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Motivation

▶ sequent calculus with cut is a very strong system, but a
cut-formula can be much more complicated than the theorem,
so it is problematic to suggest a proof-search algorithm

▶ a similar problem arises in Hilbert-style systems with modus
ponens

▶ propositional cut-free sequent calculus offers a rather
straightforward way to search for proofs, but sizes of cut-free
proofs can be unnecessarily long

▶ so we want to find a system

1. whose proofs are not too long and
2. which can search for proofs effectively



Resolution - basic notions

▶ a literal is a variable pi or its negation (complement) pi ,
if x is a negated variable pi , define x to be pi

▶ a clause is a finite set of literals, interpretated as a disjuction

▶ a clause is positive (negative) if it contains only positive
(negative) literals, other clauses are mixed

▶ a non-empty set of clauses Γ represents the conjunction of its
members

▶ Γ is satisfiable if there is a valuation making all its members
true.

Convention
No clause contains a literal together with its complement.



Resolution - basic notions

Definition
For clauses C and D and literals x ∈ C and x ∈ D, the resolution
rule is the following inference:

C ∪ {x} D ∪ {x}
C ∪ D

C and D are assumed not to contain x and x . The set C ∪ D is
the resolvent of C and D with respect to x .

Definition
A resolution refutation of a set of clauses Γ is a derivation of the
empty clause ∅ from Γ using only the resolution rule.



Notes

▶ resolution inference can be seen as cut on atomic formulas; for
example if C = {p1, p2, p3}, D = {p4, p5} and the variable
resolved on is p6, the rule can be rewriten as

p1, p2, p3 → p6 p6 → p4, p5
p1, p2, p3 → p4, p5

▶ if there is a valuation satisfying the clause C ∪ D, the same
valuation also satisfies the resolvent of C and D

▶ so if there is a derivation of ∅ from Γ, then Γ is not satisfiable

▶ so the principal interpretation of resolution is that we try to
refute the satisfiability of Γ



Resolution - a proof method

To prove a formula φ means to construct a set of clauses Γφ such
that Γφ is not satisfiable iff φ is a tautology. Then it suffices to
refute Γφ.

Such a Γφ can be arrived at in two ways:

1. convert ¬φ into CNF and take Γφ to be the corresponding set
of clauses; but the CNF of ¬φ can be exponentially longer
than φ

2. (Tsejtin’s extension method) introduce new variables to
denote subformulas of φ, encode the meaning of these
variables by clauses, construct Γφ from these clauses together
with {xφ}. Γφ has size linear to the size of φ, it corresponds
to the negation of a formula equisatisfiable with φ but one
with a different structure



Example

Prove the formula p ∧ q ⊃ q ∧ p:

▶ the CNF of the negated formula is p ∧ q ∧ (¬q ∨ ¬p)
▶ so the clauses are {p}, {q} and {q, p}
▶ two applications of resolution yield the empty clause

p
q q, p

p

∅



Completeness of resolution

Theorem
If Γ is an unsatisfiable set clauses, then there is a resolution
refutation of Γ.

Buss sketches two different proofs, a direct proof based on the
David-Putnam procedure and an indirect one that reduces to
completeness of the free-cut free sequent calculus.



Sketch of the first proof

▶ by compactness we may work with a finite Γ and use
induction on the number of distinct variables in Γ

▶ for n = 0 we must have {∅} ∈ Γ
▶ for a fixed p from Γ, define Γ′ to contain the following clauses

(i) the resolvents of all C ,D from Γ such that p ∈ C and p ∈ D
(ii) every C ∈ Γ such that C contains neither p nor p

▶ by the above convention no clause in Γ′ contains p

▶ now prove that Γ is satisfiable iff Γ′ is, by IH this concludes
the proof



Sketch of the second proof

▶ clauses can be identified with sequents consisting of atomic
formulas only and a cut inference with all three sequents
consisitng of atoms only can be identified with a resolution
inference

▶ example: the clause {p1, p2, p3} translates as p3 → p1, p2
▶ given Γ, for any C ∈ Γ denote by ΠC (∆C ) the cedent

consisting of variables that occur negatively (positively) in C ;
then the sequents G = {ΠC → ∆C ;C ∈ Γ} form the
additional non-logical axioms

Let Γ be unsatisfiable. By the completeness of free-cut free
sequent calculus there is a free-cut free proof P of the empty
sequent from G . Every cut-formula in P must be atomic, and
hence so is every formula in P. So P can be translated as a
resolution refutation of Γ.



