Witnessing Theorems and Conservation results for T_2^{\prime}

Chun-Yu "Max" Lin

Department of Logic, Faculty of Arts, Charles University

May 12, 2023

	Lin

э

 T_2^i and S_2^i in Sequent Calculus

Axioms

$$\overline{A \to A}$$
 $\overline{\to \varphi(\bar{x})} \varphi(\bar{x}) \in BASIC$

Inference rules :

- Weak structural rules
- 2 Logical rules
- Out rules
- Equality axioms
- Sounded quantifiers rules

2/19

T_2^i and S_2^i in Sequent Calculus

Induction inference rule : Let Φ be a set of formulas. for $A \in \Phi$ • Φ -IND :

$$rac{A(b),\Gamma
ightarrow\Delta,A(b+1)}{A(0),\Gamma
ightarrow\Delta,A(t)}$$

• Φ-PIND :

$$rac{A(\lfloor rac{1}{2}b
floor), \Gamma o \Delta, A(b)}{A(0), \Gamma o \Delta, A(t)}$$

Definition

$$S_2^i$$
: BASIC + Σ_i^b -PIND.
 T_2^i : BASIC + Σ_i^b -IND

Remark : We let T_2^0 denote PV_1 defined as follows : first order language consisting of symbols for \Box_1^p and Δ_1^p , and to have as axioms (1) BASIC (2) axioms that define the non-logical symbols in the sense of constructions for \Box_i^p (3) IND for sharply bounded formulas.

Every single function and predicate symbol which was claimed to be Σ_1 -definable or Δ_1 -definable in $I\Delta_0$ is likewise Σ_i^b -definable or Δ_i^b -definable in $S_2^1, T_2^1, BASIC + \Pi_1^b$ -PIND, BASIC + Σ_1^b -LIND, BASIC + Π_1^b -LIND and BASIC + Π_1^b -IND.

```
Theorem (Buss, 1986)
```

Let $i \ge 1$

•
$$T_2^i$$
 proves Π_i^b -IND and $T_2^i \models S_2^i$.

2 S_2^i proves Σ_i^b -LIND, Π_i^b -PIND and Π_i^b -LIND.

・ 「「・ ・ 」 ・ ・ 」 ・

Definition (Cobham, 1965)

The polynomial time function on $\ensuremath{\mathbb{N}}$ are inductive defined by

- The following function are polynomial time :
 - The nullary constant function 0.
 - The successor function S(x)
 - The doubling function D(x)=2x

The conditional function $Cond(x, y, z) = \begin{cases} y & \text{if } x = 0 \\ z & \text{otherwise.} \end{cases}$

The projection functions are polynomial time functions; the composition of polynomial time functions is a polynomial time function.

 If g is a (n-1)-ary polynomial time function and h is a (n+1)-ary polynomial time function and p is a polynomial, then the following function f, defined by limited iteration on notation from g and h, is also polynomial time : f(0, x) = g(x) f(z, x) = h(z, x, f(⌊½z⌋, x)) for z ≠ 0 provided |f(z, x)| ≤ p(|z|, |x|)

(日) (四) (日) (日) (日)

э

Notation

The class of polynomial time functions is denoted as \Box_1^p , and the class of polynomial time predicates is denoted Δ_1^p .

Theorem (Buss, 1986)

- Every polynomial time function is Σ_1^b -definable in S_2^1 .
- Every polynomial time predicate (i.e. its characteristic function is polynomial time) is Δ₁^b-definable in S₂¹.

Theorem (Buss, 1986)

Let $i \ge 1$. • $T_2^i \supseteq S_2^i$. • $S_2^i \supseteq T_2^{i-1}$.

