The fusion method (AKA the ultraproduct)

Ondřej Ježil

December 9, 2020

Some context

- goal: Lower bounds (ideally) on non-monotone circuits

Some context

- goal: Lower bounds (ideally) on non-monotone circuits
- so far we've seen:

Some context

- goal: Lower bounds (ideally) on non-monotone circuits
- so far we've seen:
- Razborov's approximation method

Some context

- goal: Lower bounds (ideally) on non-monotone circuits
- so far we've seen:
- Razborov's approximation method
- Sipser's topological approach

Some context

- goal: Lower bounds (ideally) on non-monotone circuits
- so far we've seen:
- Razborov's approximation method
- Sipser's topological approach
- These approaches were unified by M. Karchmer with his "Fusion method"

Some context

- goal: Lower bounds (ideally) on non-monotone circuits
- so far we've seen:
- Razborov's approximation method
- Sipser's topological approach
- These approaches were unified by M. Karchmer with his "Fusion method"
- we will cover the survey article: Avi Widgerson - The Fusion Method for Lower Bounds in Circuit Complexity

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct
- We have a collection $\left(\mathcal{A}_{i}, i \in I\right)$ of structures, $\mathcal{A}_{i} \models T$.

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct
- We have a collection $\left(\mathcal{A}_{i}, i \in I\right)$ of structures, $\mathcal{A}_{i} \models T$.
- If we have an ultrafilter \mathcal{U} on I. We can form a new structure

$$
\prod_{i \in I} \mathcal{A}_{i} / \mathcal{U} \vDash T .
$$

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct
- We have a collection $\left(\mathcal{A}_{i}, i \in I\right)$ of structures, $\mathcal{A}_{i} \models T$.
- If we have an ultrafilter \mathcal{U} on I. We can form a new structure

$$
\prod_{i \in I} \mathcal{A}_{i} / \mathcal{U} \vDash T .
$$

- Fusing computations

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct
- We have a collection $\left(\mathcal{A}_{i}, i \in I\right)$ of structures, $\mathcal{A}_{i} \models T$.
- If we have an ultrafilter \mathcal{U} on I. We can form a new structure

$$
\prod_{i \in I} \mathcal{A}_{i} / \mathcal{U} \models T
$$

- Fusing computations
- We have some program P, accepting exactly $U \subseteq\{0,1\}^{n}$, and for each $u \in U$, we have $P(u)$ an accepting computation of u.

General idea

Lower bound for a boolean function \rightarrow Combinatorial "covering" problem

- Ultraproduct
- We have a collection $\left(\mathcal{A}_{i}, i \in I\right)$ of structures, $\mathcal{A}_{i} \models T$.
- If we have an ultrafilter \mathcal{U} on I. We can form a new structure

$$
\prod_{i \in I} \mathcal{A}_{i} / \mathcal{U} \models T
$$

- Fusing computations
- We have some program P, accepting exactly $U \subseteq\{0,1\}^{n}$, and for each $u \in U$, we have $P(u)$ an accepting computation of u.
- If we have some finite analogue of an ultrafilter F, we can fuse them into a new "accepting computation" of some new z, a contradiction.

Straight-line programs, computations

Definition

Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of variables. A straight-line program P is a tuple $\left(g_{1}, \ldots, g_{t}\right)$, such that $g_{i}=x_{i}$ for $i \in\{0, \ldots, n\}$ and $g_{i}=g_{i_{1}} \circ_{i} g_{i_{2}}$ where $i_{1}, i_{2}<i$, and $\circ_{i} \in O P$ some set of binary operations. For $u \in\{0,1\}^{n}$ we define a computation of P on input u as $P(u):=\left(g_{1}(u), \ldots, g_{t}(u)\right)$, where $g_{t}(u) \in\{0,1\}$ is the output of the computation.

An example of a straight-line program

- Consider the circuit:

An example of a straight-line program

- Consider the circuit:

- The corresponding straight-line program is

$$
P=\left(x_{1}, x_{2}, x_{3}, x_{1} \vee x_{2},\left(x_{1} \vee x_{2}\right) \wedge x_{3}\right) .
$$

An example of a straight-line program

- Consider the circuit:

- The corresponding straight-line program is

$$
P=\left(x_{1}, x_{2}, x_{3}, x_{1} \vee x_{2},\left(x_{1} \vee x_{2}\right) \wedge x_{3}\right) .
$$

- And the following is an accepting computation of $P(1,0,1)$

$$
P(1,0,1)=(1,0,1,1,1)
$$

The fusion method

- Let $U \subseteq\{0,1\}^{n}$, we would like to find a lower bound on the length of the shortest straight-line program accepting exactly U.

