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Motivation: the limit definition

The number A is a limit of a real function f (x) at x0 if

(∀ε > 0)(∃δ > 0)(∀x)(|x − x0| < δ → |f (x)− A| < ε)

I can be understood as a game of 2 players trying to get
arbitrarily close to A



Let L be a first-order language, M a model of L, S a sentence
of L. A semantical game GM(S) of players Verifier, Falsifier is
played by these rules:

(R .∨) GM((S1 ∨ S2)) - Verifier picks i = 1, 2
continues as G (Si)

(R .∧) GM((S1 ∧ S2)) - Falsifier picks i = 1, 2
continues as G (Si)

(R .∃) GM((∃x)(S0[x ])) - Verfier picks b in dom(M)
continues as G (S0[b])

(R .∀) GM((∀x)(S0[x ])) - Falsifier picks b in the dom(M)
continues as G (S0[b])

(R .¬) GM(¬S0) is like G (S0) with player roles reversed
(R .atom) S atomic - Verifier wins if S is true, Falsifier if false



Definition (Truth in GTS)
A sentence S is true in a model M (M |=GTS S+) if there
exists a winnig strategy for Verifier in GM(S).
A sentence S is false in a model M (M |=GTS S−) if there
exists a winnig strategy for Falsifier in GM(S).



Theorem (GTS and Tarski equivalence)
Assuming Axiom of Choice, for every first-order sentence S
and model M, the Tarski and GTS definitions of truth coincide
(M |=Tarski S iff M |=GTS S).

Proof.
Inductively by the sentence size. AC is needed to choose the
strategy.



Theorem (Skolem functions)
Every first order sentence S is equivalent to a second order Σ1

1
existential sentence.

Proof.
I transform S into its negation normal form Sn

I replace each variable x bound by ∃ in Sn by F (y1, y2, ...),
where F is a new function symbol and (∀y1), (∀y2), . . .
are universal quantifiers in scope of which x occurs

I replace each (S1 ∨ S2) by
(G (y1, y2, ...) = 0 ∧ S1) ∨ (G (y1, y2, ...) 6= 0 ∧ S2), where
G is a new function symbol and y1, y2, . . . as above

I bound the newly introduced function variables to initial
quantifiers



Example (Simple relation)
(∀x)(∃y)(∀z)(∃w)(R[x , y , z ,w ]) is transformed into
(∃F1)(∃F2)(∀x)(∀z)(R[x ,F1(x), z ,F2(x , z)])



I What about Σ1
1 formulas of this form, whose funcion

symbols do not depend on all quantifiers in the sequence,
such as (∃F1)(∃F2)(∀x)(∀z)(R[x ,F1(x), z ,F2(x , z)])?

I These can’t be in general equivalent to ordinary first
order formulas, since there, the scope of 2 quantifiers is
either disjoint or nested:

(∀x)(∃y)(∀z)(∃w)(R[x , y , z ,w ])

What about scopes like

(∀x)(∃y)(∀z)(∃w)(R[x , y , z ,w ])



Independence Friendly (IF) first-order logic

Ordinary first order logic extended with / symbol.
I (Q1x/Q2y) means the variable x under the quantifier Q1

is independent of the variable y under the quantifier Q2

I In GTS, that means the player picking x can’t use y for
their strategy (the game is not of perfect information)

Example (Simple formula)

(∀x)(∀z)(∃y/∀z)(∃w/∀x)(R[x , y , z ,w ])



IF first-order logic

Example (Alternative notation)

∀x ∃y
∀z ∃wR[x , y , z ,w ]



IF first-order logic

I Independence can be extended to cover all logical
constants.

I The usual first-order logic formation rules are extended
with these

IF formation rules
If (�) occurs with the scope of (Q1y1), (Q2y2), . . . in a
first-order formula, where � can be one of ∀x , ∃x ,∧,∨, it can
be replaced by (�/Q1y1,Q2y2, ...)



Theorem (Hintikka, Sandu)
Every IF first-order sentence is equivalent with a Σ1

1 sentence.

Proof.
Use strategy functions as in ordinary first-order logic.



