Monotone circuit lower bounds

Lukáš Folwarczný
folwarczny@math.cas.cz
Institute of Mathematics of the Czech Academy of Sciences Computer Science Institute of Charles University in Prague
November 11, 2020

Monotone Boolean functions

- For $x, y \in\{0,1\}^{n}$ we write $x \leq y$ iff $(\forall i \in\{1, \ldots, n\}) x_{i} \leq y_{i}$.
- A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone iff $x \leq y$ implies $f(x) \leq f(y)$.
- Monotone Boolean functions may be represented by DNFs or CNFs without negations.
- Examples:
- Threshold functions $\operatorname{Th}_{k}^{n}(x)=1$ iff $x_{1}+\cdots+x_{n} \geq k$.
- CLIQUE $(n, k):\{0,1\}^{\binom{n}{2}} \rightarrow\{0,1\}$
- Input x encodes graph G_{x} with vertices $\{1, \ldots, n\}$, where i and j are adjacent iff $x_{i j}=1$.
- $\operatorname{CLIQUE}(n, k)(x)=1$ iff G_{x} contains a clique on k vertices.

Monotone Boolean circuits

- Circuits with fanin-2 AND and OR gates.
- Small technical detail: We should allow constants 0 and 1 to be able to compute all monotone Boolean functions including the constant ones.
- For a circuit C, $\operatorname{size}(C)$ is the number of gates.

Lower bounds

Lower bounds for explicit functions of n variables.

- Tiekenheinrich [Tie84]: $4 n$
- Razborov [Raz85]: $n^{\Omega(\log n)}$
- Andreev [And85]: $2^{n^{c-o(1)}} 1$ independently of Razborov
- Andreev [And87]: $2^{\Omega\left(n^{1 / 3} / \log n\right)}$
- Harnik and Raz [HR00]: $2^{\Omega\left((n / \log n)^{1 / 3}\right)}$
- Cavalar, Kumar and Rossman [preprint 2020]: $2^{\Omega\left(n^{1 / 2} /(\log n)^{3 / 2}\right)}$

[^0]Theorem ([Raz85], [AB87])
For $3 \leq k \leq n^{1 / 4}$, the monotone circuit complexity of $\operatorname{CLIQUE}(n, k)$ is $n^{\Omega(\sqrt{k})}$.
I follow the proof from the book by Jukna [Juk12].

Combinatorial tool: The sunflower lemma

Definition

A sunflower with p petals and a core T is a collection of sets S_{1}, \ldots, S_{p} such that $S_{i} \cap S_{j}=T$ for all $i \neq j$.

Theorem (Sunflower lemma [ER60])

Let \mathcal{F} be a family of sets each of size at most l. If $|\mathcal{F}|>l!(p-1)^{l}$ then \mathcal{F} contains a sunflower with p petals.

Proof by induction on l :

- $l=1$: We have more than $p-1$ sets of cardinality ≤ 1, any p of them form a sunflower with empty core.
- $l \geq 2$:
- $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ a maximal family of pairwise disjoint members of \mathcal{F}
- If $t \geq p$: We are done.
- Assume $t \leq p-1 . S:=S_{1} \cup \cdots \cup S_{t} .|S| \leq l(p-1)$.
- S intersects (by maximality) every set in \mathcal{F}
- Pigeonhole principle: exists $x \in S$ lying in at least this many sets of \mathcal{F} :

$$
\frac{|\mathcal{F}|}{|S|}>\frac{l!(p-1)^{l}}{l(p-1)}=(l-1)!(p-1)^{l-1}
$$

\circ

$$
\mathcal{F}_{x}:=\{F \backslash\{x\} \mid F \in \mathcal{F}, x \in F\}
$$

- Apply the induction assumption on \mathcal{F}_{x} and add x to each petal.