The fusion method

- Let $U \subseteq\{0,1\}^{n}$, we would like to find a lower bound on the length of the shortest straight-line program accepting exactly U.
- This is equivalent to finding a lower bound for a straight-line program computing some boolean function f on n-letter strings by setting $U=f^{-1}[1]$.

The fusion method

- Let $U \subseteq\{0,1\}^{n}$, we would like to find a lower bound on the length of the shortest straight-line program accepting exactly U.
- This is equivalent to finding a lower bound for a straight-line program computing some boolean function f on n-letter strings by setting $U=f^{-1}[1]$.
- Assume for contradiction there exists some program $P=\left(g_{1}, \ldots, g_{t}\right)$ that accepts exactly U and t is too small.

The accepting computation matrix

- Consider a $|U| \times t$ matrix, where rows are indexed by U and each row is equal to the computation $P(u)$.

u					the rest of $P(u)$				
0	1	\ldots	0	1	0	1	\ldots	0	1
0	0	\ldots	1	1	0	0	\ldots	0	1
1	0	\ldots	0	1	1	0	\ldots	1	1
1	0	\ldots	1	0	1	0	\ldots	1	1
\vdots									
1	1	\ldots	1	0	0	0	\ldots	0	1

Producing a contradiction

u				the rest of $P(u)$					
0	1	\ldots	0	1	0	1	\ldots	0	1
0	0	\ldots	1	1	0	0	\ldots	0	1
1	0	\ldots	0	1	1	0	\ldots	1	1
1	0	\ldots	1	0	1	0	\ldots	1	1
\vdots									
1	1	\ldots	1	0	0	0	\ldots	0	1

- We would like to produce a contradiction using that the number of rows t is too small.

Producing a contradiction

u				the rest of $P(u)$					
0	1	\ldots	0	1	0	1	\ldots	0	1
0	0	\ldots	1	1	0	0	\ldots	0	1
1	0	\ldots	0	1	1	0	\ldots	1	1
1	0	\ldots	1	0	1	0	\ldots	1	1
\vdots									
1	1	\ldots	1	0	0	0	\ldots	0	1

- We would like to produce a contradiction using that the number of rows t is too small.
- We will try to construct a "new" accepting computation using the old ones. Since this table contains all accepting computations, this would be a contradiction.

Fusing the computations

- How to produce the new computation?

Fusing the computations

- How to produce the new computation?
- Let $F:\{0,1\}^{|U|} \rightarrow\{0,1\}$, "a functional" from some set Ω of functionals (will be specified later, e.g. $\Omega=\{$ all functionals $\}$ works).

Fusing the computations

- How to produce the new computation?
- Let $F:\{0,1\}^{|U|} \rightarrow\{0,1\}$, "a functional" from some set Ω of functionals (will be specified later, e.g. $\Omega=\{$ all functionals $\}$ works).
- F will act as our finite analogue of an ultrafilter.

Applying the functional

0	1	\ldots	0	1	0	1	\ldots	0	1
0	0	\ldots	1	1	0	0	\ldots	0	1
1	0	\ldots	0	1	1	0	\ldots	1	1
1	0	\ldots	1	0	1	0	\ldots	1	1
\vdots									
1	1	\ldots	1	0	0	0	\ldots	0	1

\downarrow_{F}					
0					

Applying the functional

0	1		0	1		0	1	..	0		
0	0	...	1	1		0	0	...	0		
1	0	...	0	1		1	0	...	1	1	
1	0	\cdots	1	0		1	0	...	1	1	
\vdots	\vdots	\vdots	.			\vdots	\vdots	\vdots			
1	1	...	1			0	0	...	0	1	
	\downarrow_{F}										
0	1										

Applying the functional

Applying the functional

0 1 \ldots 0 1 0 1 \ldots 0 1 0 0 \ldots 1 1 0 0 \ldots 0 1 1 0 \ldots 0 1 1 0 \ldots 1 1 1 0 \ldots 1 0 1 0 \ldots 1 1 \vdots 1 1 \ldots 1 0 0 0 \ldots 0 1 \downarrow^{\prime} 0 1 \ldots 1 1 1 0 \ldots 1 1

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.
- There are three requirements on the functional F for this to work:

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.
- There are three requirements on the functional F for this to work:
(1) F "encodes" some $z \notin U$, that is, $F\left(g_{i}\right)=z_{i}$ for $i \in\{1, \ldots, n\}$ (the " u " part of the new row is z)

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.
- There are three requirements on the functional F for this to work:
(1) F "encodes" some $z \notin U$, that is, $F\left(g_{i}\right)=z_{i}$ for $i \in\{1, \ldots, n\}$ (the " u " part of the new row is z)
(2) The resulting computation is accepting, that is $F(\overline{1})=1$

