
(1) Set-up:
n: number of atoms
C: a set of clauses in n variables
π: a tree-like DNF-R refutation (i.e. R∗(id)-refutation) of C
k: the number of steps in π
s: size of π
c: a parameter bounding the number of conjunctions in any line in π
We allow as initial clauses also all clauses containing some {`,¬`}.

(2) Lemma: Assume the set-up (1). Then C has an R∗-refutation π∗ (i.e.
tree-like R) with at most nO(c log k) steps.

The lemma follows from Lemmas (5) and (6) below. Note that it is not
claimed that π∗ is balanced.

(3) Remark: Lemma (2) implies an analogous statement about depth d+1
LK refutations with k and n in the estimate replaced by O(s): use limited
extension for all depth ≤ d formulas in π to reduce to R∗(id). Then substitute
in π∗ back formulas for the corresponding extension atoms (this changes n by
adding the number of extension atoms and k when deriving a formula from
the associated extension atom - in both case it is bounded above by O(s)).

(4) Game: Consider the Prover-Liar game where Prover asks for the truth-
value of a clause D and the Liar either replies true, in which case D is added
to his set D of replies, or false, in which case all singleton clauses {¬`}, all
` ∈ D, are added. The game stops with Prover winning the moment C ∪ D
contains some clause D and at the same time also all {¬`}, all ` ∈ D.

(5) Lemma: Assume that Prover has a winning strategy S that wins over
each Liar in at most r rounds. Then C has an R∗-refutation with at most
(n + 1)r+1 steps.

Proof :
Think of S as of a binary tree branching according to Liar’s answers. For

a partial path σ in S ending in vertex vσ denote:
Sσ: the subtree with root vσ,
Dσ: Liar’s answers given on path σ,
rσ: the height of Sσ.

Note that for the empty path Λ, SΛ = S, DΛ = ∅ and rΛ = r.
We shall prove by induction on rσ the following

Claim: C ∪ Dσ has an R∗-refutation ρσ with at most (n + 1)rσ+1 steps.

1

Assume rσ = 0, i.e. σ is a complete path in S. By the definition of the
game the set Dσ contains some clause D and also all singleton clauses {¬`},
all ` ∈ D. Define ρσ to be |D| ≤ n resolutions removing from D subsequently
all literals.

Assume rσ > 0. Let D be the clause S asks at node vσ and denote by
Sσ1 the subtree corresponding to the positive answer (hence D ∈ Dσ1) and
by Sσ0 the negative subtree (hence {¬l} ∈ Dσ0 for all ` ∈ D). Let ρ1 and ρ0,
resp., be the two R∗-refutations attached to the two subtrees satisfying the
induction assumption, having k0 and k1 steps, respectively.

Change in ρ0 all {¬`}, ` ∈ D, into {¬`, `} and carry the extra literals
along the whole ρ0: this yields an R∗-derivation ρ′

0 of D from C ∪ Dσ0 with
the same number of steps as in ρ0.

For all ` ∈ D construct an R∗-derivation ρ1,` of {¬`} from C ∪ Dσ as
follows: add to each occurrence of D as initial clause in ρ1 literal ¬` (hence
the clause becomes an instance of free logic initial clauses - see (1)) and carry
it along. Note that all ρ1,` have the same number of steps as ρ1.

The resulting R∗-refutation ρσ starts as ρ′
0 deriving D and the using

subsequently all subproofs ρ1,` (|D| of them) to cut out all literals ` ∈ D.
The number of steps in ρσ is bounded above by

|D| · k1 + k0 ≤ nk1 + k0 ≤ n(n + 1)ρσ + (n + 1)ρσ ≤ (n + 1)ρσ+1 .

This proves the claim.

The lemma follows from the claim for σ := Λ.

q.e.d.

(6) Lemma: Under the set-up (1) there is a winning strategy for Prover
that wins over any Liar in at most O(c log k) rounds.

Proof :
Note that Prover can find the truth value of a DNF-clause by asking

separately for the truth values of all (clauses that are negations of) conjunc-
tions in the clause (at most c) and then for the truth value of the sub-clause
consisting of the remaining literals. Use this to navigate in π in a Spira-like
fashion. Hence Prover needs to ask for the values of O(log k) DNF-clauses,
getting each by asking for the values of ≤ c + 1 ordinary clauses.

q.e.d.

2