Razborov's Method of Approximations

- The set of all monotone Boolean functions \rightarrow the set of approximators \mathcal{A}
- Input variables are in the set of approximators
- New operations: $\vee \rightarrow \sqcup, \wedge \rightarrow \sqcap$
- $\sqcup, \sqcap: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$
- Circuit C computing $\operatorname{CLIQUE}(n, k) \rightarrow$ approximator circuit $\tilde{C} \in \mathcal{A}$
- Strategy of the proof:
- Every approximator (including \tilde{C}) makes a lot of errors when computing $\operatorname{CLIQUE}(n, k)$.
- If size (C) is small, then \tilde{C} cannot make too many errors.
- This together implies that size (C) is large.

Our approximators

- For $X \subseteq\{1, \ldots, n\}$, the clique indicator of X is the function $\lceil X\rceil$:

$$
\lceil X\rceil(E)=1 \text { iff the graph } E \text { contains a clique on the vertices } X
$$

- $\lceil X\rceil$ is just a monomial

$$
\lceil X\rceil=\bigwedge_{i, j \in X ; i<j} x_{i j}
$$

- (m, l)-approximator is an OR of at most m clique indicators. The underlying vertex-set X of each indicator satisfies $|X| \leq l$.
- $m, l \geq 2$ to be set later
- Observe that input variables $x_{i j}$ are (m, l)-approximators because

$$
x_{i j}=\lceil\{i, j\}\rceil .
$$

Positive and negative graphs

- Positive graphs: \mathcal{P} denotes the set of all graphs on n vertices which consist of one clique on k vertices and $n-k$ isolated vertices.
- $|\mathcal{P}|=\binom{n}{k}$
- $(\forall E \in \mathcal{P}) C(E)=1$
- Negative graphs: \mathcal{N} denotes the multiset of all the graphs on n vertices created by the following process: We color each vertex by one of $k-1$ colors and then connect by edges pairs of vertices with different colors.
- $|\mathcal{N}|=(k-1)^{n}$
- $(\forall E \in \mathcal{N}) C(E)=0$

Each approximator makes a lot of errors

Lemma

Every approximator either rejects all graphs or wrongly accepts at least a fraction $1-l^{2} /(k-1)$ of all $(k-1)^{n}$ negative graphs.

- An (m, l)-approximator $A=\bigvee_{i=1}^{r}\left\lceil X_{i}\right\rceil$.
- Assume that A accepts at least one graph. Then $A \geq\left\lceil X_{1}\right\rceil$.
- A negative graph is rejected by $\left\lceil X_{1}\right\rceil$ iff its associated coloring assigns some two vertices of X_{1} the same color.
- There are $\binom{\left|X_{1}\right|}{2}$ pairs of vertices in X_{1}. For each such pair at most $(k-1)^{n-1}$ colorings assign the same color.
- Thus, at most $\binom{\left|X_{1}\right|}{2}(k-1)^{n-1} \leq\binom{ l}{2}(k-1)^{n-1}$ negative graphs can be rejected by $\left\lceil X_{1}\right\rceil$, and hence, by the approximator A .

Operation \sqcup

- Two (m, l)-approximators $A=\bigvee_{i=1}^{r}\left\lceil X_{i}\right\rceil$ and $B=\bigvee_{i=1}^{s}\left\lceil Y_{i}\right\rceil$ are given.
- We wish to define an (m, l)-approximator $A \sqcup B$ that approximates $A \vee B$
- Defining $A \sqcup B=A \vee B$ would potentially give us ($2 m, l$)-approximator. We use the sunflower lemma to overcome this:
$\circ \mathcal{F}:=\left\{X_{1}, \ldots, X_{r}, Y_{1}, \ldots, Y_{s}\right\}$
- $m:=l!(p-1)^{l}$
- Plucking: replace the p sets forming a sunflower by their core
- Plucking procedure: repeat plucking while $r+s>m$
- Each plucking reduces the number of sets \Rightarrow at most m pluckings

