Free-cut elimination

Jiří Rýdl

December 16, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Intro

- we will prove that the cut-elimination theorem applies in a special form to the case when we use extra non-logical axioms from some set &
- $\bullet \ \mathfrak{G}$ is assumed to be closed under substitution
- in general, cuts on formulas that have direct ancestors in some non-logical initial sequent cannot be removed, but other cuts can

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Free cuts

Definition

- a formula in an *LK*_𝔅-proof is *anchored* if it is a direct descendant of some formula in an initial 𝔅-sequent
- a cut inference on φ is anchored if φ is atomic and both its occurrences in the premises are anchored, or φ is not atomic and at least one of its occurrences in the premises is anchored

- a cut inference is *free* if it is not anchored
- P is free-cut free if it contains no free cuts

The procedure

- we use induction on the maximum depth of free cuts in an *LK*[®]-proof *P* - we have to ensure that anchored cuts do not change into free cuts during the procedure
- hence we have to assume that no cut-formula in P is only weakly introduced, i.e. at least one direct ancestor of every cut-formula is in an initial sequent or it is a principal formula of a strong inference

• if A is only weakly introduced in the right premise of the following cut inference

$$\frac{\Gamma \to \Delta, A \qquad A, \Gamma \to \Delta}{\Gamma \to \Delta}$$

then, to eliminate this cut, it makes sense to delete all direct ancestors of A in the right sub-proof

- but if a formula B ∈ Γ is anchored in the left premise but not anchored in right premise, the same B becomes only weakly introduced in the resulting proof
- specifically, it becomes unanchored, and if it is later used as a cut-formula, the respective cut inference now becomes free

Theorem (Free-cut elimination)

Let & be a set of sequents closed under substitution.

- If $LK_{\mathfrak{G}} \vdash \Gamma \rightarrow \Delta$, then there is a free-cut free $LK_{\mathfrak{G}}$ -proof of $\Gamma \rightarrow \Delta$
- 2 Let P be an LK_☉-proof such that no cut-formula is only weakly introduced in P. Assume further that every free cut in P has depth less than or equal to d. Then there is a free-cut free proof P* of the same endsequent such that

$$\|P^*\| \le 2_{2d+2}^{\|P\|}$$

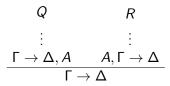
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

Let P be an $LK_{\mathfrak{G}}$ -proof ending with a free cut of the highest depth d among other free cuts in P. Then there is an $LK_{\mathfrak{G}}$ -proof P^{*} of the same endsequent such that every free cut in P^{*} has depth strictly less than d and with $||P^*|| < ||P||^2$.

Furthermore, every formula occurring in the endsequent of P which was anchored by an \mathfrak{G} -sequent remains anchored in P^* , and every formula in the endsequent of P^* which is only weakly introduced was already only weakly introduced in P.

Suppose P ends with a topmost maximal-depth free cut



We distinguish cases according whether A is atomic or not, and if not, what is its outermost connective, \land, \lor or \supset . For the other connectives, \neg, \exists or \forall the standard argument works.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- assume w.l.o.g. that A is not anchored in R
- since A is not only weakly introduced, it has a direct ancestor in a logical initial sequent $A \rightarrow A$
- replace every sequent $\Pi \to \Lambda$ in R by $\Pi^-, \Gamma \to \Delta, \Lambda$, where Π^- is Π minus all direct ancestors of A
- all inferences remain valid, but the leaves may no longer be initial sequents: those initial sequents containing a direct ancestor of A now become Γ → Δ, A
- \bullet since this sequent is provable by Q, replace all its occurrences by the sub-proof Q

Proof - A is $B \vee C$

- if the sequent Γ → Δ, B ∨ C is derivable by Q, the sequent Γ → Δ, B, C is also derivable by a non-greater proof Q* (same argument as in the standard cut elimination)
- form R' from R by replacing every sequent $\Pi \to \Lambda$ in R with $\Pi^-, \Gamma \to \Delta, \Lambda$ by deleting all direct ancestors of A and adding Γ and Δ to the respective cedents
- *R'* is an invalid proof, every L∨ inference from *R* with *B* ∨ *C* principal becomes

$$\frac{B, \Pi^{-}, \Gamma \to \Delta, \Lambda}{\Pi^{-}, \Gamma \to \Delta, \Lambda} \frac{C, \Pi^{-}, \Gamma \to \Delta, \Lambda}{$$

