Witnessing Theorems and Conservation results for T_{2}^{i}

Chun-Yu "Max" Lin
Department of Logic, Faculty of Arts, Charles University

May 12, 2023

T_{2}^{i} and S_{2}^{i} in Sequent Calculus

Axioms

$$
\overline{A \rightarrow A} \quad \overline{\rightarrow \varphi(\bar{x})} \varphi(\bar{x}) \in B A S I C
$$

Inference rules :

(1) Weak structural rules
(2) Logical rules
(3) Cut rules
(1) Equality axioms
(5) Bounded quantifiers rules

T_{2}^{i} and S_{2}^{i} in Sequent Calculus

Induction inference rule : Let Φ be a set of formulas. for $A \in \Phi$

- Φ-IND :

$$
\frac{A(b), \Gamma \rightarrow \Delta, A(b+1)}{A(0), \Gamma \rightarrow \Delta, A(t)}
$$

- Ф-PIND :

$$
\frac{A\left(\left\lfloor\frac{1}{2} b\right\rfloor\right), \Gamma \rightarrow \Delta, A(b)}{A(0), \Gamma \rightarrow \Delta, A(t)}
$$

Definition
 $S_{2}^{i}:$ BASIC $+\sum_{i}^{b}$-PIND.
 $T_{2}^{i}:$ BASIC $+\sum_{i}^{b}$-IND

Remark : We let T_{2}^{0} denote $P V_{1}$ defined as follows: first order language consisting of symbols for \square_{1}^{p} and Δ_{1}^{p}, and to have as axioms (1) BASIC
(2) axioms that define the non-logical symbols in the sense of constructions for \square_{i}^{p} (3) IND for sharply bounded formulas.

Every single function and predicate symbol which was claimed to be Σ_{1}-definable or Δ_{1}-definable in $I \Delta_{0}$ is likewise \sum_{i}^{b}-definable or Δ_{i}^{b}-definable in S_{2}^{1}, T_{2}^{1}, BASIC $+\Pi_{1}^{b}$-PIND, BASIC $+\Sigma_{1}^{b}$-LIND, BASIC + Π_{1}^{b}-LIND and BASIC $+\Pi_{1}^{b}$-IND.

Theorem (Buss,1986)
Let $i \geq 1$
(1) T_{2}^{i} proves Π_{i}^{b}-IND and $T_{2}^{i} \models S_{2}^{i}$.
(2) S_{2}^{i} proves \sum_{i}^{b}-LIND, $\Pi_{i}^{b}-P I N D$ and Π_{i}^{b}-LIND.

Definition (Cobham,1965)

The polynomial time function on \mathbb{N} are inductive defined by
(1) The following function are polynomial time :

The nullary constant function 0 .
The successor function $S(x)$
The doubling function $D(x)=2 x$
The conditional function $\operatorname{Cond}(x, y, z)= \begin{cases}y & \text { if } x=0 \\ z & \text { otherwise. }\end{cases}$
(2) The projection functions are polynomial time functions; the composition of polynomial time functions is a polynomial time function.
(3) If g is a $(n-1)$-ary polynomial time function and h is a $(n+1)$-ary polynomial time function and p is a polynomial, then the following function f , defined by limited iteration on notation from g and h , is also polynomial time : $f(0, \vec{x})=g(\vec{x})$
$f(z, \vec{x})=h\left(z, \vec{x}, f\left(\left\lfloor\frac{1}{2} z\right\rfloor, \vec{x}\right)\right)$ for $z \neq 0$ provided $|f(z, \vec{x})| \leq p(|z|,|\vec{x}|)$

Notation

The class of polynomial time functions is denoted as \square_{1}^{p}, and the class of polynomial time predicates is denoted Δ_{1}^{p}.

Theorem (Buss,1986)

(1) Every polynomial time function is Σ_{1}^{b}-definable in S_{2}^{1}.
(2) Every polynomial time predicate (i.e. its characteristic function is polynomial time) is Δ_{1}^{b}-definable in S_{2}^{1}.

Theorem (Buss, 1986)
Let $i \geq 1$.
(1) $T_{2}^{i} \supseteq S_{2}^{i}$.
(2) $S_{2}^{i} \supseteq T_{2}^{i-1}$.

