Overview of bootstrapping (phase 2) and relationships among stronger fragments

Jiří Rýdl

March 17, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

A theorem on $\boldsymbol{\Sigma}_1\text{-defined}$ functions

Bootstrapping $I\Delta_0$, phase 2 (coding sequences) - brief overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relationships amongst the axioms of PA

Review

$$A(0) \land (\forall x)(A(x) \to A(x+1)) \to (\forall x)A(x)$$
 (IND)

$$(\exists x)A(x) \to (\exists x)(A(x) \land \neg(\exists y)(y < x) \land A(y))$$
 (LNP)

$$(\forall x \leq t)(\exists y)A(x,y) \rightarrow (\exists z)(\forall x \leq t)(\exists y \leq z)A(x,y)$$
 (REPL)

Definition

 $B\Sigma_n$ is the theory $I\Delta_0$ plus all Σ_n -REPL axioms, i.e. all instances of REPL for $A \in \Sigma_n$, and similarly for $B\Pi_n$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Review

Definition

A predicate $R(\vec{x})$ is Δ_0 -defined if there is a formula $\varphi(\vec{x}) \in \Delta_0$ and a defining axiom $R(\vec{x}) \leftrightarrow \varphi(\vec{x})$.

A function symbol $f(\vec{x})$ is Σ_1 -defined by a theory of arithmetic T if $y = f(\vec{x}) \leftrightarrow \varphi(\vec{x}, y)$ for a Σ_1 formula φ is its defining axiom and

 $T \vdash (\forall \vec{x}) (\exists ! y) \varphi(\vec{x}, y)$

Theorem

 $f(\vec{x})$ is Σ_1 -defined by $I\Delta_0 \Leftrightarrow$ its defining formula $\varphi(\vec{x})$ is Δ_0 and there is a bounding term $t(\vec{x})$ such that

$$/\Delta_0 \vdash (\forall \vec{x})(\exists ! y \leq t) \varphi(\vec{x}, y)$$

A theorem on Σ_1 -definable functions

Theorem

If T^+ is a theory extending some bounded theory $T \supseteq Q$ by adding Δ_0 -defined predicates and Σ_1 -defined function symbols and their defining equations, then T^+ is conservative over T. Also, if A is a formula possibly containing some of the new function or predicate symbols, then there is A^- in the language of T such that

$$T^+ \vdash A \leftrightarrow A^-$$

This also holds for $T \supseteq B\Sigma_1$ and Δ_1 -defined predicates with the addition that if A is Σ_n (Π_n), then A^- is also Σ_n (Π_n), respectively.

Proof - first part

We show that the new function and predicate symbols can be eliminated from A without increase in the (unbounded) quantifier complexity in such a way that the T^+ -equivalence is preserved.

- Δ₀-defined predicates can be replaced by their defining formulas
- eliminate new function symbols from bounded quantifiers by replacing each $(\forall x \leq t)(...)$ by $(\forall x \leq t^*)(x \leq t \rightarrow ...)$, where t^* is obtained from t by replacing every new function symbol with its bounding term
- and do the same operation with the bounded existential quantifiers that contain some of the new function symbols

Proof - first part

if f is a new function symbol, replace every atomic formula
 P(f(y)) by one of the following two formulas:

 $(\exists z \leq t(y))(A_f(y,z) \wedge P(z))$

$$(\forall z \leq t(y))(A_f(y,z) \rightarrow P(z))$$

where A_f is a formula which defines f and t is a bounding term of f

because T ⊢ (∀x)(∃!y)A_f(x, y), the formulas above are equivalent to P(f(y)) in T⁺

Proof - notes on the second part

There are some modifications:

- ► as the theories are stronger than $I\Delta_0$, there is no bounding term t, so the two formulas replacing an atomic formula use an unbounded quantification, and are thus in Σ_n or Π_n
- but since A is in Σ_n or Π_n, there is always a choice that does not increase the number of alternating unbounded quantifiers
- the second thing is that we need Σ₁-replacement axioms for the elimination of the new function symbols from terms in bounded quantification

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary of the previous theorem

Theorem

Let T be $I\Delta_0$, $I\Sigma_n$ or $B\Sigma_n$, then in the conservative extension T^+ we may use the new function and relation symbols freely in induction, minimization and replacement axioms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The aim of bootstrapping, phase 2

- ▶ we want to formalize sequences inside I∆₀, i.e. we want code sequences of numbers as numerals and have formulas expressing concepts such as "the *i*-th entry of the sequence coded by x is y" (Gödel's beta function)
- ► also we need to be able to prove in I∆₀ that the respective notions have properties which we would expect
- the central difficulty is that one has to carefully choose how the relevant concepts are defined, because not every arithmetization strategy which works for PA (or IΣ₁) also works for IΔ₀

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples

(i) the division function x/y = z is defined by the formula

$$\varphi(x, y, z) \Leftrightarrow (y \cdot z \leq x \land x < y(z+1)) \lor (y = 0 \land z = 0)$$

Both the existence and the uniqueness of such z can be proved in IΔ₀, the first by induction on (∃z ≤ x)φ(x, y, z), the second using restricted subtraction and distribution.
(ii) the *remainder* is defined by (x mod y = x - y · (x/y))
(iii) the *division relation* x|y is defined by (x mod y = 0)
(iv) the set of *primes* is defined by the formula

$$x > 1 \land (\forall y \leq x)(y | x \rightarrow y = x \lor y = 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The LenBit function

The function LenBit(i, x) equals the *i*-th bit in the binary expansion of x and is defined by the formula $\lfloor x/i \rfloor \mod 2$. We will use it only when $LenBit(2^i, x)$.

