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Theorem 3.1.16 (Karchmer and Wigderson 1988). For any Boolean function f

Depth(f) = CC(f)

As little is known about the size of formulas as about the circuit-size.

Theorem 3.1.17 (Andreev 1987, Hastad 1993). There is a polynomial-time lan-
guage Z such that

L(Zy) = n®oW

The language Z from the theorem is a rather artificial one. Earlier Chrapchenko
(1971) showed

L(®(x1, ..., %)) > n?

3.2. Bounded arithmetic formulas

We shall consider several languages of arithmetic as underlying languages for
various systems of bounded arithmetic, but there are two basic ones: the language
of Peano arithmetic Lpp defined in Section 2.1, and the language of the theory S,,
denoted simply L, which extends the language Lpa by three new function symbols

EIL
- X X
5 ¥

The intended values of |x| and x#y are [log,(x + 1)] for x > 0 and |0] = 0, and
21614 respectively. Note that |x| is the length of the binary representation of x, if
x> 0.

We shall consider the class of bounded formulas in the language L p 4 first. They
were first defined by Smullyan (1961), who called sets defined by such formulas
constructive arithmetic sets.

Definition 3.2.1.
1. Eg = Uy is the class of quantifier free formulas.
2. Class E; | isthe class of formulas logically equivalent (i.e., in the predicate
calculus) to a formula of the form

Iy <p(a)...3Ix <y(a)p(a,x)

with the formula ¢ € U; and t;(@)’s terms of the language Lpa
3. Uiy is the class of formulas logically equivalent to a formula of the form

Vx <n(a)...Vx, <tr(a)p(a,x)

with the formula ¢ € E;.
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4. Class Ao of bounded arithmetic formulas is the union of classes E; and U;

A0=UEi=UUi
; i

Note that both E; and U; are contained in both E; . and U; 4.

For M a structure for language Lpa symbols E;(M?), U;i(M%), and Ag(MP),
respectively, denote the classes of subsets of M¢ definable by the E;, U;, and Ap
formulas, respectively (we shall usually omit the superscript £ when it is obvi-
ous from the context). Already the class E;(M) can be quite nontrivial from the
complexity-theoretic point of view, as according to Adleman and Manders (1977)
the class E) (V) contains an NP-complete set

{(@,b,0)|3Ix <3y < c,ax2+by= c}

There are several important characterizations of the class Ag(/V). We start with
the notion of rudimentary sets introduced by Smullyan (1961).
The intended structure for the language of rudimentary sets is the set of words
over {0, 1} or, via dyadic coding, the set of natural numbers.
The language of rudimentary sets consists of
1. A: the empty word,
2. T i the concatenation,
3. 0, 1: constants,
and two special kind of quantifiers
4. 3x €, yand Vx C, y: the part-of quantifiers,
S. 3lx| < |y| and V|x| < |y|: the length-bounded quantifiers.
The meaning of x €, y is that the word x is a part of the word y

Azy,z5z)x 2=y
and the meaning of |x| < |y} is obvious: the length of x is at most the length of y.

Definition 3.2.2 (Smullyan 1961).

1. The class of rudimentary sets RUD is the class of subsets of N definable
in the language of rudimentary sets with all quantifiers either part-of or
length-bounded.

2. The class of strictly rudimentary sets SRUD is the class of subsets of N*
definable in the language of rudimentary sets with all quantifiers of the
part-of fype.

3. The class of positive rudimentary sets RUD" is the class of subsets of N*
definable in the language of rudimentary sets with all quantifiers are either
part-of or length-bounded, and in which all quantifiers 3|x| < |y| appear
positively and all quantifiers ¥|x| < |y| appear negatively.
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4. The class of strongly rudimentary sets strRUD is the class of sets that are
positive rudimentary and whose complements are also positive rudimen-
tary.

Note that terms are allowed to appear in the quantifiers.

5. A function f : N® v N is rudimentary if its graph is a rudimentary set

and the function is majorized by a polynomial.

Theorem 3.2.3 (Bennett 1962).

RUD = Ag(N)

Proof (sketch). Clearly there are only two claims to be established:

Claim 1. The graphs of addition and the multiplication are in RUD.

Claim 2. The graph of the operation of concatenation is in Ao(N).

The idea of the proof of Claim 1 is in Bennett’s lemma saying that any function
defined by bounded recursion on notation is rudimentary (see Lemma 3.2.4). We
shall see a bit stronger argument of the same type in Theorem 3.2.8.

For Claim 2 note that

x~y=z iff w<z,y<wAx-w+y=zA “wisapowerof two”
where the last condition is expressed by
Vi<u,v<wit <u,u-v=w —> 2 -t =u

Q.ED.

Lemma 3.2.4 (Bennett 1962). Assume that a function f is defined from two rudi-
mentary functions g and h by bounded recursion on the notation
1. f(0,%) =h(¥)
2. f(x€r, ..., x €, Y) =g(X,E,, f(X,¥)) forall€ € {0, 1}"
and satisf Tes the condition
EP =0 ([T bl + 3] )

Then the function f is rudimentary too.
Theorem 3.2.5 (Wrathall 1978).
LinH = RUD
Proof (sketch). Using the natural coding of computations of machines by 0—1
strings one verifies that 2(')"‘ C RUD, from which LinH € RUD follows immedi-

ately.
The opposite inclusion is obvious. Q.E.D.
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The possibility of coding in Ag(N) merits further discussion. We shall now
mention two results and return to this topic again in Section 5.4.

