(1) Set-up:

: number of atoms

. a set of clauses in n variables

. a tree-like DNF-R refutation (i.e. R*(id)-refutation) of C

: the number of steps in 7

size of 7

a parameter bounding the number of conjunctions in any line in 7
We allow as initial clauses also all clauses containing some {¢, —(}.

(2) Lemma: Assume the set-up (1). Then C has an R*-refutation ©* (i.e.
tree-like R) with at most n®1°8%) steps.

The lemma follows from Lemmas (5) and (6) below. Note that it is not
claimed that 7* is balanced.

QO » =3 O3

(3) Remark: Lemma (2) implies an analogous statement about depth d + 1
LK refutations with k£ and n in the estimate replaced by O(s): use limited
extension for all depth < d formulas in 7 to reduce to R*(id). Then substitute
in 77* back formulas for the corresponding extension atoms (this changes n by
adding the number of extension atoms and k when deriving a formula from
the associated extension atom - in both case it is bounded above by O(s)).

(4) Game: Consider the Prover-Liar game where Prover asks for the truth-
value of a clause D and the Liar either replies true, in which case D is added
to his set D of replies, or false, in which case all singleton clauses {—/}, all
¢ € D, are added. The game stops with Prover winning the moment C U D
contains some clause D and at the same time also all {—¢}, all / € D.

(5) Lemma: Assume that Prover has a winning strategy S that wins over
each Liar in at most r rounds. Then C has an R*-refutation with at most
(n+1)"! steps.
Proof :

Think of S as of a binary tree branching according to Liar’s answers. For
a partial path ¢ in S ending in vertex v, denote:

S,: the subtree with root v,

D,: Liar’s answers given on path o,

ro: the height of S, .
Note that for the empty path A, Sy =5, Dy =0 and ry = 7.

We shall prove by induction on r, the following

Claim: CUD, has an R*-refutation p, with at most (n + 1)+ steps.

Assume r, = 0, i.e. ¢ is a complete path in S. By the definition of the
game the set D, contains some clause D and also all singleton clauses {—¢},
all ¢ € D. Define p, to be |D| < n resolutions removing from D subsequently
all literals.

Assume r, > 0. Let D be the clause S asks at node v, and denote by
Sy1 the subtree corresponding to the positive answer (hence D € D,) and
by Syo the negative subtree (hence {—l} € D, for all £ € D). Let p; and po,
resp., be the two R*-refutations attached to the two subtrees satisfying the
induction assumption, having kg and k; steps, respectively.

Change in pg all {—=¢}, ¢ € D, into {—¢,¢} and carry the extra literals
along the whole py: this yields an R*-derivation pj of D from C U D, with
the same number of steps as in py.

For all £ € D construct an R*-derivation p;, of {—¢} from C U D, as
follows: add to each occurrence of D as initial clause in p; literal =¢ (hence
the clause becomes an instance of free logic initial clauses - see (1)) and carry
it along. Note that all p; , have the same number of steps as p;.

The resulting R*-refutation p, starts as p{, deriving D and the using
subsequently all subproofs p;, (]D| of them) to cut out all literals ¢ € D.
The number of steps in p, is bounded above by

|D| - k1 + ko < nky + ko <n(n+ 1) + (n+ 1) < (n+ 1)+,

This proves the claim.

The lemma follows from the claim for o := A.

q.e.d.

(6) Lemma: Under the set-up (1) there is a winning strategy for Prover
that wins over any Liar in at most O(clogk) rounds.

Proof :

Note that Prover can find the truth value of a DNF-clause by asking
separately for the truth values of all (clauses that are negations of) conjunc-
tions in the clause (at most ¢) and then for the truth value of the sub-clause
consisting of the remaining literals. Use this to navigate in 7 in a Spira-like
fashion. Hence Prover needs to ask for the values of O(log k) DNF-clauses,
getting each by asking for the values of < ¢+ 1 ordinary clauses.

q.e.d.