Proof - A is $B \lor C$ (cont.)

but we can combine the valid sub-proofs of the premises of R' with Q*[Π⁻, Λ] to obtain a valid proof of the sequent Π⁻, Γ → Δ, Λ by the following transformation

- we thus fix R' and obtain a valid proof R* of Γ, Γ → Δ, Δ, so the result follows by a series of contraction applications
- this transformation is done at every L∨ inference from R with C ∨ D principal, and so we get

$$\|P^*\| \le \|R\| imes (\|Q\| + 1) < \|P\|^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof - A is $B \rightarrow C$

- use a proof Q* of B, Γ → Δ, C with ||Q*|| ≤ ||Q|| and form R' from R by adding Γ, Δ to the respective cedents of all sequents in R and deleting all direct ancestors of A
- replace every incorrect $L \rightarrow$ inference I in R of the form

$$\frac{\Pi^{-},\Gamma\to\Delta,\Lambda,B\quad C,\Pi^{-},\Gamma\to\Delta,\Lambda}{\Pi^{-},\Gamma\to\Delta,\Lambda}$$

by the combination of $Q^*[\Pi^-, \Lambda]$ and the valid sub-proofs of *I*:

$$\frac{\overline{\Pi^{-},\Gamma \to \Delta,\Lambda,B} \quad B,\overline{\Pi^{-},\Gamma \to \Delta,\Lambda,C}}{\overline{\Pi^{-},\Gamma \to \Delta,\Lambda,C}} \quad C,\overline{\Pi^{-},\Gamma \to \Delta,\Lambda}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What was different from the proof for *LK*?

- the overall structure of the algorithm is the same, double induction on the (depth, height) of the *free* cuts in *P*
- but now we do not discard entire sub-proofs when we 'fix' invalid binary inferences during the procedure
- this way anchored formulas in the endsequents remain anchored during the transformations and the same holds for those formulas that were not only weakly introduced

e.g.

In the proof for LK in the \lor -case Buss forms two intermediate trees R_1 and R_2 from R whose fixing requires the deletion of entire sub-proofs, while in the proof for $LK_{\mathfrak{G}}$ he forms an intermediate tree R' which is then locally 'repaired' from the top to the bottom in such a way that no sub-proofs are deleted.

Induction

- we want to formalize induction in the sequent calculus so that we can apply the free-cut elimination theorem to theories where induction is restricted to certain classes of formulas
- we use induction rules instead of induction axioms:

$$rac{A(b), \Gamma
ightarrow \Delta, A(b+1)}{A(0), \Gamma
ightarrow \Delta, A(t)}$$

The variable b works as an eigenvariable, t is an arbitrary term.

- Robinson's arithmetic Q (basic properties of the successor function, addition and multiplication) together with induction for Σ_n formulas form a theory called $I\Sigma_n$
- in the sequent calculus, Q is formalized as additional initial sequents and for $I\Sigma_n$ the induction rule above is restricted to Σ_n formulas
- another important theories (to which we will probably get next semester) are fragments of bounded arithmetic T_2^n and S_2^n

Extending some definitions

Notation

If Φ is a set of formulas, $\mathcal{T}+\Phi\text{-IND}$ denotes a theory \mathcal{T} together with the above induction rules restricted to Φ

Definition

- for a sequent calculus proof P in an arithmetic theory

 Φ + Φ-IND take the *principal formulas* of an induction inference to be A(0) and A(t)
- an occurrence of a formula in *P* is *anchored* if it is a direct descendent of a formula in an initial sequent from \mathfrak{G} or a direct descendent of a principal formula of an induction inference.
- the notions of an anchored and a free cut are defined as above

Theorem (Free-cut elimination for theories with induction)

If T is some theory of arithmetic $\mathfrak{G} + \Phi$ -IND with \mathfrak{G} and Φ closed under term substitution and if $\Gamma \to \Delta$ follows from T, then there is a free-cut free T-proof of $\Gamma \to \Delta$. Moreover, the previous upper bounds also apply here.

Corollary

If T and \mathfrak{G} are as before, Φ is closed under term substitution and under subformulas, \mathfrak{G} -sequents only contain formulas from Φ , $\Gamma \to \Delta$ is a logical consequence of T and every formula in $\Gamma \to \Delta$ is in Φ , then there is a T-proof P of $\Gamma \to \Delta$ such that every formula in P is in Φ .