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.
- There are three requirements on the functional F for this to work:
(1) F "encodes" some $z \notin U$, that is, $F\left(g_{i}\right)=z_{i}$ for $i \in\{1, \ldots, n\}$ (the " u " part of the new row is z)
(2) The resulting computation is accepting, that is $F(\overline{1})=1$
(3) F is consistent, that is $F\left(g_{i_{1}}\right) \circ_{i} F\left(g_{i_{2}}\right)=F\left(g_{i_{1}} \circ_{i} g_{i_{2}}\right)$ for $n<i \leq t$

Requirements on the functional

- It is obvious there is no guarantee that the resulting tuple will be an accepting computation.
- By $F\left(g_{i}\right)$ we mean the output of F on i-th column of the accepting computation matrix.
- There are three requirements on the functional F for this to work:
(1) F "encodes" some $z \notin U$, that is, $F\left(g_{i}\right)=z_{i}$ for $i \in\{1, \ldots, n\}$ (the " u " part of the new row is z)
(2) The resulting computation is accepting, that is $F(\overline{1})=1$
(3) F is consistent, that is $F\left(g_{i_{1}}\right) \circ_{i} F\left(g_{i_{2}}\right)=F\left(g_{i_{1}} \circ_{i} g_{i_{2}}\right)$ for $n<i \leq t$
- We will search for such F by considering

$$
\Omega_{f}=\{F \in \Omega ; F \text { satisfies the first two points }\} .
$$

Requirements on the functional cont.

- We will search for such F by considering

$$
\Omega_{f}=\{F \in \Omega ; F \text { satisfies the first two points }\} .
$$

Requirements on the functional cont.

- We will search for such F by considering

$$
\Omega_{f}=\{F \in \Omega ; F \text { satisfies the first two points }\} .
$$

- How do we find functional in Ω_{f} that satisfies the third requirement, since it depends on P ?

Requirements on the functional cont.

- We will search for such F by considering

$$
\Omega_{f}=\{F \in \Omega ; F \text { satisfies the first two points }\} .
$$

- How do we find functional in Ω_{f} that satisfies the third requirement, since it depends on P ?
- We don't! We just conclude that if such short P exists, there has to be no such functional in Ω_{f}.

Covering

Definition

Let $O P$ be some set of operations. We say, that the triple (g, h, \circ), $g, h \in\{0,1\}^{n} \rightarrow\{0,1\}, \circ \in O P$ covers a functional F, if

$$
F(g) \circ F(h) \neq F(g \circ h) .
$$

For a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ we denote $\rho(f)$ the smallest number of such triples that cover Ω_{f}.

The lower bound

Theorem (Meta-theorem)
$\rho(f)$ is a lower bound on the shortest straight-line program computing f over OP.

The lower bound

Theorem (Meta-theorem)
 $\rho(f)$ is a lower bound on the shortest straight-line program computing f over OP.

Proof.

Let $P=\left(g_{1}, \ldots, g_{t}\right)$ be a program computing f and $t<\rho(f)$. Since $\left\{\left(g_{i_{1}}, g_{i_{2}}, \circ_{i}\right) ; i \in\{n+1, \ldots, t\}\right\}$ cannot cover Ω_{f}, therefore there does exists $F \in \Omega_{f}$ that is consistent with this program. F then codes a new accepting computation of some $z \notin f^{-1}[1]$, which is a contradiction.

The lower bound

Theorem (Meta-theorem)
 $\rho(f)$ is a lower bound on the shortest straight-line program computing f over OP.

Proof.

Let $P=\left(g_{1}, \ldots, g_{t}\right)$ be a program computing f and $t<\rho(f)$. Since $\left\{\left(g_{i_{1}}, g_{i_{2}}, \circ_{i}\right) ; i \in\{n+1, \ldots, t\}\right\}$ cannot cover Ω_{f}, therefore there does exists $F \in \Omega_{f}$ that is consistent with this program. F then codes a new accepting computation of some $z \notin f^{-1}[1]$, which is a contradiction.

- The lower bound is actually $n+\rho(f)$.

The lower bound

Theorem (Meta-theorem)

$\rho(f)$ is a lower bound on the shortest straight-line program computing f over OP.

Proof.

Let $P=\left(g_{1}, \ldots, g_{t}\right)$ be a program computing f and $t<\rho(f)$. Since $\left\{\left(g_{i_{1}}, g_{i_{2}}, \circ_{i}\right) ; i \in\{n+1, \ldots, t\}\right\}$ cannot cover Ω_{f}, therefore there does exists $F \in \Omega_{f}$ that is consistent with this program. F then codes a new accepting computation of some $z \notin f^{-1}[1]$, which is a contradiction.

