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Review

A(0) ∧ (∀x)(A(x) → A(x + 1)) → (∀x)A(x) (IND)

(∃x)A(x) → (∃x)(A(x) ∧ ¬(∃y)(y < x) ∧ A(y)) (LNP)

(∀x ≤ t)(∃y)A(x , y) → (∃z)(∀x ≤ t)(∃y ≤ z)A(x , y) (REPL)

Definition
BΣn is the theory I∆0 plus all Σn-REPL axioms, i.e. all instances
of REPL for A ∈ Σn, and similarly for BΠn



Review

Definition
A predicate R(x⃗) is ∆0-defined if there is a formula φ(x⃗) ∈ ∆0

and a defining axiom R(x⃗) ↔ φ(x⃗).

A function symbol f (x⃗) is Σ1-defined by a theory of arithmetic T
if y = f (x⃗) ↔ φ(x⃗ , y) for a Σ1 formula φ is its defining axiom and

T ⊢ (∀x⃗)(∃!y)φ(x⃗ , y)

Theorem
f (x⃗) is Σ1-defined by I∆0 ⇔ its defining formula φ(x⃗) is ∆0 and
there is a bounding term t(x⃗) such that

I∆0 ⊢ (∀x⃗)(∃!y ≤ t)φ(x⃗ , y)



A theorem on Σ1-definable functions

Theorem
If T+ is a theory extending some bounded theory T ⊇ Q by
adding ∆0-defined predicates and Σ1-defined function symbols and
their defining equations, then T+ is conservative over T . Also, if
A is a formula possibly containing some of the new function or
predicate symbols, then there is A− in the language of T such that

T+ ⊢ A ↔ A−

This also holds for T ⊇ BΣ1 and ∆1-defined predicates with the
addition that if A is Σn (Πn), then A− is also Σn (Πn), respectively.



Proof - first part

We show that the new function and predicate symbols can be
eliminated from A without increase in the (unbounded) quantifier
complexity in such a way that the T+-equivalence is preserved.

▶ ∆0-defined predicates can be replaced by their defining
formulas

▶ eliminate new function symbols from bounded quantifiers by
replacing each (∀x ≤ t)(. . . ) by (∀x ≤ t∗)(x ≤ t → . . . ),
where t∗ is obtained from t by replacing every new function
symbol with its bounding term

▶ and do the same operation with the bounded existential
quantifiers that contain some of the new function symbols



Proof - first part

▶ if f is a new function symbol, replace every atomic formula
P(f (y)) by one of the following two formulas:

(∃z ≤ t(y))(Af (y , z) ∧ P(z))

(∀z ≤ t(y))(Af (y , z) → P(z))

where Af is a formula which defines f and t is a bounding
term of f

▶ because T ⊢ (∀x)(∃!y)Af (x , y), the formulas above are
equivalent to P(f (y)) in T+



Proof - notes on the second part

There are some modifications:

▶ as the theories are stronger than I∆0, there is no bounding
term t, so the two formulas replacing an atomic formula use
an unbounded quantification, and are thus in Σn or Πn

▶ but since A is in Σn or Πn, there is always a choice that does
not increase the number of alternating unbounded quantifiers

▶ the second thing is that we need Σ1-replacement axioms for
the elimination of the new function symbols from terms in
bounded quantification



Corollary of the previous theorem

Theorem
Let T be I∆0, IΣn or BΣn, then in the conservative extension T+

we may use the new function and relation symbols freely in
induction, minimization and replacement axioms.



The aim of bootstrapping, phase 2

▶ we want to formalize sequences inside I∆0, i.e. we want code
sequences of numbers as numerals and have formulas
expressing concepts such as “the i-th entry of the sequence
coded by x is y” (Gödel’s beta function)

▶ also we need to be able to prove in I∆0 that the respective
notions have properties which we would expect

▶ the central difficulty is that one has to carefully choose how
the relevant concepts are defined, because not every
arithmetization strategy which works for PA (or IΣ1) also
works for I∆0



Examples

(i) the division function x/y = z is defined by the formula

φ(x , y , z) ⇔ (y · z ≤ x ∧ x < y(z + 1)) ∨ (y = 0 ∧ z = 0)

Both the existence and the uniqueness of such z can be
proved in I∆0, the first by induction on (∃z ≤ x)φ(x , y , z),
the second using restricted subtraction and distribution.

(ii) the remainder is defined by (x mod y = x .− y · (x/y))
(iii) the division relation x |y is defined by (x mod y = 0)

(iv) the set of primes is defined by the formula

x > 1 ∧ (∀y ≤ x)(y |x → y = x ∨ y = 1)



The LenBit function

The function LenBit(i , x) equals the i-th bit in the binary
expansion of x and is defined by the formula ⌊x/i⌋ mod 2.
We will use it only when LenBit(2i , x).

