Sequent calculus for bounded arithmetic and intro to witnessing theorems

Jiří Rýdl

April 28, 2022

Sequent calculus for arithmetic theories

1 Sequent calculus for arithmetic theories

Sequent calculus for arithmetic theories

To obtain a sequent calculus formulation of arithmetic theories, the calculus LK is extended by rules for IND, MIN, REP and rules for bounded quantifiers:

$$\begin{array}{ll} \mathsf{L}\forall\leq & \displaystyle\frac{A(t), \Gamma\Rightarrow\Delta}{t\leq s, (\forall x\leq s)A(x), \Gamma\Rightarrow\Delta} \\ \\ \mathsf{R}\forall\leq & \displaystyle\frac{b\leq s, \Gamma\Rightarrow\Delta, A(b)}{\Gamma\Rightarrow\Delta, (\forall x\leq s)A(x)} \end{array}$$

Sequent calculus for arithmetic theories

$$egin{aligned} \mathsf{L}\exists &\leq & rac{b \leq s, \mathsf{A}(b), \Gamma \Rightarrow \Delta}{(\exists x \leq s) \mathsf{A}(x), \Gamma \Rightarrow \Delta} \ & & \ \mathcal{R}\exists &\leq & rac{\Gamma \Rightarrow \Delta, \mathsf{A}(t)}{t \leq s, \Gamma \Rightarrow \Delta, (\exists x \leq s) \mathsf{A}(x)} \end{aligned}$$

The variable *b* works as an eigenvariable (it does not occur in the contexts). LK plus the above four rules is called LKB and the Free-cut Elimination Theorem holds for it, principal formulas of the rules are $t \le s$ and $(Qx \le s)A$.

Induction rules

The reason for taking induction rules instead of induction axioms is that the Free-cut Elimination Theorem will still hold. With the contexts Γ , Δ , the rules turn out to be equivalent to the axioms.

$\Phi\text{-}\mathsf{IND}$ induction

$$egin{aligned} A(b), \Gamma &\Rightarrow \Delta, A(b+1) \ \hline A(0), \Gamma &\Rightarrow \Delta, A(t) \end{aligned}$$

Φ-PIND induction

 $\frac{A(\lfloor \frac{1}{2}b \rfloor), \Gamma \Rightarrow \Delta, A(b)}{A(0), \Gamma \Rightarrow \Delta, A(t)}$

In both cases, b works as an eigenvariable.

Subformula property for fragments of PA

Theorem

Let Φ be a class of formulas containing atomic formulas and being closed under subformulas and term substitution. Let R be an arithmetic theory axiomatized by Φ -IND (or Φ -PIND) rules plus initial sequents containing formulas from Φ . Suppose that $\Gamma \Rightarrow \Delta$ contains only formulas from Φ and that R proves $\Gamma \Rightarrow \Delta$. Then there is an R-proof of $\Gamma \Rightarrow \Delta$ such that every formula in that proof is in Φ .

Parikh's theorem

- let a bounded theory R contain ≤ in its language and let the reflexivity and transitivity of ≤ be provable in R
- assume further that for all terms r, s there is a term t such that R ⊢ r ≤ t and R ⊢ s ≤ t
- lastly assume that for all terms t(b) and r (possibly with parameters) there is a term s such that $R \vdash b \leq r \rightarrow t(b) \leq s$

Theorem (Parikh)

If R is a bounded theory satisfying the above conditions, $A(\vec{x}, y)$ is a bounded formula and $R \vdash (\forall \vec{x})(\exists y)A(\vec{x}, y)$, then there is a term t such that $R \vdash (\forall \vec{x})(\exists y \leq t)A(\vec{x}, y)$.

Proof outline

- work with a free-cut free *R*-proof *P* of the formula $(\exists y)A(\vec{b}, y)$, where all *b*'s are new variables
- by the subformula property, all antecedents in P contain only bounded formulas, and the succedents can, beside that, only contain occurrences of the formula (∃y)A(b, y)
- prove by induction on the number of inferences in P that for every sequent Γ ⇒ Δ in P there is a term t such that R proves Γ ⇒ Δ_t, where Δ_t denotes Δ without all occurrences of (∃y)A(b, y) and with one occurrence of (∃y ≤ t)A(b, y)