Operation \sqcap

- Two (m, l)-approximators $A=\bigvee_{i=1}^{r}\left\lceil X_{i}\right\rceil$ and $B=\bigvee_{i=1}^{s}\left\lceil Y_{i}\right\rceil$ are given.
- We wish to define an (m, l)-approximator $A \sqcap B$ that approximates $A \wedge B$
- Defining

$$
A \sqcup B=A \wedge B=\bigvee_{i=1}^{r} \bigvee_{j=1}^{s}\left(\left\lceil X_{i}\right\rceil \wedge\left\lceil Y_{j}\right\rceil\right)
$$

has two issues:

- up to m^{2} terms
- $\left\lceil X_{i}\right\rceil \wedge\left\lceil Y_{j}\right\rceil$ might not be a clique indicator
- We do the following steps:

1. Replace the term $\left\lceil X_{i}\right\rceil \wedge\left\lceil Y_{j}\right\rceil$ by the clique indicator $\left\lceil X_{i} \cup Y_{j}\right\rceil$.
2. Erase those indicators $\left\lceil X_{i} \cup Y_{j}\right\rceil$ with $\left|X_{i} \cup Y_{j}\right| \geq l+1$.
3. Apply the plucking the procedure to the remaining indicators; there will be at most m^{2} pluckings.

Lemma (Error on positive graphs)

$$
|\{E \in \mathcal{P} \mid \tilde{C}(E)=0\}| \leq \operatorname{size}(C) \cdot m^{2}\binom{n-l-1}{k-l-1}
$$

- We calculate the number of errors introduced by a single gate.
- Case 1: \vee-gate is replaced by \sqcup
- This involves taking $A \vee B$ and the plucking procedure.
- Each plucking replaces a clique indicator $\lceil X\rceil$ with some indicator $\left\lceil X^{\prime}\right\rceil$ s.t. $X^{\prime} \subseteq X$ which can only accept more graphs, i.e., no error is introduced.
- Case 2: \wedge-gate is replaced by \sqcap
- The first step was to replace $\left\lceil X_{i}\right\rceil \wedge\left\lceil Y_{j}\right\rceil$ by $\left\lceil X_{i} \cup Y_{j}\right\rceil$. These functions behave identically on positive graphs (cliques).
- The second step was to erase those clique indicators $\left\lceil X_{i} \cup Y_{j}\right\rceil$ for which $\left|X_{i} \cup Y_{j}\right| \geq l+1$. For each such clique indicator, at most $\binom{n-l-1}{k-l-1}$ of the positive graphs are lost. There are at most m^{2} of these indicators.
- The third step was the plucking procedure which again accepts only more graphs.
- In total, the error is at most $\operatorname{size}(C) \cdot m^{2}\binom{n-l-1}{k-l-1}$.

Lemma (Error on negative graphs)

$$
|\{E \in \mathcal{N} \mid \tilde{C}(E)=1\}| \leq \operatorname{size}(C) \cdot m^{2} l^{2 p}(k-1)^{n-p}
$$

- We again calculate the number of errors introduced by a single gate.
- We analyze the number of errors introduced by plucking:
- Sunflower with core Z and petals Z_{1}, \ldots, Z_{p}.
- Let \mathbf{G} be a uniformly random graph from \mathcal{N} - this correponds to coloring each vertex independently by one of the $k-1$ colors, each color having probability $1 /(k-1)$.
- What is the probability that $\lceil Z\rceil$ accepts \mathbf{G}, but none of the $\left\lceil Z_{1}\right\rceil, \ldots,\left\lceil Z_{p}\right\rceil$ accept it?
- PC stands for "properly colored"

$$
\begin{aligned}
\operatorname{Pr} & {\left[Z \text { is } \mathrm{PC} \text { and } Z_{1}, \ldots, Z_{p} \text { are not } \mathrm{PC}\right] } \\
& \leq \operatorname{Pr}\left[Z_{1}, \ldots, Z_{p} \text { are not } \mathrm{PC} \mid Z \text { is } \mathrm{PC}\right] \\
& =\prod_{i=1}^{p} \operatorname{Pr}\left[Z_{i} \text { is not } \mathrm{PC} \mid Z \text { is } \mathrm{PC}\right] \\
& \leq \prod_{i=1}^{p} \operatorname{Pr}\left[Z_{i} \text { is not } \mathrm{PC}\right] \\
& \leq\left(\binom{l}{2} /(k-1)\right)^{p} \leq l^{2 p}(k-1)^{-p}
\end{aligned}
$$

