Overview of bootstrapping (phase 2) and relationships among stronger fragments

Jiří Rýdl

March 17, 2022

Outline

A theorem on Σ_{1}-defined functions

Bootstrapping $I \Delta_{0}$, phase 2 (coding sequences) - brief overview

Relationships amongst the axioms of PA

Review

$$
\begin{align*}
& A(0) \wedge(\forall x)(A(x) \rightarrow A(x+1)) \rightarrow(\forall x) A(x) \tag{IND}\\
& (\exists x) A(x) \rightarrow(\exists x)(A(x) \wedge \neg(\exists y)(y<x) \wedge A(y)) \tag{LNP}\\
& (\forall x \leq t)(\exists y) A(x, y) \rightarrow(\exists z)(\forall x \leq t)(\exists y \leq z) A(x, y) \tag{REPL}
\end{align*}
$$

Definition
$B \Sigma_{n}$ is the theory $I \Delta_{0}$ plus all Σ_{n}-REPL axioms, i.e. all instances of REPL for $A \in \Sigma_{n}$, and similarly for $B \Pi_{n}$

Review

Definition

A predicate $R(\vec{x})$ is Δ_{0}-defined if there is a formula $\varphi(\vec{x}) \in \Delta_{0}$ and a defining axiom $R(\vec{x}) \leftrightarrow \varphi(\vec{x})$.

A function symbol $f(\vec{x})$ is Σ_{1}-defined by a theory of arithmetic T if $y=f(\vec{x}) \leftrightarrow \varphi(\vec{x}, y)$ for a Σ_{1} formula φ is its defining axiom and

$$
T \vdash(\forall \vec{x})(\exists!y) \varphi(\vec{x}, y)
$$

Theorem
$f(\vec{x})$ is Σ_{1}-defined by $I \Delta_{0} \Leftrightarrow$ its defining formula $\varphi(\vec{x})$ is Δ_{0} and there is a bounding term $t(\vec{x})$ such that

$$
I \Delta_{0} \vdash(\forall \vec{x})(\exists!y \leq t) \varphi(\vec{x}, y)
$$

A theorem on Σ_{1}-definable functions

Theorem
If T^{+}is a theory extending some bounded theory $T \supseteq Q$ by adding Δ_{0}-defined predicates and Σ_{1}-defined function symbols and their defining equations, then T^{+}is conservative over T. Also, if A is a formula possibly containing some of the new function or predicate symbols, then there is A^{-}in the language of T such that

$$
T^{+} \vdash A \leftrightarrow A^{-}
$$

This also holds for $T \supseteq B \Sigma_{1}$ and Δ_{1}-defined predicates with the addition that if A is $\Sigma_{n}\left(\Pi_{n}\right)$, then A^{-}is also $\Sigma_{n}\left(\Pi_{n}\right)$, respectively.

Proof - first part

We show that the new function and predicate symbols can be eliminated from A without increase in the (unbounded) quantifier complexity in such a way that the T^{+}-equivalence is preserved.

- Δ_{0}-defined predicates can be replaced by their defining formulas
- eliminate new function symbols from bounded quantifiers by replacing each $(\forall x \leq t)(\ldots)$ by $\left(\forall x \leq t^{*}\right)(x \leq t \rightarrow \ldots)$, where t^{*} is obtained from t by replacing every new function symbol with its bounding term
- and do the same operation with the bounded existential quantifiers that contain some of the new function symbols

Proof - first part

- if f is a new function symbol, replace every atomic formula $P(f(y))$ by one of the following two formulas:

$$
\begin{gathered}
(\exists z \leq t(y))\left(A_{f}(y, z) \wedge P(z)\right) \\
(\forall z \leq t(y))\left(A_{f}(y, z) \rightarrow P(z)\right)
\end{gathered}
$$

where A_{f} is a formula which defines f and t is a bounding term of f

- because $T \vdash(\forall x)(\exists!y) A_{f}(x, y)$, the formulas above are equivalent to $P(f(y))$ in T^{+}

Proof - notes on the second part

There are some modifications:

- as the theories are stronger than $I \Delta_{0}$, there is no bounding term t, so the two formulas replacing an atomic formula use an unbounded quantification, and are thus in Σ_{n} or Π_{n}
- but since A is in Σ_{n} or Π_{n}, there is always a choice that does not increase the number of alternating unbounded quantifiers
- the second thing is that we need Σ_{1}-replacement axioms for the elimination of the new function symbols from terms in bounded quantification

Corollary of the previous theorem

Theorem
Let T be $I \Delta_{0}, I \Sigma_{n}$ or $B \Sigma_{n}$, then in the conservative extension T^{+} we may use the new function and relation symbols freely in induction, minimization and replacement axioms.

