Monotone circuit lower bounds

Lukáš Folwarczný

folwarczny@math.cas.cz

Institute of Mathematics of the Czech Academy of Sciences Computer Science Institute of Charles University in Prague

November 11, 2020

Monotone Boolean functions

- For $x, y \in \{0, 1\}^n$ we write $x \leq y$ iff $(\forall i \in \{1, \dots, n\}) x_i \leq y_i$.
- A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone iff $x \leq y$ implies $f(x) \leq f(y)$.
- Monotone Boolean functions may be represented by DNFs or CNFs without negations.
- Examples:
 - Threshold functions $\operatorname{Th}_{k}^{n}(x) = 1$ iff $x_1 + \cdots + x_n \geq k$.
 - CLIQUE $(n,k): \{0,1\}^{\binom{n}{2}} \to \{0,1\}$
 - Input x encodes graph G_x with vertices $\{1, \ldots, n\}$, where i and j are adjacent iff $x_{ij} = 1$.
 - CLIQUE(n,k)(x) = 1 iff G_x contains a clique on k vertices.

Monotone Boolean circuits

- Circuits with fanin-2 AND and OR gates.
 - Small technical detail: We should allow constants 0 and 1 to be able to compute all monotone Boolean functions including the constant ones.
- For a circuit C, size(C) is the number of gates.

Lower bounds

Lower bounds for explicit functions of n variables.

- Tiekenheinrich [Tie84]: 4n
- Razborov [Raz85]: $n^{\Omega(\log n)}$
- Andreev [And85]: $2^{n^{c-o(1)}}$ independently of Razborov
- Andreev [And87]: $2^{\Omega(n^{1/3}/\log n)}$
- Harnik and Raz [HR00]: $2^{\Omega((n/\log n)^{1/3})}$
- Cavalar, Kumar and Rossman [preprint 2020]: $2^{\Omega(n^{1/2}/(\log n)^{3/2})}$

 $^{^{1}}$ I was not able to find the value of c.

Theorem ([Raz85], [AB87])

For $3 \le k \le n^{1/4}$, the monotone circuit complexity of $\mathrm{CLIQUE}(n,k)$ is $n^{\Omega(\sqrt{k})}$.

I follow the proof from the book by Jukna [Juk12].

Combinatorial tool: The sunflower lemma

Definition

A sunflower with p petals and a core T is a collection of sets S_1, \ldots, S_p such that $S_i \cap S_j = T$ for all $i \neq j$.

Theorem (Sunflower lemma [ER60])

Let \mathcal{F} be a family of sets each of size at most l. If $|\mathcal{F}| > l!(p-1)^l$ then \mathcal{F} contains a sunflower with p petals.

Proof by induction on l:

- l = 1: We have more than p 1 sets of cardinality ≤ 1 , any p of them form a sunflower with empty core.
- $l \ge 2$:
 - $\circ \mathcal{S} = \{S_1, \ldots, S_t\}$ a maximal family of pairwise disjoint members of \mathcal{F}
 - If $t \geq p$: We are done.
 - Assume $t \le p 1$. $S := S_1 \cup \cdots \cup S_t$. $|S| \le l(p 1)$.
 - \circ S intersects (by maximality) every set in \mathcal{F}
 - Pigeonhole principle: exists $x \in S$ lying in at least this many sets of \mathcal{F} :

$$\frac{|\mathcal{F}|}{|S|} > \frac{l!(p-1)^l}{l(p-1)} = (l-1)!(p-1)^{l-1}$$

$$\mathcal{F}_x := \{ F \setminus \{x\} \mid F \in \mathcal{F}, x \in F \}$$

• Apply the induction assumption on \mathcal{F}_x and add x to each petal.

Razborov's Method of Approximations

- The set of all monotone Boolean functions \rightarrow the set of approximators ${\mathcal A}$
 - Input variables are in the set of approximators
- New operations: $\vee \to \sqcup$, $\wedge \to \sqcap$
 - \circ \sqcup , \sqcap : $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$
- Circuit C computing CLIQUE $(n,k) \to \text{approximator circuit } \tilde{C} \in \mathcal{A}$
- Strategy of the proof:
 - Every approximator (including \tilde{C}) makes a lot of errors when computing CLIQUE(n,k).
 - If $\operatorname{size}(C)$ is small, then \tilde{C} cannot make too many errors.
 - \circ This together implies that size(C) is large.