- The lines hold because:

1. The definition of conditional probability
2. Sets $Z_{i} \backslash Z$ are disjoint and hence the events are independent.
3. It is less likely to happen that Z_{i} is not PC given the fact that Z is PC.
4. Z_{i} is not PC iff two vertices get the same color

- Thus, one plucking adds at most $l^{2 p}(k-1)^{n-p}$ negative graphs which are accepted.
- Case 1: \vee-gate is replaced by \sqcup
- We take $A \vee B$ and perform at most m pluckings.
- Case 2: \wedge-gate is replaced by \sqcap
- The first step introduces no error because $\left\lceil X_{i}\right\rceil \wedge\left\lceil Y_{j}\right\rceil \geq\left\lceil X_{i} \cup Y_{j}\right\rceil$.
- The second step introduces no error because we only remove indicators, which cannot accept more graphs.
- The third step involves at most m^{2} pluckings.
- In both cases: at most $m^{2} l^{2 p}(k-1)^{n-p}$ negative graphs are newly accepted.

Grand finale

- Set $l=\lfloor\sqrt{k-1} / 2\rfloor ; p=\left\lfloor 10 \sqrt{k} \log _{2} n\right\rfloor$
- Recall $m=l!(p-1)^{l} \leq(p l)^{l}$. See $m^{2} \leq\left(10 k \log _{2} n\right)^{\sqrt{k}}$
- Use the first lemma
- Case 1: \tilde{C} is identically 0
- \tilde{C} errs on all positive graphs, we obtain:

$$
\begin{gathered}
\operatorname{size}(C) \cdot m^{2} \cdot\binom{n-l-1}{k-l-1} \geq\binom{ n}{k} \\
\operatorname{size}(C) \geq \frac{(n / k)^{l+1}}{m^{2}} \geq \frac{n^{3 / 4 \cdot(\lfloor\sqrt{k-1} / 2\rfloor+1)}}{\left(10 n^{1 / 4} \log _{2} n\right)^{\sqrt{k}}}=n^{\Omega(\sqrt{k})}
\end{gathered}
$$

- Case 2: \tilde{C} outputs 1 on a $\left(1-l^{2} /(k-1)\right) \geq 1 / 2$ fraction of all $(k-1)^{n}$ graphs

$$
\begin{gathered}
\operatorname{size}(C) \cdot m^{2} \cdot 2^{-p} \cdot(k-1)^{n} \geq \frac{1}{2}(k-1)^{n} \\
\operatorname{size}(C) \geq \frac{2^{p}}{2 m^{2}}=\frac{n^{9 \sqrt{k}}}{2\left(10 k \log _{2} n\right)^{\sqrt{k}}} \geq n^{\Omega(\sqrt{k})}
\end{gathered}
$$

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions. Comb., $7(1): 1-22,1987$.
[And85] A. E. Andreev. On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl., 31(3):530-534, 1985.
[And87] A. E. Andreev. A method for obtaining efficient lower bounds for monotone complexity. Algebra and Logic, 26:1-18, 1987.
[ER60] P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, s1-35(1):85-90, 1960.
[HR00] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 378-387. ACM, 2000.
[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and combinatorics. Springer, 2012.
[Raz85] A. A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet Math. Dokl., 31:354-357, 1985.
[Tie84] Jürgen Tiekenheinrich. A 4n-lower bound on the monotone network complexity of a one-output boolean function. Inf. Process. Lett., 18(4):201-202, 1984.

[^0]: ${ }^{1}$ I was not able to find the value of c.