- The lower bound is actually $n+\rho(f)$.
- We can restrict the smallest cover to those covers for which each (g, h, \circ) has g, h definable by some straight line program over OP.

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.
- \neg is not a binary operation but we can define it as $\neg\left(g_{i_{1}}, g_{i_{2}}\right)=\neg g_{i_{1}}$.

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.
- \neg is not a binary operation but we can define it as $\neg\left(g_{i_{1}}, g_{i_{2}}\right)=\neg g_{i_{1}}$.
- The accepting computation matrix for any program P is

$$
\begin{array}{l|llll}
\hline P\left(\mathbf{u}_{1}\right): & 0 & 1 & \ldots & 1 \\
P\left(\mathbf{u}_{2}\right): & 1 & 0 & \ldots & 1 \\
\hline
\end{array}
$$

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.
- \neg is not a binary operation but we can define it as $\neg\left(g_{i_{1}}, g_{i_{2}}\right)=\neg g_{i_{1}}$.
- The accepting computation matrix for any program P is

$P\left(\mathbf{u}_{1}\right):$	0	1	\ldots	1
$P\left(\mathbf{u}_{2}\right):$	1	0	\ldots	1

- For Ω unrestricted, what do we have in Ω_{f} ? We have:

$\mathrm{g}:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.
- \neg is not a binary operation but we can define it as $\neg\left(g_{i_{1}}, g_{i_{2}}\right)=\neg g_{i_{1}}$.
- The accepting computation matrix for any program P is

$P\left(\mathbf{u}_{1}\right):$	0	1	\ldots	1
$P\left(\mathbf{u}_{2}\right):$	1	0	\ldots	1

- For Ω unrestricted, what do we have in Ω_{f} ? We have:

$\mathrm{g}:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- The rows of the two middle columns have to differ from the first two rows because of requirement 1 .

Example - parity

- Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 2$, let $\mathrm{OP}=\{\wedge, \vee, \neg\}$.
- \neg is not a binary operation but we can define it as $\neg\left(g_{i_{1}}, g_{i_{2}}\right)=\neg g_{i_{1}}$.
- The accepting computation matrix for any program P is

$P\left(\mathbf{u}_{1}\right):$	0	1	\ldots	1
$P\left(\mathbf{u}_{2}\right):$	1	0	\ldots	1

- For Ω unrestricted, what do we have in Ω_{f} ? We have:

$\mathrm{g}:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- The rows of the two middle columns have to differ from the first two rows because of requirement 1 .
- The last column contains only ones because of requirement 2 .

Example - parity cont.

- We need to cover the following four functionals.

$\mathrm{g}:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

Example - parity cont.

- We need to cover the following four functionals.

$g:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- F_{1} is covered by $\left(x_{1}, x_{2}, \vee\right)$, since $F_{1}\left(x_{1}\right) \vee F_{1}\left(x_{2}\right)=0$, but $F_{1}\left(x_{1} \vee x_{2}\right)=F_{1}(\mathbf{1})=1$

Example - parity cont.

- We need to cover the following four functionals.

$g:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- F_{1} is covered by $\left(x_{1}, x_{2}, \vee\right)$, since $F_{1}\left(x_{1}\right) \vee F_{1}\left(x_{2}\right)=0$, but $F_{1}\left(x_{1} \vee x_{2}\right)=F_{1}(1)=1$
- F_{2} is covered by $\left(x_{1}, x_{2}, \wedge\right)$, since $F_{2}\left(x_{1}\right) \wedge F_{2}\left(x_{2}\right)=1$, but $F_{2}\left(x_{1} \wedge x_{2}\right)=F_{2}(\mathbf{0})=0$

Example - parity cont.

- We need to cover the following four functionals.

$g:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- F_{1} is covered by $\left(x_{1}, x_{2}, \vee\right)$, since $F_{1}\left(x_{1}\right) \vee F_{1}\left(x_{2}\right)=0$, but $F_{1}\left(x_{1} \vee x_{2}\right)=F_{1}(\mathbf{1})=1$
- F_{2} is covered by $\left(x_{1}, x_{2}, \wedge\right)$, since $F_{2}\left(x_{1}\right) \wedge F_{2}\left(x_{2}\right)=1$, but $F_{2}\left(x_{1} \wedge x_{2}\right)=F_{2}(\mathbf{0})=0$
- F_{3} is covered by $\left(x_{1},-, \neg\right)$, since $\neg F_{3}\left(x_{1}\right)=1$, but $F_{3}\left(\neg x_{1}\right)=F_{3}\left(x_{2}\right)=0$ and so is F_{4}

Example - parity cont.

