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Monotone Boolean functions

• For x, y ∈ {0, 1}n we write x ≤ y iff (∀i ∈ {1, . . . , n})xi ≤ yi.
• A Boolean function f : {0, 1}n → {0, 1} is monotone iff x ≤ y implies
f(x) ≤ f(y).

• Monotone Boolean functions may be represented by DNFs or CNFs without
negations.

• Examples:
◦ Threshold functions Thnk (x) = 1 iff x1 + · · ·+ xn ≥ k.
◦ CLIQUE(n, k) : {0, 1}(

n
2) → {0, 1}

• Input x encodes graph Gx with vertices {1, . . . , n}, where i and j are adjacent iff
xij = 1.

• CLIQUE(n, k)(x) = 1 iff Gx contains a clique on k vertices.
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Monotone Boolean circuits

• Circuits with fanin-2 AND and OR gates.
◦ Small technical detail: We should allow constants 0 and 1 to be able to compute

all monotone Boolean functions including the constant ones.

• For a circuit C, size(C) is the number of gates.

3



Lower bounds

Lower bounds for explicit functions of n variables.
• Tiekenheinrich [Tie84]: 4n
• Razborov [Raz85]: nΩ(logn)

• Andreev [And85]: 2nc−o(1) 1 independently of Razborov
• Andreev [And87]: 2Ω(n1/3/ logn)

• Harnik and Raz [HR00]: 2Ω((n/ logn)1/3)

• Cavalar, Kumar and Rossman [preprint 2020]: 2Ω(n1/2/(logn)3/2)

1I was not able to find the value of c.
4



Theorem ([Raz85], [AB87])

For 3 ≤ k ≤ n1/4 , the monotone circuit complexity of CLIQUE(n, k) is nΩ(
√
k).

I follow the proof from the book by Jukna [Juk12].
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Combinatorial tool: The sunflower lemma

Definition
A sunflower with p petals and a core T is a collection of sets S1, . . . , Sp such that
Si ∩ Sj = T for all i 6= j.

Theorem (Sunflower lemma [ER60])

Let F be a family of sets each of size at most l. If |F| > l!(p− 1)l then F contains
a sunflower with p petals.
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Proof by induction on l:
• l = 1: We have more than p− 1 sets of cardinality ≤ 1, any p of them form a
sunflower with empty core.

• l ≥ 2:
◦ S = {S1, . . . , St} a maximal family of pairwise disjoint members of F
◦ If t ≥ p: We are done.
◦ Assume t ≤ p− 1. S := S1 ∪ · · · ∪ St. |S| ≤ l(p− 1).
◦ S intersects (by maximality) every set in F
◦ Pigeonhole principle: exists x ∈ S lying in at least this many sets of F :

|F|
|S|

>
l!(p− 1)l

l(p− 1)
= (l − 1)!(p− 1)l−1

◦
Fx := {F \ {x} | F ∈ F , x ∈ F}

◦ Apply the induction assumption on Fx and add x to each petal.
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Razborov’s Method of Approximations

• The set of all monotone Boolean functions → the set of approximators A
◦ Input variables are in the set of approximators

• New operations: ∨ → t, ∧ → u
◦ t,u : A×A → A

• Circuit C computing CLIQUE(n, k) → approximator circuit C̃ ∈ A
• Strategy of the proof:

◦ Every approximator (including C̃) makes a lot of errors when computing
CLIQUE(n, k).

◦ If size(C) is small, then C̃ cannot make too many errors.
◦ This together implies that size(C) is large.
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Our approximators

• For X ⊆ {1, . . . , n}, the clique indicator of X is the function dXe:

dXe(E) = 1 iff the graph E contains a clique on the vertices X

• dXe is just a monomial
dXe =

∧
i,j∈X;i<j

xij

• (m, l)-approximator is an OR of at most m clique indicators. The underlying
vertex-set X of each indicator satisfies |X| ≤ l.

• m, l ≥ 2 to be set later
• Observe that input variables xij are (m, l)-approximators because

xij = d{i, j}e.
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Positive and negative graphs

• Positive graphs: P denotes the set of all graphs on n vertices which consist of
one clique on k vertices and n− k isolated vertices.
◦ |P| =

(
n
k

)
◦ (∀E ∈ P)C(E) = 1

• Negative graphs: N denotes the multiset of all the graphs on n vertices
created by the following process: We color each vertex by one of k − 1 colors
and then connect by edges pairs of vertices with different colors.
◦ |N | = (k − 1)n

◦ (∀E ∈ N )C(E) = 0
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Each approximator makes a lot of errors

Lemma
Every approximator either rejects all graphs or wrongly accepts at least a fraction
1− l2/(k − 1) of all (k − 1)n negative graphs.

• An (m, l)-approximator A =
∨r

i=1dXie.
• Assume that A accepts at least one graph. Then A ≥ dX1e.
• A negative graph is rejected by dX1e iff its associated coloring assigns some
two vertices of X1 the same color.