Definition

The classes Δ_{1}^{p} and \square_{1}^{p} have already been defined. Further define, by induction on i ,
(1) \sum_{i}^{p} is the class of predicate $R(\vec{x})$ definable by $R(\vec{x}) \leftrightarrow(\exists y) \leq s(\vec{x})(Q(\vec{x}, y))$ for some term s in ther language of bounded arithmetic, and some Δ_{i}^{p} predicate Q .
(2) Π_{i}^{p} is the class of complements of predicates in Σ_{i}^{p}.
(3) \square_{i+1}^{p} is the class of predicates computable on a polynomial time Turing machine using an oracle from Σ_{i}^{p}.
(9) Δ_{i}^{p} is the class of predicates which have characteristic function in \square_{i+1}^{p}.

Theorem (Wrathall'76,Stockmeyer'76,Kent-Hodgson'82)

A predicate is \sum_{i}^{p} if and only if there is a \sum_{i}^{b}-formula which defines it.

There are two important witnessing theorems for T_{2}^{i}. The first follows from the 'Main Theorem' for S_{2}^{i+1} and the fact that S_{2}^{i+1} is Σ_{i+1}^{b}-conservative over T_{2}^{i} : this witnessing theorem states that the Σ_{i+1}^{b}-definable functions of T_{2}^{i} are precisely the functions which can be computed in polynomial time with a Σ_{i}^{b}-oracle (i.e., the \square_{i+1}^{p} functions). The second witnessing theorem puts a necessary condition on the $\Sigma_{i+2^{-}}^{b}$ and Σ_{i+3}^{p}-definable functions of T_{2}^{i}; we call this the 'KPT witnessing theorem'. It is this latter witnessing theorem that we need for our proofs:

The \sum_{i+1}^{b}-definable functions of T_{2}^{i}

Theorem (Buss, 1990)
Let $i \geq 0$.
(1) T_{2}^{i} can \sum_{i+1}^{b}-define every \square_{i+1}^{p} function.
(2) Every Σ_{i+1}^{b}-definable function of in T_{2}^{i} is a \square_{i+1}^{p}-function.
(-) S_{2}^{i+1} is \sum_{i+1}^{b}-conservative over T_{2}^{i}.

- S_{2}^{i+1} is conservative over $T_{2}^{i}+\sum_{i+1}^{b}$-replacement w.r.t Boolean combination of \sum_{i+1}^{b} formulas.

Recall: $\operatorname{LSP}(w, j)$ is the \sum_{i}^{b}-defined function of S_{2}^{1} which is equal to $w \bmod 2^{j}$.

Definition

A theory R can Q_{i}-define the function $f(\vec{x})$ if and only if there is a \sum_{i}^{b}-formula $U(w, j, \vec{x})$, a term $t(\vec{x})$, and a \sum_{1}^{b}-defined function f^{*} of S_{2}^{1} such that $R \vdash(\forall x)(\exists y) D E F_{U, t}(w, \vec{x})$ where $D E F_{U, t}(w, \vec{x})$ is the following formula :

$$
(\forall j<|t|)[\operatorname{Bit}(j, w) \leftrightarrow U(L S P(w, j), j, \vec{x})]
$$

and such that, for all $\vec{n}, w \in \mathbb{N}$, if $D E F_{U, t}(w, \vec{n})$ then $f(\vec{n})=f^{*}(w, \vec{n})$.
Idea : The letter Q stands for "query" and the idea is that a function is Q_{i}-definable if and only if it is computable by a polynomial time Turing machine with a Σ_{i}^{p}-oracle.

Proof.

(1) : For $i=0$, it is clear because the temporary convention that T_{2}^{0} denotes $P V_{1}$. For $i>0$, one shows that T_{2}^{i} can Q_{i}-define every \square_{i+1}^{p} formula.
(2) : This is immediate from the fact that every \sum_{i}^{b}-definable function of S_{2}^{i} is in \square_{i}^{p} and $T_{2}^{i} \subseteq S_{2}^{i+1}$.
(3) : This is based on the following Witnessing Lemma for S_{2}^{i+1}.
(4) : This can be obtained from the Witnessing Lemma using the fact that $T_{2}^{i}+\sum_{i+1}^{b}$-replacement can prove that $A(\vec{c})$ is equivalent to $(\exists w)$ Witness $_{A}^{i+1}(w, \vec{c})$ for any $A \in \sum_{i+1}^{b}$.