Example

Take x = 5 = (1, 0, 1), then

. . .

$$LenBit(2^{0},5) = \lfloor 5/1 \rfloor \mod 2 = 1$$

$$LenBit(2^{1},5) = \lfloor 5/2 \rfloor \mod 2 = 0$$

$$LenBit(2^{2},5) = \lfloor 5/4 \rfloor \mod 2 = 1$$

$$LenBit(2^{3},5) = \lfloor 5/8 \rfloor \mod 2 = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $I\Delta_0$ can prove that the binary representation of a number uniquely defines that number:

Theorem

 $I\Delta_0$ proves that $(\forall x)(\forall y < x)(\exists 2^i)(LenBit(2^i, x) > LenBit(2^i, y))$ (if we have 2 distinct numbers then there is a bit in their binary representation on which they differ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The bootstrapping - overview

- the most important and nontrivial prerequisite of coding sequences is to define the relation x = 2^y
- ► this can be done by a Δ₀ formula φ(x, y) and it can be shown in /Δ₀ that this formula behaves as if it defined the graph of the exponentiation function with the exception that /Δ₀ does not prove (∀x)(∃y)φ(x, y)
- the next step is to Σ₁-define Gödel numbers of sequences and the function β(i, x) that extracts the number in the *i*-th entry of the sequence coded by x - this is also rather delicate

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relationships amongst the axioms of PA

Theorem

1. $B\Pi_n \vdash B\Sigma_{n+1}$

2.
$$I\Sigma_{n+1} \vdash B\Sigma_{n+1}$$

3. If $A(x, \vec{y}) \in \Sigma_n$ and t is a term, then $B\Sigma_n$ can prove that $(\forall x \leq t)A(x, \vec{y})$ is equivalent to a Σ_n formula

To prove this theorem we use concepts that were earlier shown to be Σ_1 -definable in $I\Delta_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof - case 1

suppose A(x, y) is in Σ_{n+1}, we want to show that the following formula is derivable in BΠ_n:

 $(\forall x \leq u)(\exists y)A(x,y) \rightarrow (\exists v)(\forall x \leq u)(\exists y \leq v)A(x,y)$

- A(x, y) has the form $(\exists \vec{z})B(x, y, \vec{z})$ for some $B \in \Pi_n$.
- replace the part [...(∃y)(∃z)B...] by [...(∃w)B...], where w is intended to range over the codes of the Gödel numbers of sequences of possible values for y and z by setting

$$\beta(1, w) = y$$
 and $\beta(i + 1, w) = z_i$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since y = β(1, w) < w, take w to witness the bound for y in the consequent of the above axiom</p>

Proof - case 3 (this is needed for case 2)

- by induction on n, if n = 0, then the new formula is bounded in IΔ₀ ⊆ BΣ₀
- Since we can code a sequence of possible values by a single number, let A is of the form (∃y)B for some B ∈ Π_{n-1}, then

$$\begin{aligned} (\forall x \le t)(\exists y)B \Leftrightarrow (\exists u)(\forall x \le t)(\exists y \le u)B & (\mathsf{REPL}) \\ \Leftrightarrow (\exists u)(\forall x \le t)C & (\mathsf{IH}) \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where C is Π_{n-1} , so $(\forall x \leq t)A$ is equivalent to a Σ_n formula

Proof - case 2

Suppose $A(x, y) \in \Sigma_{n+1}$, we want to show that $I\Sigma_{n+1}$ proves the REPL instance for A, by case 1 we may assume that $A \in \Pi_n$.

assume

$$(\forall x \le u)(\exists y)A(x,y)$$
 (1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• denote by $\varphi(a)$ the formula

$$(\exists v)(\forall x \leq a)(\exists y \leq v)A(x, y)$$
 (2)

- note that φ(x) is equivalent to a Σ_{n+1} formula (case 3)
 by (1) we have φ(0) and φ(a) → φ(a + 1) for a < u
- so by Σ_{n+1} -induction it holds that $\varphi(u)$

Some other relationships

(i) IΣ_n ⊢ IΠ_n let A(x) ∈ Π_n, assume A(0) and (∀x)(A(x) → A(x + 1)) let a be arbitrary, let B(x) be the formula ¬A(a - x) then ¬B(a) and B(x) → B(x + 1), so by induction ¬B(0) hence A(a), and therefore also (∀x)A(x) (ii) IΠ_n ⊢ IΣ_n is similar

Some other relationships

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Some arrows

$$I\Sigma_{n+1} \downarrow B\Sigma_{n+1} \Leftrightarrow B\Pi_n \downarrow I\Sigma_n \Leftrightarrow \Pi_n \Leftrightarrow L\Sigma_n \Leftrightarrow L\Pi_n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●