• There are
(|X1|

2

)
pairs of vertices in X1. For each such pair at most (k − 1)n−1

colorings assign the same color.
• Thus, at most

(|X1|
2

)
(k− 1)n−1 ≤

(
l
2

)
(k− 1)n−1 negative graphs can be rejected

by dX1e, and hence, by the approximator A.
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Operation t

• Two (m, l)-approximators A =
∨r

i=1dXie and B =
∨s

i=1dYie are given.
• We wish to define an (m, l)-approximator A tB that approximates A ∨B

• Defining A tB = A ∨B would potentially give us (2m, l)-approximator. We
use the sunflower lemma to overcome this:
◦ F := {X1, . . . , Xr, Y1, . . . , Ys}
◦ m := l!(p− 1)l

◦ Plucking: replace the p sets forming a sunflower by their core
◦ Plucking procedure: repeat plucking while r + s > m
◦ Each plucking reduces the number of sets ⇒ at most m pluckings
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Operation u

• Two (m, l)-approximators A =
∨r

i=1dXie and B =
∨s

i=1dYie are given.
• We wish to define an (m, l)-approximator A uB that approximates A ∧B

• Defining

A tB = A ∧B =

r∨
i=1

s∨
j=1

(dXie ∧ dYje)

has two issues:
◦ up to m2 terms
◦ dXie ∧ dYje might not be a clique indicator

• We do the following steps:
1. Replace the term dXie ∧ dYje by the clique indicator dXi ∪ Yje.
2. Erase those indicators dXi ∪ Yje with |Xi ∪ Yj | ≥ l + 1.
3. Apply the plucking the procedure to the remaining indicators; there will be at

most m2 pluckings.
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Lemma (Error on positive graphs)

|{E ∈ P|C̃(E) = 0}| ≤ size(C) ·m2

(
n− l − 1

k − l − 1

)

• We calculate the number of errors introduced by a single gate.
• Case 1: ∨-gate is replaced by t

◦ This involves taking A ∨B and the plucking procedure.
◦ Each plucking replaces a clique indicator dXe with some indicator dX ′e s.t.

X ′ ⊆ X which can only accept more graphs, i.e., no error is introduced.
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• Case 2: ∧-gate is replaced by u
◦ The first step was to replace dXie ∧ dYje by dXi ∪ Yje. These functions behave

identically on positive graphs (cliques).
◦ The second step was to erase those clique indicators dXi ∪ Yje for which
|Xi ∪ Yj | ≥ l + 1. For each such clique indicator, at most

(
n−l−1
k−l−1

)
of the positive

graphs are lost. There are at most m2 of these indicators.
◦ The third step was the plucking procedure which again accepts only more graphs.

• In total, the error is at most size(C) ·m2
(
n−l−1
k−l−1

)
.
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Lemma (Error on negative graphs)

|{E ∈ N|C̃(E) = 1}| ≤ size(C) ·m2l2p(k − 1)n−p

• We again calculate the number of errors introduced by a single gate.
• We analyze the number of errors introduced by plucking:

◦ Sunflower with core Z and petals Z1, . . . , Zp.
◦ Let G be a uniformly random graph from N – this correponds to coloring each

vertex independently by one of the k − 1 colors, each color having probability
1/(k − 1).

◦ What is the probability that dZe accepts G, but none of the dZ1e, . . . , dZpe
accept it?

◦ PC stands for “properly colored”
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Pr[Z is PC and Z1, . . . , Zp are not PC]
≤ Pr[Z1, . . . , Zp are not PC|Z is PC]

=

p∏
i=1

Pr[Zi is not PC|Z is PC]

≤
p∏

i=1

Pr[Zi is not PC]

≤ (

(
l

2

)
/(k − 1))p ≤ l2p(k − 1)−p

• The lines hold because:
1. The definition of conditional probability
2. Sets Zi \ Z are disjoint and hence the events are independent.
3. It is less likely to happen that Zi is not PC given the fact that Z is PC.
4. Zi is not PC iff two vertices get the same color
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• Thus, one plucking adds at most l2p(k − 1)n−p negative graphs which are
accepted.

• Case 1: ∨-gate is replaced by t
◦ We take A ∨B and perform at most m pluckings.

• Case 2: ∧-gate is replaced by u
◦ The first step introduces no error because dXie ∧ dYje ≥ dXi ∪ Yje.
◦ The second step introduces no error because we only remove indicators, which

cannot accept more graphs.
◦ The third step involves at most m2 pluckings.

• In both cases: at most m2l2p(k − 1)n−p negative graphs are newly accepted.
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Grand finale

• Set l = b
√
k − 1/2c; p = b10

√
k log2 nc

• Recall m = l!(p− 1)l ≤ (pl)l. See m2 ≤ (10k log2 n)
√
k

• Use the first lemma
• Case 1: C̃ is identically 0

◦ C̃ errs on all positive graphs, we obtain:

size(C) ·m2 ·
(
n− l − 1

k − l − 1

)
≥
(
n

k

)

size(C) ≥ (n/k)l+1

m2
≥ n3/4·(b

√
k−1/2c+1)

(10n1/4 log2 n)
√
k
= nΩ(

√
k)
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• Case 2: C̃ outputs 1 on a (1− l2/(k − 1)) ≥ 1/2 fraction of all (k − 1)n graphs

size(C) ·m2 · 2−p · (k − 1)n ≥ 1

2
(k − 1)n

size(C) ≥ 2p

2m2
=

n9
√
k

2(10k log2 n)
√
k
≥ nΩ(

√
k)
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