Witness Lemma for S_{2}^{i+1}

Lemma

Let $i \geq 1$. Let $\Gamma \rightarrow \Delta$ be a sequent of formulas in \sum_{i+1}^{b} in prenex form, and suppose S_{2}^{i+1} proves $\Gamma \rightarrow \Delta$; let \vec{c} include all free variables in the sequent. Then there is a \square_{i+1}^{p}-function $h(w, \vec{c})$ which is Q_{i}-defined in T_{2}^{i} such that T_{2}^{i} proves

$$
\text { Witnes }_{\wedge}^{i+1}(w, \vec{c}) \rightarrow \text { Witnes }_{\vee \Delta}^{i+1}(h(w, \vec{c}), \vec{c}) .
$$

Proof.

The proof of this Witnessing Lemma is almost exactly the same as the proof of the Witnessing Lemma for S_{2}^{i}; the only difference is that the witnessing functions are now proved to be Q_{i}-definable in T_{2}^{i}. (1) implies the necessary functions are Q-defined by T_{2}^{i} since we already know they are \sum_{i+1}^{b}-defined by S_{2}^{i+1}. So the main new aspect is showing that T_{2}^{i} can prove that the witnessing functions work.

The \sum_{i+2}^{b}-definable functions of T_{2}^{i}
The \sum_{i+2}^{b}-definable functions of T_{2}^{i} can be characterized by the following theorem :

Theorem (Krajíček-Pudlák-Takeuti, 1991)

Let $i \geq 0$. Suppose T_{2}^{i} proves $(\forall x)(\exists y)(\forall z \leq t(x)) A(y, x, z)$ where $A \in \Pi_{i}^{b}$. Then there is a $k>0$ and there are \sum_{i+1}^{b}-definable function symbols $f_{1}(x), f_{2}\left(x, z_{1}\right), \ldots, f_{k}\left(x, z_{1}, \ldots, z_{k-1}\right)$ such that T_{2}^{i} proves

$$
\begin{aligned}
(\forall x)\left(\forall z_{1} \leq t\right) & {\left[A (f _ { 1 } (x) , x , z _ { 1 }) \vee (\forall z _ { 2 } \leq t) \left[A\left(f_{2}\left(x, z_{1}\right), x, z_{2}\right)\right.\right.} \\
\vee & \left(\forall z_{3} \leq t\right)\left[A\left(f_{3}\left(x, z_{1}, z_{2}\right), x, z_{3}\right)\right. \\
& \left.\left.\left.\vee \vee\left(\forall z_{k} \leq t\right)\left[A\left(f_{k}\left(x, z_{1}, \ldots, z_{k-1}\right), x, z_{k}\right)\right] \cdots\right]\right]\right]
\end{aligned}
$$

Conversely, whenever the above formula is provable, then T_{2}^{i} can also prove $(\forall x)(\exists y)(\forall z \leq t(x)) A(y, x, z)$.

Proof

Proof I. Let $\varphi(a, x, y)$ be of the form

$$
\exists z \psi(a, x, y, z)
$$

where ψ is $\Pi_{i}^{b} . \psi$ is in PV_{i+1} equivalent to $g(a, x, y, z)=1$, where g is the characteristic function of ψ.

From the assumption of the theorem we have:

$$
\mathrm{PV}_{i+1}+\exists x \forall y \exists z g(a, x, y, z)=1
$$

PV_{i+1} is a universal theory and thus we can apply Gentzen's midsequent theorem, cf. [13], (or equivalently Herbrand's theorem) to find PV_{i+1}-terms t_{u} and $s_{u, v}$ such that (after possible renaming of free variables) the disjunction:
$\left(g\left(a, t_{1}(a), b_{1}, s_{1,1}\right)=1 \vee \cdots \vee g\left(a, t_{1}(a), b_{1}, s_{1, n}\right)=1\right)$
$\mathrm{v} \cdot \cdots$
$\left(g\left(a, t_{k}\left(a, b_{1}, \ldots, b_{k-1}\right), b_{k}, s_{k, 1}\right)=1 \vee \cdots g\left(a, t_{k}\left(a, b_{1}, \ldots, b_{k-1}\right), b_{k}, s_{k, n}\right)=1\right)$
is provable in PV_{i+1} (terms $s_{u, v}$ generally depend on all a, b, and t_{u} depends only on $a, b_{1}, \ldots, b_{u-1}$).

Now existentially quantify terms $s_{u, v}$ and contract occurrences of $\exists z \quad g\left(a, t_{j}, b_{j}, z\right)=1$, for $1 \leqslant j \leqslant k$. The required functions f_{j} are those defined by terms \boldsymbol{t}_{j}.