Inference rules for collection

The Σ_1 -collection rules (Σ_1 -REPL) are the following inferences:

$$\begin{array}{l} \Gamma \Rightarrow \Delta, (\forall x \leq t) (\exists y) A(x,y) \\ \Gamma \Rightarrow \Delta, (\exists z) (\forall x \leq t) (\exists y \leq z) A(x,y) \end{array}$$

It holds that:

- the REPL rules and axioms are equivalent
- the Free-cut Elimination Theorem holds (provided every direct descendant of the principal formula of every REPL inference is taken to be anchored)
- \bullet the corollary is that Parikh's theorem also holds for theories containing $\Sigma_{1}\text{-}\mathsf{REPL}$

Sequent calculus for arithmetic theories $_{\rm OOOOOOO}$

Witnessing theorem for $I\Sigma_1$

Witnessing theorem for $I\Sigma_1$

We want to prove the following theorem:

Theorem (Parsons (1970), Mints(1973) and Takeuti (1987))

Every Σ_1 -definable function of $I\Sigma_1$ is primitive recursive.

The method Buss uses is the witnessing theorem method, and it is claimed that " $I\Sigma_1$ provides the simplest and most natural application of the witnessing method".

Proof outline

- suppose $I\Sigma_1$ proves a formula $(\forall x)(\exists y)A(x,y)$ for some $A \in \Sigma_1$
- then there is a sequent calculus proof of $(\exists y)A(c, y)$
- we must prove that there is a p.r. function f such that for every n: A(n, f(n)) holds
- a corollary of the following lemma gives something stronger, namely that there is a Σ_1 -definable p. r. function f such that $I\Sigma_1$ proves $(\forall x)A(x, f(x))$

The witness predicate for Σ_1 -formulas

If $A(\vec{b})$ is a Σ_1 -formula of the form $(\exists x_1, \ldots, x_k)B(x_1, \ldots, x_k, \vec{b})$ with $B \in \Delta_0$, define $Witness_A(w, \vec{b})$ to be the formula

 $B(\beta(1, w), \ldots, \beta(k, w), \vec{b})$

If $\Delta = \Delta', A$ is a succedent, then $Witness_{\bigvee \Delta}(w, \vec{c})$ is the formula

$$Witness_{\mathcal{A}}(\beta(1,w),\vec{c}) \lor Witness_{\bigvee \Delta'}(\beta(2,w),\vec{c}))$$

If $\Gamma = \Gamma', A$ is an antecedent, then $Witness_{\Lambda \Gamma}(w, \vec{c})$ is the formula

 $Witness_A(\beta(1, w), \vec{c}) \land Witness_{\bigwedge \Gamma'}(\beta(2, w), \vec{c})$

Intuitively, $Witness_A(w, \vec{b})$ is a formula stating that w is a witness for the truth of A. It is a Δ_0 -formula and $I\Delta_0$ can prove

$$A(\vec{b}) \leftrightarrow (\exists w) Witness_A(w, \vec{b})$$

Witnessing lemma for $I\Sigma_1$

Lemma

Suppose $I\Sigma_1$ proves a sequent $\Gamma \Rightarrow \Delta$ of Σ_1 -formulas. Then there is a function h such that:

- h is Σ_1 -defined by $I\Sigma_1$ and p. r.
- 2 $I\Sigma_1$ proves

$$(\forall \vec{c})(\forall w)[Witness_{\bigwedge \Gamma}(w, \vec{c}) \Rightarrow Witness_{\bigvee \bigtriangleup}(h(w, \vec{c}), \vec{c})]$$

Corollary

If we let Γ be empty and Δ consist only of the formula $(\exists y)A(c, y)$ and set $f(x) = \beta(1, \beta(1, h(x)))$, the above theorem follows.

Proof of the lemma

We work with a free-cut free proof P (in $I\Sigma_1$) of the sequent $\Gamma \Rightarrow \Delta$, where whose every formula we can assume to be Σ_1 . The proof is by induction of the number of inferences in P.

