypothesis of the theorem can be satis�ed for the depth 1 subsystem of LK.For the monotone interpolation we have an unconditional lower bound, es-sentially contained in [43, Section 8].Theorem 9.3 The depth 2 subsystem of LK does not admit a polynomial boundfor the monotone interpolation theorem (Lyndon theorem).In particular, the set of clauses:Cliquen;! [Colorn;�for n := �4 and ! := �2 has a depth 2 LK-refutation of size 2(logn)O(1) but theimplication: ^Cliquen;! �!_:Colorn;�has no monotone interpolant of monotone circuit-size smaller than 2n
(1) .Proof :Work in bounded arithmetic. Let G = (V;E) be a graph with n nodes, andlet F1 : f1; : : : ; !g �! V and F2 : V �! f1; : : : ; �g be two maps.As noted in [43] the implication that if F1 is a 1-to-1 map onto a clique inG then F2 cannot be a coloring of G follows from the weak pigeonhole. Thisprinciple is needed for a function f which is �b1(G;F1; F2)-de�nable:f(u) = a � (9i � n; F1(u) = i ^ F2(i) = a)� (8i � n; F1(u) 6= i _ F2(i) = a) :33



It says that f cannot be an injective map from ! = �2 into � and is (by [37])provable in T 32 (G;F1; F2). The bounded arithmetic proof is translated into atree-like, depth 4 LK-proof in which every sequent contains at most constantlymany depth 4 formulas.The existence of such a proof implies, analogously with the proof of Corollary6.2, the existence of the wanted depth 2 LK-refutation. q.e.d.The only subsystem of LK for which the possibility of a feasible monotoneinterpolation is open is the depth 1 subsystem. We conjecture that this sys-tem does not admit a polynomial upper bound for the monotone interpolation,but we observe that the existence of such a bound would have interesting con-sequences.Theorem 9.4 Assume that the depth 1 subsystem of LK admits a polynomialupper bound to the monotone interpolation theorem.Then for any �xed `, any resolution refutation of the clauses of the weakpigeonhole principle :WPHPm`m :1. Wa�m fu;a, all u � m`,2. :fu1;a _ fu2;a, all u1 < u2 � m` and a � m,must have at least 2m
(1) clauses.Proof :Take ! := m`, � := m and n := m`+1. Assume that � is a resolutionrefutation of the clauses of :WPHPm`m (fu;a). For any clause C in literalsfu;a;:fu;a denote by ~C a clause in literals qu;i;:qu;i; ri;a;:ri;a obtained from Cas follows:� replace every occurrence of fu;a by the sequence qu;1^ r1;a; : : : ; qu;n^ rn;a� replace every occurrence of :fu;a by the sequence qu;1 ^ :r1;a; : : : ; qu;n ^:rn;a.Observe two simple facts:1. For every C 2 :WPHPm`m (fu;a) the clause ~C has a depth 1 LK-prooffrom the clauses Cliquen;! [Colorn;� with mO(1) sequents.2. If C can be derived by the resolution rule from C1 and C2 then ~C hasdepth 1 LK-derivation from ~C1 and ~C2 with mO(1) sequents.34



Hence we get a depth 1 LK-refutation of Cliquen;! [Colorn;� with mO(1) �k(�)sequents. Assuming that a polynomial upper bound holds for the monotoneinterpolation theorem for the system we get by Theorem 7.2:(m � k(�))O(1) � 2n
(1) = 2m
(1)and so k(�) � 2m
(1)as well. q.e.d.At present such lower bounds are known only for ` = 2 � 
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