Our approximators

• For $X \subseteq \{1, ..., n\}$, the *clique indicator* of X is the function [X]:

$$\lceil X \rceil(E) = 1$$
 iff the graph E contains a clique on the vertices X

• $\lceil X \rceil$ is just a monomial

$$\lceil X \rceil = \bigwedge_{i,j \in X; i < j} x_{ij}$$

- (m, l)-approximator is an OR of at most m clique indicators. The underlying vertex-set X of each indicator satisfies $|X| \leq l$.
- $m, l \geq 2$ to be set later
- Observe that input variables x_{ij} are (m, l)-approximators because

$$x_{ij} = \lceil \{i, j\} \rceil.$$

9

Positive and negative graphs

- Positive graphs: \mathcal{P} denotes the set of all graphs on n vertices which consist of one clique on k vertices and n-k isolated vertices.
 - $\circ |\mathcal{P}| = \binom{n}{k}$
 - $(\forall E \in \mathcal{P})C(E) = 1$
- Negative graphs: \mathcal{N} denotes the **multiset** of all the graphs on n vertices created by the following process: We color each vertex by one of k-1 colors and then connect by edges pairs of vertices with different colors.
 - $|\mathcal{N}| = (k-1)^n$
 - $(\forall E \in \mathcal{N}) C(E) = 0$

Each approximator makes a lot of errors

Lemma

Every approximator either rejects all graphs or wrongly accepts at least a fraction $1 - l^2/(k-1)$ of all $(k-1)^n$ negative graphs.

- An (m, l)-approximator $A = \bigvee_{i=1}^r \lceil X_i \rceil$.
- Assume that A accepts at least one graph. Then $A \geq \lceil X_1 \rceil$.
- A negative graph is rejected by $\lceil X_1 \rceil$ iff its associated coloring assigns some two vertices of X_1 the same color.
- There are $\binom{|X_1|}{2}$ pairs of vertices in X_1 . For each such pair at most $(k-1)^{n-1}$ colorings assign the same color.
- Thus, at most $\binom{|X_1|}{2}(k-1)^{n-1} \le \binom{l}{2}(k-1)^{n-1}$ negative graphs can be rejected by $\lceil X_1 \rceil$, and hence, by the approximator A.

Operation \sqcup

- Two (m,l)-approximators $A = \bigvee_{i=1}^r [X_i]$ and $B = \bigvee_{i=1}^s [Y_i]$ are given.
- We wish to define an (m,l)-approximator $A \sqcup B$ that approximates $A \vee B$
- Defining $A \sqcup B = A \vee B$ would potentially give us (2m, l)-approximator. We use the sunflower lemma to overcome this:
 - $\circ \ \mathcal{F} := \{X_1, \dots, X_r, Y_1, \dots, Y_s\}$
 - $m := l!(p-1)^l$
 - \circ Plucking: replace the p sets forming a sunflower by their core
 - Plucking procedure: repeat plucking while r + s > m
 - Each plucking reduces the number of sets \Rightarrow at most m pluckings

Operation \sqcap

- Two (m, l)-approximators $A = \bigvee_{i=1}^r \lceil X_i \rceil$ and $B = \bigvee_{i=1}^s \lceil Y_i \rceil$ are given.
- We wish to define an (m, l)-approximator $A \sqcap B$ that approximates $A \wedge B$
- Defining

$$A \sqcup B = A \land B = \bigvee_{i=1}^{r} \bigvee_{j=1}^{s} (\lceil X_i \rceil \land \lceil Y_j \rceil)$$

has two issues:

- \circ up to m^2 terms
- $\circ [X_i] \wedge [Y_j]$ might not be a clique indicator
- We do the following steps:
 - 1. Replace the term $[X_i] \wedge [Y_j]$ by the clique indicator $[X_i \cup Y_j]$.
 - 2. Erase those indicators $[X_i \cup Y_j]$ with $|X_i \cup Y_j| \ge l+1$.
 - 3. Apply the plucking the procedure to the remaining indicators; there will be at most m^2 pluckings.

Lemma (Error on positive graphs)

$$|\{E \in \mathcal{P}|\tilde{C}(E) = 0\}| \le \operatorname{size}(C) \cdot m^2 \binom{n-l-1}{k-l-1}$$

- We calculate the number of errors introduced by a single gate.
- Case 1: \vee -gate is replaced by \sqcup
 - This involves taking $A \vee B$ and the plucking procedure.
 - Each plucking replaces a clique indicator $\lceil X \rceil$ with some indicator $\lceil X' \rceil$ s.t. $X' \subseteq X$ which can only accept more graphs, i.e., no error is introduced.

- Case 2: \land -gate is replaced by \sqcap
 - The first step was to replace $[X_i] \wedge [Y_j]$ by $[X_i \cup Y_j]$. These functions behave identically on positive graphs (cliques).
 - The second step was to erase those clique indicators $[X_i \cup Y_j]$ for which $|X_i \cup Y_j| \ge l+1$. For each such clique indicator, at most $\binom{n-l-1}{k-l-1}$ of the positive graphs are lost. There are at most m^2 of these indicators.
 - The third step was the plucking procedure which again accepts only more graphs.
- In total, the error is at most size $(C) \cdot m^2 \binom{n-l-1}{k-l-1}$.