First let the last inference be $R \exists$ on the formula A:

$$\frac{\Gamma \Rightarrow \Delta, A(t)}{\Gamma \Rightarrow \Delta, (\exists x) A(x)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of the lemma - case R \exists

The induction hypothesis gives a Σ_1 -defined p. r. function $g(w, \vec{c})$ such that $I\Sigma_1$ proves

$$Witness_{\bigwedge \Gamma}(w, \vec{c}) \Rightarrow Witness_{\bigvee \{\Delta, A(t)\}}(g(w, \vec{c}), \vec{c})$$

For the succedent to hold we must have that either $\beta(2, g(w, \vec{c}))$ witnesses $\bigvee \Delta$ or that $\beta(1, g(w, \vec{c}))$ witnesses A(t). Define

$$h(w, \vec{c}) = \langle \langle t(\vec{c}) \rangle * \beta(1, g(w, \vec{c}), \beta(2, g(w, \vec{c}))) \rangle$$

From the definition of Witness is follows that

$$Witness_{\bigwedge \Gamma}(w, \vec{c}) \Rightarrow Witness_{\bigvee \{\Delta, (\exists x) A(x)\}}(h(w, \vec{c}), \vec{c})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof of the lemma - case L \exists

Suppose the last inference is L \exists on A(b), where b is an eigenvariable. The induction hypothesis gives a Σ_1 -defined p. r. function $g(w, \vec{c}, b)$ such that $I\Sigma_1$ proves

$$Witness_{A(b),\Gamma}(w, \vec{c}) \Rightarrow Witness_{\Delta}(g(w, \vec{c}, b), \vec{c})$$

Denote the function $tail(\langle w_0, w_1, \ldots, w_n \rangle) = \langle w_1, \ldots, w_n \rangle$ by tail(w) and let $h(w, \vec{c})$ be the function

$$g(\langle tail(\beta(1,w)),\beta(2,w)\rangle,\vec{c},\beta(1,\beta(1,w)))$$

Then h satisfies the conditions of the lemma.

Proof of the lemma - case IND

Suppose the final inference is a Σ_1 -IND inference step:

$$\frac{A(b), \Gamma \Rightarrow \Delta, A(b+1)}{A(0), \Gamma \Rightarrow \Delta, A(t)}$$

The induction hypothesis gives a Σ_1 -defined p. r. function $g(w, \vec{c}, b)$ such that $I\Sigma_1$ proves

 $Witness_{A(b),\Gamma}(w, \vec{c}, b) \Rightarrow Witness_{V\{\Delta, A(b+1)\}}(g(w, \vec{c}, b), \vec{c}, b)$

Proof of the lemma - case IND (cont.)

Define the following auxiliary function:

$$k(\vec{c}, v, w) = \begin{cases} v, & \text{if } Witness_{\Delta}(v, \vec{c}) \\ w, & \text{otherwise} \end{cases}$$
(1)

This function is Σ_1 -defined by $I\Sigma_1$, because *Witness* $\in \Delta_0$. Now define $f(w, \vec{c}, b)$:

$$\begin{aligned} f(w, \vec{c}, 0) &= \langle \beta(1, w), 0 \rangle \\ f(w, \vec{c}, b+1) &= \\ & \langle \beta(1, g(\langle \beta(1, f(w, \vec{c}, b)), \beta(2, w) \rangle, \vec{c}, b)), \\ & \quad k(\vec{c}, \beta(2, f(w, \vec{c}, b)), \beta(2, g(\langle \beta(1, f(w, \vec{c}, b)), \beta(2, w) \rangle, \vec{c}, b))) \rangle \end{aligned}$$

Proof of the lemma - case IND (cont.)

Since f is p. r., it is Σ_1 -definable by $I\Sigma_1$ and can be used in induction formulas, we can use Σ_1 -IND w. r. t. b to conclude

$$Witness_{A(0),\Gamma}(w, \vec{c}) \Rightarrow Witness_{(\Delta,A(b))}(f(w, \vec{c}, b), \vec{c}, b)$$

Now we can set $h(w, \vec{c}) = f(w, \vec{c}, t)$ and this function satisfies the conditions of the lemma.

Corollary

Theorem

The Δ_1 -defined predicates of $I\Sigma_1$ are precisely the p. r. predicates.

Proof.

Suppose A(c) and B(c) are Σ_1 -formulas such that $I\Sigma_1$ proves

 $(\forall x)(A(x) \leftrightarrow \neg B(x))$

Then $Char_A$ is Σ_1 -definable in $I\Sigma_1$, because $I\Sigma_1$ proves

$$(\forall x)(\exists !y)[(A(x) \land y = 0) \lor (B(x) \land y = 1)]$$

By the above theorem $Char_A$ is primitive recursive, and hence so is the predicate A(c).