Restricted resolution systems

▶ searching for refutations in restricted systems of resolution
requires less space, in one way or another they restrict the
number of possible search paths (and/or clauses) that need to
be considered when trying to refute a formula

▶ they can also be lifted to first-order logic

Example

▶ if Γ contains a clause C with a (pure) literal x such that x
does not occur anywhere in Γ, we may discard C and repeat
this process (this may give rise to new pure literals)

▶ the convention that clauses containing complementary litarals
are not assumed can be rephrased as a rule to begin each
proof-search - first delete tautological clauses



Subsumption

C subsumes D if C ⊆ D. The reason for this definition lies in the
following theorem which states that the removal of subsumed
clauses from an unsatisfiable set preserves the unsatisfiability.

Theorem
If Γ is not satisfiable and C ⊆ D, then Γ′ = (Γ \ {D})∪ {C} is also
unsatisfiable and has a refutation which is no longer than the
shortest refutation of Γ.



Positive resolution

A resolution inference is positive if one of the premises is a positive
clause.

Theorem (Completeness)

If Γ is not satisfiable, it has a refutation with only positive
resolution inferences.

Positive resolution is an important stepping stone for
hyperresolution.



Hyperresolution

▶ multiple resolution inferences are combined into a single one
with positive conclusion

▶ justification: every positive resolution refutation can be
uniquely partitioned into subderivations of the form

An

A2

A1 B1

B2

B3

...
Bn

An+1

where the clauses A1, . . . ,An+1 are positive.



Hyperresolution

Such a subderivation induces the following hyperresolution
inference:

A1 A2 . . . An B1

An+1

Notes
▶ by the above theorem hyperresolution is complete

▶ its usefulness lies in that only positive clauses need to be
saved for future use as possible premises.



Semantic resolution

▶ let v be a fixed valuation. A resolution inference is
v-supported if v falsifies one its premises. A refutation P is
v-supported if each resolution inference is v -supported

▶ if vF assignes every variable the value 0, then a vF -supported
refutation is the same as positive resolution refutation

▶ conversely, given Γ and v we can form Γ′ by complementing
every variable which is assigned 1 by v . Then a v -supported
refutation of Γ is isomorphic to a positive refutation of Γ′

▶ so semantic resolution can be viewed as a generalization of
positive resolution and we have the following theorem:

Theorem
For any Γ and v, Γ is not satisfiable iff Γ has a v-supported
refutation.



Set-of-support resolution

For Π ⊂ Γ, if Γ \ Π is satisfiable, then Π is a set of support for Γ.
A refutation P of Γ is supported by Π if every inference in P uses
(possibly indirectly) at least one clause from Π.

Theorem
If Γ is not satisfiable and Π is a set of support for Γ, then Γ has a
refutation supported by Π.

Proof.
This follows from the completeness theorem of semantic resolution.
If v is any truth assignment that satisfies Γ \ Π, any v -supported
refutation is also supported by Π.

Contrary to semantic resolution, in set-of-support resolution we do
not need to know a satisfying assignment for Γ \ Π.



Unit and input resolution

▶ a unit clause contains exactly one literal. A resolution
inference is a unit resolution inference if at least of its
premises is a unit clause. A unit resolution refutation is a
refutation containing only unit resolutions

▶ if there is a unit clause C = {x} in Γ, we can reduce the
number and size of clauses in Γ by eliminating each clause
which contains x (subsumption) and removing x from all
other clauses; this preserves unsatisfiability

▶ an input resolution refutation of Γ is a refutation in which
every inference has a premise from Γ

▶ unit and input refutations are not complete and refute exactly
the same sets



Linear resolution

▶ a linear resolution refutation is a sequence A1, . . . ,An = ∅
such that each Ai is either from Γ or it is the conclusion of
Ai−1 and Aj for j < i − 1

▶ it is a generalization of input resolution, it allows to use
intermediate clauses which are not in Γ multiple times

▶ linear resolution is complete, every unsatisfiable Γ has a linear
refutation



Horn clauses

▶ a Horn clause contains at most one positive literal; deciding
the satisfiability of sets of Horn clauses is more effective than
deciding the satisfiability of arbitrary clauses

▶ a positive unit resolution inference is one whose one premise
is a unit clause containing a positive literal, a positive unit
refutation contains only positive unit resolution inferences

Theorem (Completeness)

Every unsatisfiable set of Horn clauses Γ has a positive unit
refutation.

Proof.
Γ must contain a positive unit clause {p}. Resolve {p} against all
other clauses containing p and remove all clauses containing
p or p. This operation yields a smaller unsatisfiable set of Horn
clauses and its iteration yields the empty clause.
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