Applications to the polynomial hierarchy

Theorem (Buss'95,Zambella'96)
Let $i \geq 0$. If $T_{2}^{i}=S_{2}^{i+1}$, then
(1) $T_{2}^{i}=S_{2}$ and therefore S_{2} is finitely axiomatized,
(3) T_{2}^{i} proves the polynomial time hierarchy collapses
T_{2}^{i} proves that every \sum_{i+3}^{b}-formula is equivalent to a Boolean combination of \sum_{i+2}^{b}-formulas
T_{2}^{i} proves the polynomial time hierarchy collapses to $\sum_{i+1}^{p} /$ poly .

Proof.

(1): We need the method of proof of the following claim : if $T_{2}^{i}=S_{2}^{i+1}$ then $T_{2}^{i} \vdash \sum_{i+1}^{b}$-IND and $T_{2}^{i}=T_{2}^{i+1}$. By iterating the same method with some modifications, one can show $T_{2}^{i}=T_{2}^{i+2}, T_{2}^{i}=T_{2}^{i+3}$ and so on.

Corollary (Buss,1995)

S_{2} is finitely axiomatized if and only if S_{2} proves the polynomial hierarchy collapses.

The Σ_{1}^{b}-definable functions of T_{2}^{1}

Polynomial Local Search problem : a maximization problem satisfying the following conditions :
(1) For every instance $x \in\{0,1\}^{*}$, there is a set $F_{L}(x)$ of solutions, an integer valued cost function $c_{L}(s, x)$ and a neighborhood function $N_{L}(s, x)$,
(2) The binary predicate $s \in F_{L}(x)$ and the function $c_{L}(s, x)$ and $N_{L}(s, x)$ are polynomial time computable. There is a polynomial p_{L} so that for all $s \in F_{L}(x),|s| \leq p_{L}(|x|)$. Also, $0 \in F_{L}(x)$.
(3) For all $s \in\{0,1\}^{*}, N_{L}(s, x) \in F_{L}(x)$.
(9) For all $s \in F_{L}(x)$, if $N_{L}(s, x) \neq s$ then $c_{L}(s, x)<c_{L}\left(N_{L}(s, x), x\right)$
(0) The problem is solved by finding a locally optimal $s \in F_{L}(x)$, i.e. an s such that $N_{L}(s, x)=s$.

Remark 1

A PLS-problem L can be expressed as a Π_{1}^{b}-sentence saying that the conditions above hold; if these are provable in T_{2}^{1} then we say L is a PLS-problem.

Theorem (Buss-Krajíček, 1994)

Let the formula $O p t_{L}(x, s)$ be the Δ_{1}^{b}-formula $N_{L}(s, x)=s$.
(1) For every PLS problem L, T_{2}^{1} can prove $(\forall x)(\exists y) O p t_{L}(x, y)$.
(2) If $A \in \Sigma_{1}^{b}$ and if T_{2}^{1} proves $(\forall \vec{x})(\exists y) A(\vec{x}, y)$, then there is a polynomial time function $\pi(y)$ and a PLS problem L such that T_{2}^{1} proves $(\forall \vec{x})(\forall y)\left(\right.$ Opt $\left._{L}(\vec{x}, y) \rightarrow A(\vec{x}, \pi(y))\right)$.
(2) gives an exact complexity characterization of the $\forall \sum_{1}^{b}$-definable functions of T_{2}^{1} in terms of PLS-computability.

Proof

(1): It is known that T_{2}^{1} proves the Σ-MIN axioms; this immediately implies also the Σ-MAX principle. Arguing informally in T_{2}^{1}, we have that, for all s, there is a maximum value $C_{0}<M_{L}(x)$ satisfying $\left(\exists s \in F_{L}(x)\right)\left(c_{L}(s, x)=c_{0}\right)$. Taking s to be witness for this last formula, we see that s is globally optimal and hence satisfies, and the theorem is proved.
(2): By free-cut elimination, there is a T_{2}^{1}-proof P in LKB of the sequent $\rightarrow A(\vec{b}, t)$ such that every sequent in P is of the form $A_{1}(\vec{u}, t), \ldots, A_{k}(\vec{u}, t) \rightarrow B_{1}(\vec{u}, t), \ldots B_{l}(\vec{u}, t)$ where \vec{u} is a sequence of variables and $A_{i}, B_{i} \in \sum_{i}^{b}$. We shall prove by induction on the number of proof steps that any sequent of the above form provable in T_{2}^{1} corresponds computationally to a PLS-problem.

