Sequent calculus for bounded arithmetic and intro to witnessing theorems

Jiří Rýdl

April 28, 2022

Outline

(1) Sequent calculus for arithmetic theories
(2) Witnessing theorem for $I \Sigma_{1}$

Sequent calculus for arithmetic theories

To obtain a sequent calculus formulation of arithmetic theories, the calculus LK is extended by rules for IND, MIN, REP and rules for bounded quantifiers:

$$
\begin{aligned}
& \mathrm{L} \forall \leq \frac{A(t), \Gamma \Rightarrow \Delta}{t \leq s,(\forall x \leq s) A(x), \Gamma \Rightarrow \Delta} \\
& \mathrm{R} \forall \leq \quad \frac{b \leq s, \Gamma \Rightarrow \Delta, A(b)}{\Gamma \Rightarrow \Delta,(\forall x \leq s) A(x)}
\end{aligned}
$$

Sequent calculus for arithmetic theories

$$
\begin{array}{r}
\mathrm{L} \exists \leq \frac{b \leq s, A(b), \Gamma \Rightarrow \Delta}{(\exists x \leq s) A(x), \Gamma \Rightarrow \Delta} \\
\mathrm{R} \mathrm{\exists} \leq \quad \frac{\Gamma \Rightarrow \Delta, A(t)}{t \leq s, \Gamma \Rightarrow \Delta,(\exists x \leq s) A(x)}
\end{array}
$$

The variable b works as an eigenvariable (it does not occur in the contexts). LK plus the above four rules is called LKB and the Free-cut Elimination Theorem holds for it, principal formulas of the rules are $t \leq s$ and $(Q x \leq s) A$.

Induction rules

The reason for taking induction rules instead of induction axioms is that the Free-cut Elimination Theorem will still hold. With the contexts Γ, Δ, the rules turn out to be equivalent to the axioms.

ϕ-IND induction

$$
\begin{aligned}
& A(b), \Gamma \Rightarrow \Delta, A(b+1) \\
& \hline A(0), \Gamma \Rightarrow \Delta, A(t)
\end{aligned}
$$

$\phi-$ PIND induction

$$
\begin{aligned}
A\left(\left\lfloor\frac{1}{2} b\right\rfloor\right), \Gamma & \Rightarrow \Delta, A(b) \\
A(0), \Gamma & \Rightarrow \Delta, A(t)
\end{aligned}
$$

In both cases, b works as an eigenvariable.

Subformula property for fragments of PA

Theorem

Let Φ be a class of formulas containing atomic formulas and being closed under subformulas and term substitution. Let R be an arithmetic theory axiomatized by Φ-IND (or Φ-PIND) rules plus initial sequents containing formulas from Φ. Suppose that $\Gamma \Rightarrow \Delta$ contains only formulas from Φ and that R proves $\Gamma \Rightarrow \Delta$. Then there is an R-proof of $\Gamma \Rightarrow \Delta$ such that every formula in that proof is in Φ.

Parikh's theorem

- let a bounded theory R contain \leq in its language and let the reflexivity and transitivity of \leq be provable in R
- assume further that for all terms r, s there is a term t such that $R \vdash r \leq t$ and $R \vdash s \leq t$
- lastly assume that for all terms $t(b)$ and r (possibly with parameters) there is a term s such that $R \vdash b \leq r \rightarrow t(b) \leq s$

Theorem (Parikh)

If R is a bounded theory satisfying the above conditions, $A(\vec{x}, y)$ is a bounded formula and $R \vdash(\forall \vec{x})(\exists y) A(\vec{x}, y)$, then there is a term t such that $R \vdash(\forall \vec{x})(\exists y \leq t) A(\vec{x}, y)$.

Proof outline

- work with a free-cut free R-proof P of the formula $(\exists y) A(\vec{b}, y)$, where all b 's are new variables
- by the subformula property, all antecedents in P contain only bounded formulas, and the succedents can, beside that, only contain occurrences of the formula $(\exists y) A(\vec{b}, y)$
- prove by induction on the number of inferences in P that for every sequent $\Gamma \Rightarrow \Delta$ in P there is a term t such that R proves $\Gamma \Rightarrow \Delta_{t}$, where Δ_{t} denotes Δ without all occurrences of $(\exists y) A(\vec{b}, y)$ and with one occurrence of $(\exists y \leq t) A(\vec{b}, y)$