- We need to cover the following four functionals.

$g:$	$\mathbf{0}$	x_{1}	x_{2}	$\mathbf{1}$
$g\left(\mathbf{u}_{1}\right)$	0	0	1	1
$g\left(\mathbf{u}_{2}\right)$	0	1	0	1
$F_{1}(g)$	0	0	0	1
$F_{2}(g)$	0	1	1	1
$F_{3}(g)$	1	0	0	1
$F_{4}(g)$	1	1	1	1

- F_{1} is covered by $\left(x_{1}, x_{2}, \vee\right)$, since $F_{1}\left(x_{1}\right) \vee F_{1}\left(x_{2}\right)=0$, but $F_{1}\left(x_{1} \vee x_{2}\right)=F_{1}(\mathbf{1})=1$
- F_{2} is covered by $\left(x_{1}, x_{2}, \wedge\right)$, since $F_{2}\left(x_{1}\right) \wedge F_{2}\left(x_{2}\right)=1$, but $F_{2}\left(x_{1} \wedge x_{2}\right)=F_{2}(\mathbf{0})=0$
- F_{3} is covered by $\left(x_{1},-, \neg\right)$, since $\neg F_{3}\left(x_{1}\right)=1$, but $F_{3}\left(\neg x_{1}\right)=F_{3}\left(x_{2}\right)=0$ and so is F_{4}
- This is the smallest possible cover using OP, therefore the lower bound is $2+3=5$.

Quality of the lower bound

- Why should we consider Ω restricted to some type of functionals?

Quality of the lower bound

- Why should we consider Ω restricted to some type of functionals?
- Full Ω is huge, $|\Omega|=2^{2|U|}$ and $|U|=\mathcal{O}\left(2^{n}\right)$. So covering only part of it can be much more managable.

Quality of the lower bound

- Why should we consider Ω restricted to some type of functionals?
- Full Ω is huge, $|\Omega|=2^{2^{|U|}}$ and $|U|=\mathcal{O}\left(2^{n}\right)$. So covering only part of it can be much more managable.
- While considering unrestricted Ω we can obtain a larger lower bound. However in some situations for some restrictions we get the following theorem:

Meta-Converse

Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Meta-Converse

Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.
(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$.

Meta-Converse

Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.
(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$.

Meta-Converse

Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.

(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$. This is not a program, and our task is to "organize" these unrelated gates into a program.

Meta-Converse

Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.

(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$. This is not a program, and our task is to "organize" these unrelated gates into a program.

Claim: $f(z)=1 \Leftrightarrow \exists F \in \Omega$ that defines z and is not covered with C.

Meta-Converse

Theorem (Meta-Converse)

There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.

(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$. This is not a program, and our task is to "organize" these unrelated gates into a program.

Claim: $f(z)=1 \Leftrightarrow \exists F \in \Omega$ that defines z and is not covered with C. proof of the claim: For " \Rightarrow " pick $F_{z}(g):=g(z)$. This is by definition compatible with every operation.

Meta-Converse

Theorem (Meta-Converse)

There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.

(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$. This is not a program, and our task is to "organize" these unrelated gates into a program.

Claim: $f(z)=1 \Leftrightarrow \exists F \in \Omega$ that defines z and is not covered with C. proof of the claim: For " \Rightarrow " pick $F_{z}(g):=g(z)$. This is by definition compatible with every operation.
" \Leftarrow " has been already proven as a part of the Main theorem. \square

Meta-Converse

Theorem (Meta-Converse)

There is a program P over OP that computes f that is not much larger than $\rho(f)$.

Proof.

(sketch) We have a cover $C=\left\{\left(g_{1}, h_{1}, \circ_{1}\right), \ldots,\left(g_{t}, h_{t}, \circ_{t}\right)\right\}$. This is not a program, and our task is to "organize" these unrelated gates into a program.

Claim: $f(z)=1 \Leftrightarrow \exists F \in \Omega$ that defines z and is not covered with C. proof of the claim: For " \Rightarrow " pick $F_{z}(g):=g(z)$. This is by definition compatible with every operation.
" \Leftarrow " has been already proven as a part of the Main theorem.
With the claim, we just need to construct a program, that tries to find such F. We don't need the whole functional, just its values on x_{i} and the cover. For many choices of OP and Ω this yields program, that has either linear or polynomial length with respect to $\rho(f)$.

