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Motivation

P> sequent calculus with cut is a very strong system, but a
cut-formula can be much more complicated than the theorem,
so it is problematic to suggest a proof-search algorithm

» a similar problem arises in Hilbert-style systems with modus
ponens

» propositional cut-free sequent calculus offers a rather
straightforward way to search for proofs, but sizes of cut-free
proofs can be unnecessarily long

> so we want to find a system

1. whose proofs are not too long and
2. which can search for proofs effectively



Resolution - basic notions

» a literal is a variable p; or its negation (complement) p;,
if x is a negated variable p;, define X to be p;

» a clause is a finite set of literals, interpretated as a disjuction

» a clause is positive (negative) if it contains only positive
(negative) literals, other clauses are mixed

P> a non-empty set of clauses [ represents the conjunction of its
members

» [ is satisfiable if there is a valuation making all its members
true.

Convention
No clause contains a literal together with its complement.



Resolution - basic notions

Definition
For clauses C and D and literals x € C and X € D, the resolution
rule is the following inference:

CU{x} Du{x}
CubD

C and D are assumed not to contain x and x. Theset CUD is
the resolvent of C and D with respect to x.

Definition
A resolution refutation of a set of clauses I is a derivation of the
empty clause ) from I using only the resolution rule.



Notes

resolution inference can be seen as cut on atomic formulas; for
example if C = {p1,p2,p3}, D = {pa, p5} and the variable
resolved on is pg, the rule can be rewriten as

P1, P2, P3 — Pe Ps — P4, Ps
ﬁu@'} p3 — P4>E

if there is a valuation satisfying the clause C U D, the same
valuation also satisfies the resolvent of C and D

so if there is a derivation of () from I, then I is not satisfiable

so the principal interpretation of resolution is that we try to
refute the satisfiability of '



Resolution - a proof method

To prove a formula ¢ means to construct a set of clauses ', such
that I, is not satisfiable iff ¢ is a tautology. Then it suffices to
refute [,

Such a ', can be arrived at in two ways:

1. convert -y into CNF and take 'y, to be the corresponding set
of clauses; but the CNF of —¢ can be exponentially longer
than ¢

2. (Tsejtin’s extension method) introduce new variables to
denote subformulas of ¢, encode the meaning of these
variables by clauses, construct ', from these clauses together
with {X;}. Iy, has size linear to the size of ¢, it corresponds
to the negation of a formula equisatisfiable with ¢ but one
with a different structure



Example

Prove the formula pA g D g A p:
» the CNF of the negated formula is p A g A (—q V —p)
» so the clauses are {p},{q} and {9, P}

P two applications of resolution yield the empty clause



Completeness of resolution

Theorem

If T is an unsatisfiable set clauses, then there is a resolution
refutation of I.

Buss sketches two different proofs, a direct proof based on the
David-Putnam procedure and an indirect one that reduces to
completeness of the free-cut free sequent calculus.



Sketch of the first proof

» by compactness we may work with a finite I and use
induction on the number of distinct variables in '

» for n =0 we must have {0} €T

» for a fixed p from I, define [’ to contain the following clauses

(i) the resolvents of all C, D from I such that p€ C and p€ D
(ii) every C €T such that C contains neither p nor p

» by the above convention no clause in [ contains p

» now prove that [ is satisfiable iff [ is, by IH this concludes
the proof



Sketch of the second proof

P clauses can be identified with sequents consisting of atomic
formulas only and a cut inference with all three sequents
consisitng of atoms only can be identified with a resolution
inference

» example: the clause {p1, p2, P3} translates as p3 — p1, p2

» given [, for any C € I denote by M¢ (A¢) the cedent
consisting of variables that occur negatively (positively) in C;
then the sequents G = {l¢ — A¢ ; C € I'} form the
additional non-logical axioms

Let ' be unsatisfiable. By the completeness of free-cut free
sequent calculus there is a free-cut free proof P of the empty
sequent from G. Every cut-formula in P must be atomic, and
hence so is every formula in P. So P can be translated as a
resolution refutation of .