Inference rules for collection

The Σ_{1}-collection rules $\left(\Sigma_{1}-\right.$ REPL $)$ are the following inferences:

$$
\frac{\Gamma \Rightarrow \Delta,(\forall x \leq t)(\exists y) A(x, y)}{\Gamma \Rightarrow \Delta,(\exists z)(\forall x \leq t)(\exists y \leq z) A(x, y)}
$$

It holds that:

- the REPL rules and axioms are equivalent
- the Free-cut Elimination Theorem holds (provided every direct descendant of the principal formula of every REPL inference is taken to be anchored)
- the corollary is that Parikh's theorem also holds for theories containing Σ_{1}-REPL

Witnessing theorem for $/ \Sigma_{1}$

We want to prove the following theorem:

Theorem (Parsons (1970), Mints(1973) and Takeuti (1987))

Every Σ_{1}-definable function of $I \Sigma_{1}$ is primitive recursive.

The method Buss uses is the witnessing theorem method, and it is claimed that " $I \Sigma_{1}$ provides the simplest and most natural application of the witnessing method".

Proof outline

- suppose $I \Sigma_{1}$ proves a formula $(\forall x)(\exists y) A(x, y)$ for some $A \in \Sigma_{1}$
- then there is a sequent calculus proof of $(\exists y) A(c, y)$
- we must prove that there is a p.r. function f such that for every n : $A(n, f(n))$ holds
- a corollary of the following lemma gives something stronger, namely that there is a Σ_{1}-definable p. r. function f such that $I \Sigma_{1}$ proves $(\forall x) A(x, f(x))$

The witness predicate for Σ_{1}-formulas

If $A(\vec{b})$ is a Σ_{1}-formula of the form $\left(\exists x_{1}, \ldots, x_{k}\right) B\left(x_{1}, \ldots, x_{k}, \vec{b}\right)$ with $B \in \Delta_{0}$, define Witness $_{A}(w, \vec{b})$ to be the formula

$$
B(\beta(1, w), \ldots, \beta(k, w), \vec{b})
$$

If $\Delta=\Delta^{\prime}, A$ is a succedent, then Witness $\bigvee \Delta(w, \vec{c})$ is the formula
Witness $_{A}(\beta(1, w), \vec{c}) \vee$ Witness $_{\bigvee \Delta^{\prime}}(\beta(2, w), \vec{c})$
If $\Gamma=\Gamma^{\prime}, A$ is an antecedent, then Witness $\wedge \Gamma(w, \vec{c})$ is the formula Witness $_{A}(\beta(1, w), \vec{c}) \wedge$ Witness $_{\wedge} \wedge \Gamma^{\prime}(\beta(2, w), \vec{c})$

Intuitively, Witness $_{A}(w, \vec{b})$ is a formula stating that w is a witness for the truth of A. It is a Δ_{0}-formula and $I \Delta_{0}$ can prove

$$
A(\vec{b}) \leftrightarrow(\exists w) \text { Witness }_{A}(w, \vec{b})
$$

Witnessing lemma for $/ \Sigma_{1}$

Lemma

Suppose $I \Sigma_{1}$ proves a sequent $\Gamma \Rightarrow \Delta$ of Σ_{1}-formulas. Then there is a function h such that:
(1) h is Σ_{1}-defined by $I \Sigma_{1}$ and p. r.
(2) $I \Sigma_{1}$ proves

$$
(\forall \vec{c})(\forall w)\left[\text { Witness }_{\wedge} \wedge(w, \vec{c}) \Rightarrow \text { Witness }_{\vee} \vee(h(w, \vec{c}), \vec{c})\right]
$$

Corollary

If we let Γ be empty and Δ consist only of the formula $(\exists y) A(c, y)$ and set $f(x)=\beta(1, \beta(1, h(x)))$, the above theorem follows.

Proof of the lemma

We work with a free-cut free proof P (in $/ \Sigma_{1}$) of the sequent $\Gamma \Rightarrow \Delta$, where whose every formula we can assume to be Σ_{1}. The proof is by induction of the number of inferences in P.