The choices for Ω

- The following restrictions for Ω have been considered:

The choices for Ω

- The following restrictions for Ω have been considered:
- $\Omega=\{F ; F$ is a filter $\}$, where a filter F is a functional, that is monotone (flipping zeroes in the input can only make the output 1)

The choices for Ω

- The following restrictions for Ω have been considered:
- $\Omega=\{F ; F$ is a filter $\}$, where a filter F is a functional, that is monotone (flipping zeroes in the input can only make the output 1)
- $\Omega=\{F ; F$ is a filter $\}$, where a filter F is a functional, that is monotone (flipping zeroes in the input can only make the output 1)

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his "approximation method"

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his "approximation method"
- What about lower bounds for non-monotone circuits?

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his "approximation method"
- What about lower bounds for non-monotone circuits?
- In 1989 Razborov formalized his approximation method and proved it cannot provide superlinear lower bounds for non-monotone circuits.

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his "approximation method"
- What about lower bounds for non-monotone circuits?
- In 1989 Razborov formalized his approximation method and proved it cannot provide superlinear lower bounds for non-monotone circuits.
- However, he proposed a generalization of this method and proved that it actually characterizes circuit size. So it can be used to prove lower bounds for non-monotone circuits.

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his "approximation method"
- What about lower bounds for non-monotone circuits?
- In 1989 Razborov formalized his approximation method and proved it cannot provide superlinear lower bounds for non-monotone circuits.
- However, he proposed a generalization of this method and proved that it actually characterizes circuit size. So it can be used to prove lower bounds for non-monotone circuits.
- What we've seen so far is actually his "generalized approximation method", in this point of view, F is seen as an approximation of a gate.

The unification - Razborov's work

- In 1985 Razborov proved superpolynomial lower bounds on monotone circuit size for the clique and matching functions using his
"approximation method"
- What about lower bounds for non-monotone circuits?
- In 1989 Razborov formalized his approximation method and proved it cannot provide superlinear lower bounds for non-monotone circuits.
- However, he proposed a generalization of this method and proved that it actually characterizes circuit size. So it can be used to prove lower bounds for non-monotone circuits.
- What we've seen so far is actually his "generalized approximation method", in this point of view, F is seen as an approximation of a gate.
- 1990 Razborov proved that somewhat restricted can be associeted with non-deterministic branching programs, an proved a super-linear lower bound for the Majority function.

The unification - Sipser's work

- On the other hand, in the early 1980's Sipser proposed that we should use infinite analogue of circuits used in topology to guide our intuition.

The unification - Sipser's work

- On the other hand, in the early 1980's Sipser proposed that we should use infinite analogue of circuits used in topology to guide our intuition.
- We've seen his new proof of separation co-analytic sets from analytic sets.

The unification - Sipser's work

- On the other hand, in the early 1980's Sipser proposed that we should use infinite analogue of circuits used in topology to guide our intuition.
- We've seen his new proof of separation co-analytic sets from analytic sets.
- T the set of well founded trees is easily co-analytic, but Sipser proved that is it not analytic, by taking a sequence $t_{1}, t_{2}, \cdots \in T$ that converges to $t_{\infty} \notin T$. Which would any analytic circuit would have to accept as well.

The unification - Sipser's work

- On the other hand, in the early 1980's Sipser proposed that we should use infinite analogue of circuits used in topology to guide our intuition.
- We've seen his new proof of separation co-analytic sets from analytic sets.
- T the set of well founded trees is easily co-analytic, but Sipser proved that is it not analytic, by taking a sequence $t_{1}, t_{2}, \cdots \in T$ that converges to $t_{\infty} \notin T$. Which would any analytic circuit would have to accept as well.
- In his 1984 paper Sipser asks for a finite analogue of a limit that will allow us to carry out such arguments in the finite world.

The unification - Sipser's work

- On the other hand, in the early 1980's Sipser proposed that we should use infinite analogue of circuits used in topology to guide our intuition.
- We've seen his new proof of separation co-analytic sets from analytic sets.
- T the set of well founded trees is easily co-analytic, but Sipser proved that is it not analytic, by taking a sequence $t_{1}, t_{2}, \cdots \in T$ that converges to $t_{\infty} \notin T$. Which would any analytic circuit would have to accept as well.
- In his 1984 paper Sipser asks for a finite analogue of a limit that will allow us to carry out such arguments in the finite world.
- This should remind us of Ω a finite notion of a limit, and F a notion of a converging sequence.

The unification - Karchmer's work

- Karchmeri, in his 1993 paper, was the first one to describe the fusion method in a way that was presented earlier. He observed, that it generalizes the previous efforts.

The unification - Karchmer's work

- Karchmeri, in his 1993 paper, was the first one to describe the fusion method in a way that was presented earlier. He observed, that it generalizes the previous efforts.
- He noted, that this method can be viewed as a finitary version of an ultraproduct. This idea was pushed even further by Ben-David, Karchmer and Kushilevitz who have showed that standard ultra-filter arguments can simplify Sipser's proof.