Theorem (Enderton, Hintikka)
Every Σ1

1 sentence S is equivalent to an IF first-order sentence.

Proof.
I By Skolem functions and quantifier tricks, bring S to the

form ∃F1∃F2...∀x1∀x2...S ′ where S ′ is quantifier-free
I Eliminate nested function symbols by replacing e.g.
φ[Fi(t)] with ∀u(u = t → φ[Fi(u))]

I Ensure every function symbol occurs with the same
variables, e.g. by replacing ∃F∀x∀yφ[F (x),F (y)] with
∃F∃G∀x∀y(x = y → F (x) = G (y)) ∧ φ[F (x),G (y)]

I Sentences of this form can be straightforwardly translated
into IF first-order logic



Theorem (IF first-order logic properties)
IF first-order logic is not recursively axiomizable, but compact
extension of ordinary first-order logic.

Proof.
With the equivalence of IF first-order logic and Σ1

1 logic, we
get for the former the meta-logical properties of the later.



Separation Theorem; Barwise

Theorem (Barwise)
For K1 and K2 disjoint classes of structures definable by IF
first-order language, there is an elementary class K (definable
by a single ordinary first-order sentence) such that K contains
K1 but is disjoint from K2.



The failure of law of the excluded middle

I Consider the semantical game on the sentence
(∀x)(∃y/∀x)(x = y)

I It has no winning strategy for either player on any domain
with more than one element



Definition (Weak negation)
Extend an IF first-language with a logical constant ¬w , which
can only occur at the start of a sentence.
Given a sentencte S and a model M,
M |=GTS (¬wS)+ if not M |=GTS S+ (Verifier has no winning
strategy)
M |=GTS (¬wS)− if not M |=GTS S− (Falsifier has no winning
strategy)



Theorem (Hintikka)
For any sentence S of an IF first-order language L, if ¬wS is
representable in L (i.e. there is an L-sentence R such that S
and R have the same models), then S is representable by an
ordinary first order sentence.

Proof.
Follows from the Separation Theorem.



Definability of truth

Let L be an ordinary first-order arithmetical language and let
pSq denote the Gödel number of S and n̄ the numeral of n.
Let a truth predicate be a second order predicate
(∃X )(Tr [X ] ∧ X (y)), where Tr [X ] is a conjunction of
I ∀x∀y∀z((x = p(S1 ∧ S2)q ∧ y = pS1q ∧ z = pS2q)→

(X (x)→ X (y) ∧ X (z))), analog. for disjunction
I ∀y∀z∀w((x = p∀xS [x ]q∧w = pS [z̄ ]q∧X (y))→ X (w)),

analog. for existential quantifier
I ∀x∀y(X (pR(x̄ , ȳ)q)↔ R(x , y)) or similar for primitive

and negated primitive predicates
I ∀x∀y(N(x , y)→ (X (x)↔ X (y))), where N is a relation

of Gödel numbers of a sentence and their negation normal
form



Definability of truth

I Property of being true satisfies Tr [X ]; conversely, if the
truth predicate is true of pSq, it defines a winning
stratery for Verifier

I The truth predicate is a Σ1
1 formula, so it can be

translated into the IF extension of L.
I The truth predicate can be extended to a language L

where arithmetic can be represented by defining it as
(∃F )(Sat(y ,F )), where F is a valuation function and Sat
is a satisfaction relation.



Definability of truth for IF languages

Let L be an IF first-order arithmetical language.
I Express that X applies to the Gödel number of a sentence

iff it applies to its Skolem normal form
I Express that X applies to a sentence it Skolem normal

form

(∀x1)(∀x2)...(∃y1/∀x11∀x12...)...R[x1, x2, ..., y1, ...]

only if there are functions F1,F2, . . . such that X applies
to the Gödel number of every sentencte of a form
R[n̄1, n̄2, ..., f1(n11, n12, ...), ...].



Definability of truth for IF languages

I All of those requirements are Σ1
1 formulas. Denote their

conjunction Tr [X ] and consider (∃X )(Tr [X ] ∧ X (y))

I This predicate is Σ1
1 and can be translated into IF

first-order language
I Can be generalised to more languages similar to the

ordinary first-order case



Thank you!
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