Example

Take x = 5 = (1, 0, 1), then

LenBit(20, 5) = ⌊5/1⌋ mod 2 = 1

LenBit(21, 5) = ⌊5/2⌋ mod 2 = 0

LenBit(22, 5) = ⌊5/4⌋ mod 2 = 1

LenBit(23, 5) = ⌊5/8⌋ mod 2 = 0

. . .



A theorem on binary representation

I∆0 can prove that the binary representation of a number uniquely
defines that number:

Theorem
I∆0 proves that (∀x)(∀y < x)(∃2i )(LenBit(2i , x) > LenBit(2i , y))

(if we have 2 distinct numbers then there is a bit in their binary
representation on which they differ)



The bootstrapping - overview

▶ the most important and nontrivial prerequisite of coding
sequences is to define the relation x = 2y

▶ this can be done by a ∆0 formula φ(x , y) and it can be shown
in I∆0 that this formula behaves as if it defined the graph of
the exponentiation function with the exception that I∆0 does
not prove (∀x)(∃y)φ(x , y)

▶ the next step is to Σ1-define Gödel numbers of sequences and
the function β(i , x) that extracts the number in the i-th entry
of the sequence coded by x - this is also rather delicate



Relationships amongst the axioms of PA

Theorem

1. BΠn ⊢ BΣn+1

2. IΣn+1 ⊢ BΣn+1

3. If A(x , y⃗) ∈ Σn and t is a term, then BΣn can prove that
(∀x ≤ t)A(x , y⃗) is equivalent to a Σn formula

To prove this theorem we use concepts that were earlier shown to
be Σ1-definable in I∆0.



Proof - case 1

▶ suppose A(x , y) is in Σn+1, we want to show that the
following formula is derivable in BΠn:

(∀x ≤ u)(∃y)A(x , y) → (∃v)(∀x ≤ u)(∃y ≤ v)A(x , y)

▶ A(x , y) has the form (∃z⃗)B(x , y , z⃗) for some B ∈ Πn.

▶ replace the part [. . . (∃y)(∃z⃗)B . . . ] by [. . . (∃w)B . . . ],
where w is intended to range over the codes of the Gödel
numbers of sequences of possible values for y and z⃗ by setting

β(1,w) = y and β(i + 1,w) = zi

▶ since y = β(1,w) < w , take w to witness the bound for y in
the consequent of the above axiom



Proof - case 3 (this is needed for case 2)

▶ by induction on n, if n = 0, then the new formula is bounded
in I∆0 ⊆ BΣ0

▶ since we can code a sequence of possible values by a single
number, let A is of the form (∃y)B for some B ∈ Πn−1,
then

(∀x ≤ t)(∃y)B ⇔ (∃u)(∀x ≤ t)(∃y ≤ u)B (REPL)

⇔ (∃u)(∀x ≤ t)C (IH)

where C is Πn−1, so (∀x ≤ t)A is equivalent to a Σn formula



Proof - case 2

Suppose A(x , y) ∈ Σn+1, we want to show that IΣn+1 proves the
REPL instance for A, by case 1 we may assume that A ∈ Πn.

▶ assume
(∀x ≤ u)(∃y)A(x , y) (1)

▶ denote by φ(a) the formula

(∃v)(∀x ≤ a)(∃y ≤ v)A(x , y) (2)

▶ note that φ(x) is equivalent to a Σn+1 formula (case 3)

▶ by (1) we have φ(0) and φ(a) → φ(a+ 1) for a < u

▶ so by Σn+1-induction it holds that φ(u)



Some other relationships

(i) IΣn ⊢ IΠn

▶ let A(x) ∈ Πn, assume A(0) and (∀x)(A(x) → A(x + 1))
▶ let a be arbitrary, let B(x) be the formula ¬A(a .− x)
▶ then ¬B(a) and B(x) → B(x + 1), so by induction ¬B(0)
▶ hence A(a), and therefore also (∀x)A(x)

(ii) IΠn ⊢ IΣn is similar



Some other relationships

(iii) LΣn ⊢ IΠn

▶ take A(x) ∈ Πn such that (∃x)¬A(x)
▶ use LNP to find the smallest x ′ such that ¬A(x ′)
▶ if x ′ = 0, then ¬A(0)
▶ if x ′ > 0, then by LNP A(x ′ − 1)

(iv) LΠn ⊢ IΣn is similar

(v) . . . and IND also implies LNP



Some arrows

IΣn+1

⇓
BΣn+1 ⇔ BΠn

⇓
IΣn ⇔ Πn ⇔ LΣn ⇔ LΠn
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