First let the last inference be $R \exists$ on the formula A :

$$
\frac{\Gamma \Rightarrow \Delta, A(t)}{\Gamma \Rightarrow \Delta,(\exists x) A(x)}
$$

Proof of the lemma - case Rヨ

The induction hypothesis gives a Σ_{1}-defined p. r. function $g(w, \vec{c})$ such that $I \Sigma_{1}$ proves

$$
\text { Witness }_{\wedge} \Gamma(w, \vec{c}) \Rightarrow \text { Witness }_{\bigvee\{\Delta, A(t)\}}(g(w, \vec{c}), \vec{c})
$$

For the succedent to hold we must have that either $\beta(2, g(w, \vec{c}))$ witnesses $\bigvee \Delta$ or that $\beta(1, g(w, \vec{c}))$ witnesses $A(t)$. Define

$$
h(w, \vec{c})=\langle\langle t(\vec{c})\rangle * \beta(1, g(w, \vec{c}), \beta(2, g(w, \vec{c}))\rangle
$$

From the definition of Witness is follows that

$$
\text { Witness }_{\wedge}\left\ulcorner(w, \vec{c}) \Rightarrow \text { Witness }_{\bigvee\{\Delta,(\exists x) A(x)\}}(h(w, \vec{c}), \vec{c})\right.
$$

Proof of the lemma - case $\llcorner\exists$

Suppose the last inference is $\mathrm{L} \exists$ on $A(b)$, where b is an eigenvariable. The induction hypothesis gives a Σ_{1}-defined p . r . function $g(w, \vec{c}, b)$ such that $I \Sigma_{1}$ proves

$$
\text { Witness }_{\wedge\{A(b), \Gamma\}}(w, \vec{c}) \Rightarrow \text { Witness }_{\vee} \Delta(g(w, \vec{c}, b), \vec{c})
$$

Denote the function $\operatorname{tail}\left(\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle\right)=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ by $\operatorname{tail}(w)$ and let $h(w, \vec{c})$ be the function

$$
g(\langle\operatorname{tail}(\beta(1, w)), \beta(2, w)\rangle, \vec{c}, \beta(1, \beta(1, w)))
$$

Then h satisfies the conditions of the lemma.

Proof of the lemma - case IND

Suppose the final inference is a Σ_{1}-IND inference step:

$$
\frac{A(b), \Gamma \Rightarrow \Delta, A(b+1)}{A(0), \Gamma \Rightarrow \Delta, A(t)}
$$

The induction hypothesis gives a Σ_{1}-defined p. r. function $g(w, \vec{c}, b)$ such that $/ \Sigma_{1}$ proves

Witness $_{\wedge\{A(b), \Gamma\}}(w, \vec{c}, b) \Rightarrow$ Witness $_{\bigvee\{\Delta, A(b+1)\}}(g(w, \vec{c}, b), \vec{c}, b)$

Proof of the lemma - case IND (cont.)

Define the following auxiliary function:

$$
k(\vec{c}, v, w)= \begin{cases}v, & \text { if } \text { Witness }_{\Delta}(v, \vec{c}) \tag{1}\\ w, & \text { otherwise }\end{cases}
$$

This function is Σ_{1}-defined by $I \Sigma_{1}$, because Witness $\in \Delta_{0}$.
Now define $f(w, \vec{c}, b)$:

$$
\begin{aligned}
& f(w, \vec{c}, 0)=\langle\beta(1, w), 0\rangle \\
& f(w, \vec{c}, b+1)= \\
&\langle\beta(1, g(\langle\beta(1, f(w, \vec{c}, b)), \beta(2, w)\rangle, \vec{c}, b)), \\
&k(\vec{c}, \beta(2, f(w, \vec{c}, b)), \beta(2, g(\langle\beta(1, f(w, \vec{c}, b)), \beta(2, w)\rangle, \vec{c}, b)))\rangle
\end{aligned}
$$

Proof of the lemma - case IND (cont.)

Since f is p. r., it is Σ_{1}-definable by Σ_{1} and can be used in induction formulas, we can use Σ_{1}-IND w. r. t. b to conclude

$$
\text { Witness }_{\wedge\{A(0), \Gamma\}}(w, \vec{c}) \Rightarrow \text { Witness }_{\vee\{\Delta, A(b)\}}(f(w, \vec{c}, b), \vec{c}, b)
$$

Now we can set $h(w, \vec{c})=f(w, \vec{c}, t)$ and this function satisfies the conditions of the lemma.

Corollary

Theorem

The Δ_{1}-defined predicates of $I \Sigma_{1}$ are precisely the p. r. predicates.

Proof.

Suppose $A(c)$ and $B(c)$ are Σ_{1}-formulas such that $I \Sigma_{1}$ proves

$$
(\forall x)(A(x) \leftrightarrow \neg B(x))
$$

Then Char $_{A}$ is Σ_{1}-definable in $I \Sigma_{1}$, because $/ \Sigma_{1}$ proves

$$
(\forall x)(\exists!y)[(A(x) \wedge y=0) \vee(B(x) \wedge y=1)]
$$

By the above theorem Char ${ }_{A}$ is primitive recursive, and hence so is the predicate $A(c)$.