< ロト < 同ト < ヨト < ヨト

Definition

The classes Δ_1^p and \square_1^p have already been defined. Further define, by induction on i,

- Σ_i^p is the class of predicate $R(\vec{x})$ definable by $R(\vec{x}) \leftrightarrow (\exists y) \leq s(\vec{x})(Q(\vec{x},y))$ for some term s in ther language of bounded arithmetic, and some Δ_i^p predicate Q.
- **2** Π_i^p is the class of complements of predicates in Σ_i^p .
- S □^ρ_{i+1} is the class of predicates computable on a polynomial time Turing machine using an oracle from Σ^ρ_i.
- Δ_i^p is the class of predicates which have characteristic function in \Box_{i+1}^p .

Theorem (Wrathall'76, Stockmeyer'76, Kent-Hodgson'82)

A predicate is Σ_i^p if and only if there is a Σ_i^b -formula which defines it.

There are two important witnessing theorems for T_2^i . The first follows from the 'Main Theorem' for S_2^{i+1} and the fact that S_2^{i+1} is Σ_{i+1}^b -conservative over T_2^i : this witnessing theorem states that the Σ_{i+1}^b -definable functions of T_2^i are precisely the functions which can be computed in polynomial time with a Σ_i^b -oracle (i.e., the \mathbb{D}_{i+1}^p -functions). The second witnessing theorem puts a necessary condition on the Σ_{i+2}^b - and Σ_{i+2}^p -definable functions of T_2^i ; we call this the 'KPT witnessing theorem'. It is this latter witnessing theorem that we need for our proofs:

8/19

(日) (四) (三) (三) (三)

The $\sum_{i=1}^{b}$ -definable functions of T_2^i

Theorem (Buss, 1990)

Let $i \geq 0$.

- T_2^i can Σ_{i+1}^b -define every \Box_{i+1}^p function.
- **2** Every \sum_{i+1}^{b} -definable function of in T_{2}^{i} is a \Box_{i+1}^{p} -function.
- S_2^{i+1} is Σ_{i+1}^b -conservative over T_2^i .
- S_2^{i+1} is conservative over $T_2^i + \Sigma_{i+1}^b$ -replacement w.r.t Boolean combination of Σ_{i+1}^b formulas.

9/19

イロト イロト イヨト イヨト 二日

Recall : LSP(w,j) is the Σ_i^b -defined function of S_2^1 which is equal to $w \mod 2^j$.

Definition

A theory R can Q_i -define the function $f(\vec{x})$ if and only if there is a Σ_i^b -formula $U(w, j, \vec{x})$, a term $t(\vec{x})$, and a Σ_1^b -defined function f^* of S_2^1 such that $R \vdash (\forall x)(\exists y) DEF_{U,t}(w, \vec{x})$ where $DEF_{U,t}(w, \vec{x})$ is the following formula :

$$(\forall j < |t|)[Bit(j,w) \leftrightarrow U(LSP(w,j),j,\vec{x})]$$

and such that, for all $\vec{n}, w \in \mathbb{N}$, if $DEF_{U,t}(w, \vec{n})$ then $f(\vec{n}) = f^*(w, \vec{n})$.

Idea : The letter Q stands for "query" and the idea is that a function is Q_i -definable if and only if it is computable by a polynomial time Turing machine with a $\sum_{i=1}^{p} -$ oracle.

(日) (周) (日) (日) (日)

Proof.

(1) : For i = 0, it is clear because the temporary convention that T_2^0 denotes PV_1 . For i > 0, one shows that T_2^i can Q_i -define every \Box_{i+1}^p formula.

(2) : This is immediate from the fact that every Σ^b_i-definable function of Sⁱ₂ is in □^p_i and Tⁱ₂ ⊆ Sⁱ⁺¹₂.
(3) : This is based on the following Witnessing Lemma for Sⁱ⁺¹₂.
(4) : This can be obtained from the Witnessing Lemma using the fact that Tⁱ₂ + Σ^b_{i+1}-replacement can prove that A(*c*) is equivalent to (∃w)Witnessⁱ⁺¹₄(w, *c*) for any A ∈ Σ^b_{i+1}.