Lemma (Error on negative graphs)

$$|\{E \in \mathcal{N}|\tilde{C}(E) = 1\}| \le \operatorname{size}(C) \cdot m^2 l^{2p} (k-1)^{n-p}$$

- We again calculate the number of errors introduced by a single gate.
- We analyze the number of errors introduced by plucking:
 - Sunflower with core Z and petals Z_1, \ldots, Z_p .
 - Let **G** be a uniformly random graph from \mathcal{N} this correponds to coloring each vertex independently by one of the k-1 colors, each color having probability 1/(k-1).
 - What is the probability that $\lceil Z \rceil$ accepts **G**, but none of the $\lceil Z_1 \rceil, \ldots, \lceil Z_p \rceil$ accept it?
 - PC stands for "properly colored"

$$\Pr[Z \text{ is PC and } Z_1, \dots, Z_p \text{ are not PC}]$$

$$\leq \Pr[Z_1, \dots, Z_p \text{ are not PC} | Z \text{ is PC}]$$

$$= \prod_{i=1}^p \Pr[Z_i \text{ is not PC} | Z \text{ is PC}]$$

$$\leq \prod_{i=1}^p \Pr[Z_i \text{ is not PC}]$$

$$\leq {\binom{l}{2}}/{(k-1)}^p \leq l^{2p}(k-1)^{-p}$$

- The lines hold because:
 - 1. The definition of conditional probability
 - 2. Sets $Z_i \setminus Z$ are disjoint and hence the events are independent.
 - 3. It is less likely to happen that Z_i is not PC given the fact that Z is PC.
 - 4. Z_i is not PC iff two vertices get the same color

- Thus, one plucking adds at most $l^{2p}(k-1)^{n-p}$ negative graphs which are accepted.
- Case 1: ∨-gate is replaced by ⊔
 - We take $A \vee B$ and perform at most m pluckings.
- Case 2: \land -gate is replaced by \sqcap
 - The first step introduces no error because $[X_i] \wedge [Y_i] \geq [X_i \cup Y_i]$.
 - The second step introduces no error because we only remove indicators, which cannot accept more graphs.
 - The third step involves at most m^2 pluckings.
- In both cases: at most $m^2 l^{2p} (k-1)^{n-p}$ negative graphs are newly accepted.

Grand finale

- Set $l = \lfloor \sqrt{k-1}/2 \rfloor$; $p = \lfloor 10\sqrt{k} \log_2 n \rfloor$
- Recall $m = l!(p-1)^l \le (pl)^l$. See $m^2 \le (10k \log_2 n)^{\sqrt{k}}$
- Use the first lemma
- Case 1: \tilde{C} is identically 0
 - \circ \tilde{C} errs on all positive graphs, we obtain:

$$\operatorname{size}(C) \cdot m^2 \cdot \binom{n-l-1}{k-l-1} \ge \binom{n}{k}$$
$$\operatorname{size}(C) \ge \frac{(n/k)^{l+1}}{m^2} \ge \frac{n^{3/4 \cdot (\lfloor \sqrt{k-1}/2 \rfloor + 1)}}{(10n^{1/4} \log_2 n)^{\sqrt{k}}} = n^{\Omega(\sqrt{k})}$$

• Case 2: \tilde{C} outputs 1 on a $(1-l^2/(k-1)) \ge 1/2$ fraction of all $(k-1)^n$ graphs

$$size(C) \cdot m^2 \cdot 2^{-p} \cdot (k-1)^n \ge \frac{1}{2}(k-1)^n$$

$$\operatorname{size}(C) \ge \frac{2^p}{2m^2} = \frac{n^{9\sqrt{k}}}{2(10k\log_2 n)^{\sqrt{k}}} \ge n^{\Omega(\sqrt{k})}$$

References

- [AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions. *Comb.*, 7(1):1–22, 1987.
- [And85] A. E. Andreev. On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl., 31(3):530-534, 1985.
- [And87] A. E. Andreev. A method for obtaining efficient lower bounds for monotone complexity. Algebra and Logic, 26:1–18, 1987.
- [ER60] P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, s1-35(1):85–90, 1960.
- [HR00] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 378–387. ACM, 2000.
- [Juk12] Stasys Jukna. Boolean Function Complexity Advances and Frontiers, volume 27 of Algorithms and combinatorics. Springer, 2012.
- [Raz85] A. A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet Math. Dokl., 31:354–357, 1985.
- [Tie84] Jürgen Tiekenheinrich. A 4n-lower bound on the monotone network complexity of a one-output boolean function. *Inf. Process. Lett.*, 18(4):201–202, 1984.