The aim of bootstrapping, phase 2

- we want to formalize sequences inside $I \Delta_{0}$, i.e. we want code sequences of numbers as numerals and have formulas expressing concepts such as "the i-th entry of the sequence coded by x is $y^{\prime \prime}$ (Gödel's beta function)
- also we need to be able to prove in $I \Delta_{0}$ that the respective notions have properties which we would expect
- the central difficulty is that one has to carefully choose how the relevant concepts are defined, because not every arithmetization strategy which works for PA (or $I \Sigma_{1}$) also works for $I \Delta_{0}$

Examples

(i) the division function $x / y=z$ is defined by the formula

$$
\varphi(x, y, z) \Leftrightarrow(y \cdot z \leq x \wedge x<y(z+1)) \vee(y=0 \wedge z=0)
$$

Both the existence and the uniqueness of such z can be proved in $I \Delta_{0}$, the first by induction on $(\exists z \leq x) \varphi(x, y, z)$, the second using restricted subtraction and distribution.
(ii) the remainder is defined by $(x \bmod y=x \dot{-y \cdot}(x / y))$
(iii) the division relation $x \mid y$ is defined by $(x \bmod y=0)$
(iv) the set of primes is defined by the formula

$$
x>1 \wedge(\forall y \leq x)(y \mid x \rightarrow y=x \vee y=1)
$$

The LenBit function

The function $\operatorname{LenBit}(i, x)$ equals the i-th bit in the binary expansion of x and is defined by the formula $\lfloor x / i\rfloor \bmod 2$. We will use it only when $\operatorname{LenBit}\left(2^{i}, x\right)$.
Example
Take $x=5=(1,0,1)$, then

$$
\begin{aligned}
& \operatorname{LenBit}\left(2^{0}, 5\right)=\lfloor 5 / 1\rfloor \bmod 2=1 \\
& \operatorname{LenBit}\left(2^{1}, 5\right)=\lfloor 5 / 2\rfloor \bmod 2=0 \\
& \operatorname{LenBit}\left(2^{2}, 5\right)=\lfloor 5 / 4\rfloor \bmod 2=1 \\
& \operatorname{LenBit}\left(2^{3}, 5\right)=\lfloor 5 / 8\rfloor \bmod 2=0
\end{aligned}
$$

A theorem on binary representation

I Δ_{0} can prove that the binary representation of a number uniquely defines that number:

Theorem
$I \Delta_{0}$ proves that $(\forall x)(\forall y<x)\left(\exists 2^{i}\right)\left(\operatorname{LenBit}\left(2^{i}, x\right)>\operatorname{LenBit}\left(2^{i}, y\right)\right)$
(if we have 2 distinct numbers then there is a bit in their binary representation on which they differ)

The bootstrapping - overview

- the most important and nontrivial prerequisite of coding sequences is to define the relation $x=2^{y}$
- this can be done by a Δ_{0} formula $\varphi(x, y)$ and it can be shown in $I \Delta_{0}$ that this formula behaves as if it defined the graph of the exponentiation function with the exception that $I \Delta_{0}$ does not prove $(\forall x)(\exists y) \varphi(x, y)$
- the next step is to Σ_{1}-define Gödel numbers of sequences and the function $\beta(i, x)$ that extracts the number in the i-th entry of the sequence coded by x - this is also rather delicate

Relationships amongst the axioms of PA

Theorem

1. $B \Pi_{n} \vdash B \Sigma_{n+1}$
2. $I \Sigma_{n+1} \vdash B \Sigma_{n+1}$
3. If $A(x, \vec{y}) \in \Sigma_{n}$ and t is a term, then $B \Sigma_{n}$ can prove that $(\forall x \leq t) A(x, \vec{y})$ is equivalent to a Σ_{n} formula

To prove this theorem we use concepts that were earlier shown to be Σ_{1}-definable in $/ \Delta_{0}$.