The unification - Karchmer's work cont. 1

- In his 1993 he has also proved three characterization results.

The unification - Karchmer's work cont. 1

- In his 1993 he has also proved three characterization results.
- First note that here we are considering inputs as both positive and negative literals.

The unification - Karchmer's work cont. 1

- In his 1993 he has also proved three characterization results.
- First note that here we are considering inputs as both positive and negative literals.
- Choosing $\Omega:=\{F ; F$ is a filter (a monotone functional) $\}$ results in the following characterization of P :

The unification - Karchmer's work cont. 1

- In his 1993 he has also proved three characterization results.
- First note that here we are considering inputs as both positive and negative literals.
- Choosing $\Omega:=\{F ; F$ is a filter (a monotone functional) $\}$ results in the following characterization of P :

Theorem (Characterization of \mathbf{P})
$f \in \boldsymbol{P}$ if and only if $\rho\left(\Omega_{f}\right) \leq p(n)$ for some polynomial p.

The unification - Karchmer's work cont. 2

- Now consider: $\Omega^{\prime}:=\{F ; F$ a self dual filter $\}$, that is a set of filters, that contain each string or its negation.

The unification - Karchmer's work cont. 2

- Now consider: $\Omega^{\prime}:=\{F ; F$ a self dual filter $\}$, that is a set of filters, that contain each string or its negation.
- Note that Ω^{\prime} contains more than just ultrafilters.

The unification - Karchmer's work cont. 2

- Now consider: $\Omega^{\prime}:=\{F ; F$ a self dual filter $\}$, that is a set of filters, that contain each string or its negation.
- Note that Ω^{\prime} contains more than just ultrafilters.
- We have the following result:

The unification - Karchmer's work cont. 2

- Now consider: $\Omega^{\prime}:=\{F ; F$ a self dual filter $\}$, that is a set of filters, that contain each string or its negation.
- Note that Ω^{\prime} contains more than just ultrafilters.
- We have the following result:

Theorem (Characterization of NP)

$f \in \mathbf{N P}$ if and only if $\rho\left(\Omega_{f}^{\prime}\right) \leq p(n)$ for some polynomial p.

The unification - Karchmer's work cont. 3

- Again choosing $\Omega:=\{F ; F$ is a filter (a monotone functional) $\}$, but restricting inputs to positive literals, results in the following characterization:

The unification - Karchmer's work cont. 3

- Again choosing $\Omega:=\{F ; F$ is a filter (a monotone functional) $\}$, but restricting inputs to positive literals, results in the following characterization:

```
Theorem (Characterization of mP)
f\inmP if and only if }\mp@subsup{\rho}{+}{}(\mp@subsup{\Omega}{f}{})\leqp(n)\mathrm{ for some polynomial p.
```


The unification - Karchmer's work cont. 3

- Again choosing $\Omega:=\{F ; F$ is a filter (a monotone functional) $\}$, but restricting inputs to positive literals, results in the following characterization:

```
Theorem (Characterization of mP)
f\inm\boldsymbol{P}\mathrm{ if and only if }\mp@subsup{\rho}{+}{}(\mp@subsup{\Omega}{f}{\prime})\leqp(n) for some polynomial p.
```

- Karchmer used this to give a new proof of Razborov's super-polynomial lower bound for the monotone clique.

Algebraic variants

- $\left(\{0,1\}^{n}, \wedge, \vee,(\neg)\right)$ are precisely finite Boolean algebras, and a filter is a natural notion for these structures, that can give some intuition on the choice $\Omega=\{$ filters $\}$

Algebraic variants

- $\left(\{0,1\}^{n}, \wedge, \vee,(\neg)\right)$ are precisely finite Boolean algebras, and a filter is a natural notion for these structures, that can give some intuition on the choice $\Omega=\{$ filters $\}$
- $\left(\{0,1\}^{n}, \wedge, \oplus\right)$ are precisely finite arithmetical vector spaces over GF(2), what is a "natural" choice for Ω here?

Algebraic variants

- $\left(\{0,1\}^{n}, \wedge, \vee,(\neg)\right)$ are precisely finite Boolean algebras, and a filter is a natural notion for these structures, that can give some intuition on the choice $\Omega=\{$ filters $\}$
- $\left(\{0,1\}^{n}, \wedge, \oplus\right)$ are precisely finite arithmetical vector spaces over GF(2), what is a "natural" choice for Ω here?

Algebraic variants

- $\left(\{0,1\}^{n}, \wedge, \vee,(\neg)\right)$ are precisely finite Boolean algebras, and a filter is a natural notion for these structures, that can give some intuition on the choice $\Omega=\{$ filters $\}$
- $\left(\{0,1\}^{n}, \wedge, \oplus\right)$ are precisely finite arithmetical vector spaces over GF(2), what is a "natural" choice for Ω here? $\Omega=\{$ affine $\}$, this also results in a characterization.