Restricted resolution systems

» searching for refutations in restricted systems of resolution
requires less space, in one way or another they restrict the
number of possible search paths (and/or clauses) that need to
be considered when trying to refute a formula

> they can also be lifted to first-order logic

Example

» if ' contains a clause C with a (pure) literal x such that X
does not occur anywhere in [, we may discard C and repeat
this process (this may give rise to new pure literals)

P the convention that clauses containing complementary litarals
are not assumed can be rephrased as a rule to begin each
proof-search - first delete tautological clauses



Subsumption

C subsumes D if C C D. The reason for this definition lies in the
following theorem which states that the removal of subsumed
clauses from an unsatisfiable set preserves the unsatisfiability.

Theorem

IfT is not satisfiable and C C D, then ' = (F'\ {D}) U{C} is also
unsatisfiable and has a refutation which is no longer than the
shortest refutation of T.



Positive resolution

A resolution inference is positive if one of the premises is a positive
clause.

Theorem (Completeness)

If T is not satisfiable, it has a refutation with only positive
resolution inferences.

Positive resolution is an important stepping stone for
hyperresolution.



Hyperresolution

» multiple resolution inferences are combined into a single one
with positive conclusion

> justification: every positive resolution refutation can be
uniquely partitioned into subderivations of the form

An Bs
An+1

where the clauses Ay, ..., A,11 are positive.



Hyperresolution

Such a subderivation induces the following hyperresolution
inference:

Notes
» by the above theorem hyperresolution is complete

» its usefulness lies in that only positive clauses need to be
saved for future use as possible premises.



Semantic resolution

> let v be a fixed valuation. A resolution inference is
v-supported if v falsifies one its premises. A refutation P is
v-supported if each resolution inference is v-supported

» if vg assignes every variable the value 0, then a vg-supported
refutation is the same as positive resolution refutation

» conversely, given [ and v we can form [ by complementing
every variable which is assigned 1 by v. Then a v-supported
refutation of I' is isomorphic to a positive refutation of I’

P> so semantic resolution can be viewed as a generalization of
positive resolution and we have the following theorem:

Theorem
For any T and v, T is not satisfiable iff T has a v-supported
refutation.



Set-of-support resolution

For M C T, if '\ I is satisfiable, then I is a set of support for T.
A refutation P of I' is supported by I1 if every inference in P uses
(possibly indirectly) at least one clause from T1.

Theorem
If T is not satisfiable and I is a set of support for I', then T has a
refutation supported by [1.

Proof.

This follows from the completeness theorem of semantic resolution.
If v is any truth assignment that satisfies ' \ 1, any v-supported
refutation is also supported by I1. []

Contrary to semantic resolution, in set-of-support resolution we do
not need to know a satisfying assignment for I \ 1.



Unit and input resolution

» a unit clause contains exactly one literal. A resolution
inference is a unit resolution inference if at least of its
premises is a unit clause. A unit resolution refutation is a
refutation containing only unit resolutions

» if there is a unit clause C = {x} in ', we can reduce the
number and size of clauses in [ by eliminating each clause
which contains x (subsumption) and removing X from all
other clauses; this preserves unsatisfiability

» an input resolution refutation of I is a refutation in which
every inference has a premise from I’

» unit and input refutations are not complete and refute exactly
the same sets



Linear

resolution

a linear resolution refutation is a sequence Ay,..., A, =10
such that each A; is either from I or it is the conclusion of
Ai—1and Aj forj <i—1

it is a generalization of input resolution, it allows to use
intermediate clauses which are not in I multiple times

linear resolution is complete, every unsatisfiable I" has a linear
refutation



Horn clauses

» a Horn clause contains at most one positive literal; deciding
the satisfiability of sets of Horn clauses is more effective than
deciding the satisfiability of arbitrary clauses

» a positive unit resolution inference is one whose one premise
is a unit clause containing a positive literal, a positive unit
refutation contains only positive unit resolution inferences

Theorem (Completeness)

Every unsatisfiable set of Horn clauses I has a positive unit
refutation.

Proof.

I" must contain a positive unit clause {p}. Resolve {p} against all
other clauses containing p and remove all clauses containing

p or p. This operation yields a smaller unsatisfiable set of Horn
clauses and its iteration yields the empty clause. O
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