11/19

Witness Lemma for S_2^{i+1}

Lemma

Let $i \ge 1$. Let $\Gamma \to \Delta$ be a sequent of formulas in Σ_{i+1}^{b} in prenex form, and suppose S_{2}^{i+1} proves $\Gamma \to \Delta$; let \vec{c} include all free variables in the sequent. Then there is a \Box_{i+1}^{p} -function $h(w, \vec{c})$ which is Q_{i} -defined in T_{2}^{i} such that T_{2}^{i} proves

$$Witnes^{i+1}_{\wedge \Gamma}(w, \vec{c}) \rightarrow Witnes^{i+1}_{\vee \Delta}(h(w, \vec{c}), \vec{c}).$$

Proof.

The proof of this Witnessing Lemma is almost exactly the same as the proof of the Witnessing Lemma for S_2^i ; the only difference is that the witnessing functions are now proved to be Q_i -definable in T_2^i . (1) implies the necessary functions are Q-defined by T_2^i since we already know they are \sum_{i+1}^{b} -defined by S_2^{i+1} . So the main new aspect is showing that T_2^i can prove that the witnessing functions work.

Image: A matrix

The \sum_{i+2}^{b} -definable functions of T_{2}^{i}

The \sum_{i+2}^{b} -definable functions of T_{2}^{i} can be characterized by the following theorem :

Theorem (Krajíček-Pudlák-Takeuti, 1991)

Let $i \ge 0$. Suppose T_2^i proves $(\forall x)(\exists y)(\forall z \le t(x))A(y,x,z)$ where $A \in \prod_i^b$. Then there is a k > 0 and there are \sum_{i+1}^b -definable function symbols $f_1(x), f_2(x,z_1), \dots, f_k(x,z_1,\dots,z_{k-1})$ such that T_2^i proves

$$egin{aligned} (orall x)(orall z_1 \leq t)[A(f_1(x),x,z_1) \lor (orall z_2 \leq t)]A(f_2(x,z_1),x,z_2) \ &\lor (orall z_3 \leq t)[A(f_3(x,z_1,z_2),x,z_3) \ &\lor \cdots \lor (orall z_k \leq t)[A(f_k(x,z_1,\ldots,z_{k-1}),x,z_k)]\cdots]]] \end{aligned}$$

Conversely, whenever the above formula is provable, then T_2^i can also prove $(\forall x)(\exists y)(\forall z \leq t(x))A(y,x,z)$.

< ロト < 同ト < ヨト < ヨト

3

Proof

Proof I. Let $\varphi(a, x, y)$ be of the form

 $\exists z \ \psi(a, x, y, z),$

where ψ is Π_i^{b} . ψ is in PV_{i+1} equivalent to g(a, x, y, z) = 1, where g is the characteristic function of ψ .

From the assumption of the theorem we have:

 $PV_{i+1} \vdash \exists x \forall y \exists z g(a, x, y, z) = 1.$

 PV_{i+1} is a universal theory and thus we can apply Gentzen's midsequent theorem, cf. [13], (or equivalently Herbrand's theorem) to find PV_{i+1} -terms t_{μ} and $s_{\mu,\nu}$ such that (after possible renaming of free variables) the disjunction:

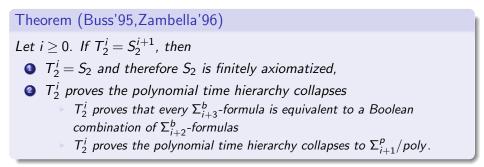
$$(g(a, t_1(a), b_1, s_{1,1}) = 1 \lor \cdots \lor g(a, t_1(a), b_1, s_{1,n}) = 1)$$

$$(g(a, t_k(a, b_1, \ldots, b_{k-1}), b_k, s_{k,1}) = 1 \lor \cdots g(a, t_k(a, b_1, \ldots, b_{k-1}), b_k, s_{k,n}) = 1)$$

is provable in PV_{i+1} (terms $s_{u,v}$ generally depend on all a, b, and t_u depends only on a, b_1, \ldots, b_{u-1}).