Theorem 3.2.6 (Bennett 1962). The graph of exponentiation
{(x,y,2) | x¥ =2}
is rudimentary.

Theorem 3.2.7 (Wrathall 1978). All context-free languages are rudimentary and
hence in Ay(N).

The last theorem finds a root in an important theorem of Nepomnjascij (1970),
generalizing Lemma 3.2.4.

The term TimeSpace( f(n), g(n)) denotes the class of languages recognized by
a Turing machine working simultaneously in time f(n) and space g(n).

Theorem 3.2.8 (Nepomnjascij 1970). Letc > 0and1 > € > 0 be two constants.
Then

TimeSpace(n®, n€) C Ag(N)

Proof (sketch). We shall give an idea of the proof. By induction on & prove that
TimeSpace(n* 179, n) € Ag(N)

If £ = 1 then the sequence consisting of the instantaneous descriptions of a
TimeSpace(nk “(1-€) 4€) computation has size O(n), and hence its code is bounded
by a polynomial in input x, |x| = n.

Assume we have

TimeSpace(n* (1=, n€) € A¢(N)
and let
L € TimeSpace(n®+D-(1-9 pe)

Then x € L if and only if there exists a sequence w = (wy, ..., w,) such that
wg = X, each w; | is an instantaneous description obtained from the instantaneous
description w; by a TimeSpace(n* (! =€), n€) computation, w, is a halting accepting
position, and » < n!~¢,

The length of any such w is again O(n) and the conditions defining it are Ao-
definable by the induction assumption. Q.ED.

Corollary 3.2.9.
L CAy(V)
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The main problem about Ag(N) is whether the hierarchy collapses, which is
the same as whether LinH collapses: that is, whether

Ao(N) = Ei(N)

for some i.
The only partial result is the following weak hierarchy theorem of Wilkie and
Woods.

Theorem 3.2.10 (Wilkie 1980, Woods 1986). Denote by Vi (N) the class of sub-
sets of N definable by a Ao-formula ¢ (x) with at most k quantifiers bounded by
<Xx.

Then for all k

Vi(N) C Vi1 (N)

The rest of this section is devoted to bounded formulas in the language L.

Definition 3.2.11 (Buss 1986).
1. The class 23 = 1'13 of sharply bounded formulas consists of formulas in
which all quantifiers have the form

dx < |t] or Vx < |t}

That is, the quantifiers are bounded by the length of a term.
2. For 0 < the classes Zf’ '+ and l'If’ 11 are the smallest classes satisfying

(@ TPUM] S E NI,
(b) both Zf’ ' and l'lf’ '+ are closed under sharply bounded quantifica-
tion, disjunction Vv, and conjunction A

(c) Ef’ 1 is closed under bounded existential quantification

(@) l'[f’ 11 is closed under bounded universal quantification

b

(e) the negation of a 2;’ 1 Sormulais TI7 | , and the negation of a né R

; b
Jormula is £} .

3. The class L, of bounded L-formulas is the union | J; £? = | J; I°.
4. 4 Ef’ -formula is Af’ (respectively Af in a theory T) iff it is equivalent to a
I'[f7 -formula in predicate logic (respectively in T ).

In words: The complexity of bounded formulas in language L is defined by
counting the number of alternations of bounded quantifiers, ignoring the sharply
bounded ones, analogously to the definition of levels of the arithmetical hierarchy
where one counts the number of alternations of quantifiers, ignoring the bounded
ones.
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Theorem 3.2.12. The subsets of N defined by Ego-formulas are exactly the sets
from the polynomial-time hierarchy PH.
In fact, fori > 1 the Zf’-formulas exactly define the Zip -predicates.

Proof (sketch). The only difference from Lemma 3.2.4 and Theorem 3.2.5 is
that now we need to code computations of length n9, n = |x|. If |y| < nOD
then y < x#...#x, which is a term of L; hence such y’s can appear in bounded
quantifiers. Q.ED.

We should note that Bennett (1962) also considered a class of the extended
rudimentary sets, which are defined similarly to the rudimentary sets except that
the language is augmented by a function of the growth rate of the function #. It is
then a straightforward extension of Theorem 3.2.5 that the extended rudimentary
sets are exactly those from the polynomial time hierarchy PH.

3.3. Bibliographical and other remarks

For the history of results and ideas from Section 3.1 the reader should consult
Boppana and Sipser (1990), Wegener (1987), and Sipser (1992). Important top-
ics omitted are NP-completeness, for which Garey and Johnson (1979) is a good
source, and the completeness results for other classes, in particular, the complete-
ness of directed st-connectivity for class NL and the completeness of undirected
st-connectivity for class L/poly (Aleliunas et al. 1979). Karchmer and Wigderson
(1988) and Raz and Wigderson (1990) study the depth of monotone circuits for
connectivity and matching.

Other interesting facts, but not used later in the book, concern branching pro-
grams: Barrington (1989) characterized Boolean functions with polynomial size
formulas as those computed by width 5, polynomial-size branching programs, and
a relation of space bounded Turing computations to size of branching programs:
L/poly = BP (cf. Wegener 1987).

Very important but unfortunately unpublished is Bennett’s Ph.D. thesis (Ben-
nett 1962), containing either explicitly or implicitly most later definability results
such as Cobham (1965) and Nepomnjascij (1970). Paris and Wilkie (1981b) study
rudimentary sets explicitly.