Algebraic variants

- $\left(\{0,1\}^{n}, \wedge, \vee,(\neg)\right)$ are precisely finite Boolean algebras, and a filter is a natural notion for these structures, that can give some intuition on the choice $\Omega=\{$ filters $\}$
- $\left(\{0,1\}^{n}, \wedge, \oplus\right)$ are precisely finite arithmetical vector spaces over GF(2), what is a "natural" choice for Ω here? $\Omega=\{$ affine $\}$, this also results in a characterization.
- Notice, that the whole fusion method does not depend on that the values of our functions are just $\{0,1\}$, if instead we consider functions over some ring R, this whole method works for proving lower bound on their algebraic circuit complexity.

Table of results

Inputs	Gates	Type	Mode	Ω	\mathcal{C}_{Δ}	Upper bound
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Det.	Filters	\mathbf{P}	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	BP	Det.	Filters	$\mathbf{N L}$	$C \cdot \rho_{\Gamma}(f)$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Nondet.	SDF	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$
X	$\{\vee, \wedge\}$	Circuit	Det.	Filters	$m \mathbf{P}$	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\oplus, \wedge\}$	Circuit	Nondet.	Affine	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$

Table of results

Inputs	Gates	Type	Mode	Ω	\mathcal{C}_{Δ}	Upper bound
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Det.	Filters	\mathbf{P}	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	BP	Det.	Filters	$\mathbf{N L}$	$C \cdot \rho_{\Gamma}(f)$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Nondet.	SDF	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$
X	$\{\vee, \wedge\}$	Circuit	Det.	Filters	$m \mathbf{P}$	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\oplus, \wedge\}$	Circuit	Nondet.	Affine	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$

- A few parameters here are missing, such as restriction on the g, h in the cover triplets.

Table of results

Inputs	Gates	Type	Mode	Ω	\mathcal{C}_{Δ}	Upper bound
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Det.	Filters	\mathbf{P}	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	BP	Det.	Filters	$\mathbf{N L}$	$C \cdot \rho_{\Gamma}(f)$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Nondet.	SDF	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$
X	$\{\vee, \wedge\}$	Circuit	Det.	Filters	$m \mathbf{P}$	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\oplus, \wedge\}$	Circuit	Nondet.	Affine	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$

- A few parameters here are missing, such as restriction on the g, h in the cover triplets.
- $C=4$ works for all of the upper bounds on the length of the shortest program.

Table of results

Inputs	Gates	Type	Mode	Ω	\mathcal{C}_{Δ}	Upper bound
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Det.	Filters	\mathbf{P}	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	BP	Det.	Filters	$\mathbf{N L}$	$C \cdot \rho_{\Gamma}(f)$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Nondet.	SDF	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$
X	$\{\vee, \wedge\}$	Circuit	Det.	Filters	$m \mathbf{P}$	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\oplus, \wedge\}$	Circuit	Nondet.	Affine	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$

- A few parameters here are missing, such as restriction on the g, h in the cover triplets.
- $C=4$ works for all of the upper bounds on the length of the shortest program.
- For NP there exists a "super-linear" lower bound:
$\rho_{\Gamma}(f)=\Omega\left(\log \log \log { }^{*} n\right)$

Table of results

Inputs	Gates	Type	Mode	Ω	\mathcal{C}_{Δ}	Upper bound
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Det.	Filters	\mathbf{P}	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	BP	Det.	Filters	$\mathbf{N L}$	$C \cdot \rho_{\Gamma}(f)$
$X \cup \bar{X}$	$\{\vee, \wedge\}$	Circuit	Nondet.	SDF	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$
X	$\{\vee, \wedge\}$	Circuit	Det.	Filters	$m \mathbf{P}$	$\left(\rho_{\Gamma}(f)\right)^{C}$
$X \cup \bar{X}$	$\{\oplus, \wedge\}$	Circuit	Nondet.	Affine	$\mathbf{N P}$	$C \cdot \rho_{\Gamma}(f)$

- A few parameters here are missing, such as restriction on the g, h in the cover triplets.
- $C=4$ works for all of the upper bounds on the length of the shortest program.
- For NP there exists a "super-linear" lower bound:
$\rho_{\Gamma}(f)=\Omega\left(\log \log \log ^{*} n\right)$
- For $m \mathbf{P}$ there exists a super-polynomial lower bound:
$\rho_{\Gamma}(f)=\exp \left(\Omega\left(n^{1 / 8}\right)\right)$