Now existentially quantify terms $s_{u,v}$ and contract occurrences of $\exists z \ g(a, t_i, b_i, z) = 1$, for $1 \le j \le k$. The required functions f_i are those defined by terms t_i .

Applications to the polynomial hierarchy



Proof.

(1) : We need the method of proof of the following claim : if $T_2^i = S_2^{i+1}$ then $T_2^i \vdash \Sigma_{i+1}^b$ -IND and $T_2^i = T_2^{i+1}$. By iterating the same method with some modifications, one can show $T_2^i = T_2^{i+2}$, $T_2^i = T_2^{i+3}$ and so on.

(ロ) (個) (E) (E) (E)

Corollary (Buss, 1995)

 S_2 is finitely axiomatized if and only if S_2 proves the polynomial hierarchy collapses.

ax	

э

16/19

・ 「「・ ・ 」 ・ ・ 」 ・

The Σ_1^b -definable functions of T_2^1

Polynomial Local Search problem : a maximization problem satisfying the following conditions :

- For every instance x ∈ {0,1}*, there is a set F_L(x) of solutions, an integer valued cost function c_L(s,x) and a neighborhood function N_L(s,x),
- The binary predicate s ∈ F_L(x) and the function c_L(s,x) and N_L(s,x) are polynomial time computable. There is a polynomial p_L so that for all s ∈ F_L(x), |s| ≤ p_L(|x|). Also, 0 ∈ F_L(x).
- For all $s \in \{0,1\}^*$, $N_L(s,x) \in F_L(x)$.
- For all $s \in F_L(x)$, if $N_L(s,x) \neq s$ then $c_L(s,x) < c_L(N_L(s,x),x)$
- So The problem is solved by finding a locally optimal s ∈ F_L(x), i.e. an s such that N_L(s,x) = s.

イロト イポト イヨト イヨト 二日

Remark 1

A PLS-problem L can be expressed as a Π_1^b -sentence saying that the conditions above hold; if these are provable in T_2^1 then we say L is a PLS-problem.

Theorem (Buss-Krajíček, 1994)

Let the formula $Opt_L(x,s)$ be the Δ_1^b -formula $N_L(s,x) = s$.

- For every PLS problem L, T_2^1 can prove $(\forall x)(\exists y)Opt_L(x,y)$.
- If A ∈ Σ₁^b and if T₂¹ proves (∀x)(∃y)A(x,y), then there is a polynomial time function π(y) and a PLS problem L such that T₂¹ proves (∀x)(∀y)(Opt_L(x,y) → A(x,π(y))).

(2) gives an exact complexity characterization of the $\forall \Sigma_1^b$ -definable functions of T_2^1 in terms of PLS-computability.

(日) (周) (日) (日)

Proof

(1) : It is known that T_2^1 proves the Σ -MIN axioms; this immediately implies also the Σ -MAX principle. Arguing informally in T_2^1 , we have that, for all s, there is a maximum value $C_0 < M_L(x)$ satisfying $(\exists s \in F_L(x))(c_L(s,x) = c_0)$. Taking s to be witness for this last formula, we see that s is globally optimal and hence satisfies, and the theorem is proved.

(2): By free-cut elimination, there is a T_2^1 -proof P in LKB of the sequent $\rightarrow A(\vec{b}, t)$ such that every sequent in P is of the form $A_1(\vec{u}, t), \ldots, A_k(\vec{u}, t) \rightarrow B_1(\vec{u}, t), \ldots B_l(\vec{u}, t)$ where \vec{u} is a sequence of variables and $A_i, B_i \in \Sigma_i^b$. We shall prove by induction on the number of proof steps that any sequent of the above form provable in T_2^1 corresponds computationally to a PLS-problem.

(日) (周) (日) (日) (日)