Proof - case 1

- suppose $A(x, y)$ is in Σ_{n+1}, we want to show that the following formula is derivable in $B \Pi_{n}$:

$$
(\forall x \leq u)(\exists y) A(x, y) \rightarrow(\exists v)(\forall x \leq u)(\exists y \leq v) A(x, y)
$$

- $A(x, y)$ has the form $(\exists \vec{z}) B(x, y, \vec{z})$ for some $B \in \Pi_{n}$.
- replace the part $[\ldots(\exists y)(\exists \vec{z}) B \ldots]$ by $[\ldots(\exists w) B \ldots]$, where w is intended to range over the codes of the Gödel numbers of sequences of possible values for y and \vec{z} by setting

$$
\beta(1, w)=y \text { and } \beta(i+1, w)=z_{i}
$$

- since $y=\beta(1, w)<w$, take w to witness the bound for y in the consequent of the above axiom

Proof - case 3 (this is needed for case 2)

- by induction on n, if $n=0$, then the new formula is bounded in $I \Delta_{0} \subseteq B \Sigma_{0}$
- since we can code a sequence of possible values by a single number, let A is of the form $(\exists y) B$ for some $B \in \Pi_{n-1}$, then

$$
\begin{align*}
(\forall x \leq t)(\exists y) B & \Leftrightarrow(\exists u)(\forall x \leq t)(\exists y \leq u) B \\
& \Leftrightarrow(\exists u)(\forall x \leq t) C \tag{IH}
\end{align*}
$$

where C is Π_{n-1}, so $(\forall x \leq t) A$ is equivalent to a Σ_{n} formula

Proof - case 2

Suppose $A(x, y) \in \Sigma_{n+1}$, we want to show that $/ \Sigma_{n+1}$ proves the REPL instance for A, by case 1 we may assume that $A \in \Pi_{n}$.

- assume

$$
\begin{equation*}
(\forall x \leq u)(\exists y) A(x, y) \tag{1}
\end{equation*}
$$

- denote by $\varphi(a)$ the formula

$$
\begin{equation*}
(\exists v)(\forall x \leq a)(\exists y \leq v) A(x, y) \tag{2}
\end{equation*}
$$

- note that $\varphi(x)$ is equivalent to a Σ_{n+1} formula (case 3)
- by (1) we have $\varphi(0)$ and $\varphi(a) \rightarrow \varphi(a+1)$ for $a<u$
- so by Σ_{n+1}-induction it holds that $\varphi(u)$

Some other relationships

(i) $/ \Sigma_{n} \vdash I \Pi_{n}$

- let $A(x) \in \Pi_{n}$, assume $A(0)$ and $(\forall x)(A(x) \rightarrow A(x+1))$
- let a be arbitrary, let $B(x)$ be the formula $\neg A(a \dot{-x})$
- then $\neg B(a)$ and $B(x) \rightarrow B(x+1)$, so by induction $\neg B(0)$
- hence $A(a)$, and therefore also $(\forall x) A(x)$
(ii) $I \Pi_{n} \vdash I \Sigma_{n}$ is similar

Some other relationships

(iii) $L \Sigma_{n} \vdash I \Pi_{n}$

- take $A(x) \in \Pi_{n}$ such that $(\exists x) \neg A(x)$
- use LNP to find the smallest x^{\prime} such that $\neg A\left(x^{\prime}\right)$
- if $x^{\prime}=0$, then $\neg A(0)$
- if $x^{\prime}>0$, then by LNP $A\left(x^{\prime}-1\right)$
(iv) $L \Pi_{n} \vdash I \Sigma_{n}$ is similar
(v) \ldots and IND also implies LNP

Some arrows

$$
\begin{aligned}
& I \Sigma_{n+1} \\
& \Downarrow \\
& B \Sigma_{n+1} \Leftrightarrow B \Pi_{n} \\
& \Downarrow \\
& I \Sigma_{n} \Leftrightarrow \Pi_{n} \Leftrightarrow L \Sigma_{n} \Leftrightarrow L \Pi_{n}
\end{aligned}
$$

