Hintikka Games and Game-Theoretical Semantics

Maroš Grego

<2021-05-18 Tue>

Motivation: the limit definition

The number A is a limit of a real function $f(x)$ at x_{0} if

$$
(\forall \epsilon>0)(\exists \delta>0)(\forall x)\left(\left|x-x_{0}\right|<\delta \rightarrow|f(x)-A|<\epsilon\right)
$$

- can be understood as a game of 2 players trying to get arbitrarily close to A

Let L be a first-order language, M a model of L, S a sentence of L. A semantical game $G_{M}(S)$ of players Verifier, Falsifier is played by these rules:
$(R . \vee) \quad G_{M}\left(\left(S_{1} \vee S_{2}\right)\right)$ - Verifier picks $i=1,2$ continues as $G\left(S_{i}\right)$
$(R . \wedge) \quad G_{M}\left(\left(S_{1} \wedge S_{2}\right)\right)$ - Falsifier picks $i=1,2$ continues as $G\left(S_{i}\right)$
(R. $\exists) \quad G_{M}\left((\exists x)\left(S_{0}[x]\right)\right)$ - Verfier picks b in $\operatorname{dom}(M)$ continues as $G\left(S_{0}[b]\right)$
$(R . \forall) \quad G_{M}\left((\forall x)\left(S_{0}[x]\right)\right)$ - Falsifier picks b in the $\operatorname{dom}(M)$ continues as $G\left(S_{0}[b]\right)$
(R. $\neg) \quad G_{M}\left(\neg S_{0}\right)$ is like $G\left(S_{0}\right)$ with player roles reversed (R.atom) $\quad S$ atomic - Verifier wins if S is true, Falsifier if false

Definition (Truth in GTS)

A sentence S is true in a model $M\left(M \models_{\text {GTS }} S^{+}\right)$if there exists a winnig strategy for Verifier in $G_{M}(S)$.
A sentence S is false in a model $M\left(M \models_{G T S} S^{-}\right)$if there exists a winnig strategy for Falsifier in $G_{M}(S)$.

Theorem (GTS and Tarski equivalence)
Assuming Axiom of Choice, for every first-order sentence S and model M, the Tarski and GTS definitions of truth coincide ($M \models_{\text {Tarski }} S$ iff $M \models_{\text {GTS }} S$).

Proof.
Inductively by the sentence size. AC is needed to choose the strategy.

Theorem (Skolem functions)

Every first order sentence S is equivalent to a second order Σ_{1}^{1} existential sentence.

Proof.

- transform S into its negation normal form S_{n}
- replace each variable x bound by \exists in S_{n} by $F\left(y_{1}, y_{2}, \ldots\right)$, where F is a new function symbol and $\left(\forall y_{1}\right),\left(\forall y_{2}\right), \ldots$ are universal quantifiers in scope of which x occurs
- replace each $\left(S_{1} \vee S_{2}\right)$ by $\left(G\left(y_{1}, y_{2}, \ldots\right)=0 \wedge S_{1}\right) \vee\left(G\left(y_{1}, y_{2}, \ldots\right) \neq 0 \wedge S_{2}\right)$, where G is a new function symbol and y_{1}, y_{2}, \ldots as above
- bound the newly introduced function variables to initial quantifiers

Example (Simple relation)

$(\forall x)(\exists y)(\forall z)(\exists w)(R[x, y, z, w])$ is transformed into $\left(\exists F_{1}\right)\left(\exists F_{2}\right)(\forall x)(\forall z)\left(R\left[x, F_{1}(x), z, F_{2}(x, z)\right]\right)$

- What about Σ_{1}^{1} formulas of this form, whose funcion symbols do not depend on all quantifiers in the sequence, such as $\left(\exists F_{1}\right)\left(\exists F_{2}\right)(\forall x)(\forall z)\left(R\left[x, F_{1}(x), z, F_{2}(x, z)\right]\right)$?
- These can't be in general equivalent to ordinary first order formulas, since there, the scope of 2 quantifiers is either disjoint or nested:

$$
(\forall x)(\exists y)(\forall z)(\exists w)(R[x, y, z, w])
$$

What about scopes like

$$
(\forall x)(\exists y)(\forall z)(\exists w)(R[x, y, z, w])
$$

Independence Friendly (IF) first-order logic

Ordinary first order logic extended with / symbol.

- $\left(Q_{1} x / Q_{2} y\right)$ means the variable x under the quantifier Q_{1} is independent of the variable y under the quantifier Q_{2}
- In GTS, that means the player picking x can't use y for their strategy (the game is not of perfect information)

Example (Simple formula)

$$
(\forall x)(\forall z)(\exists y / \forall z)(\exists w / \forall x)(R[x, y, z, w])
$$

IF first-order logic

Example (Alternative notation)

$$
\begin{array}{ll}
\forall x & \exists y \\
\forall z & \exists w
\end{array}
$$

IF first-order logic

- Independence can be extended to cover all logical constants.
- The usual first-order logic formation rules are extended with these

IF formation rules
If (\square) occurs with the scope of $\left(Q_{1} y_{1}\right),\left(Q_{2} y_{2}\right), \ldots$ in a first-order formula, where \square can be one of $\forall x, \exists x, \wedge, \vee$, it can be replaced by ($\square / Q_{1} y_{1}, Q_{2} y_{2}, \ldots$)

Theorem (Hintikka, Sandu)
Every IF first-order sentence is equivalent with a Σ_{1}^{1} sentence.
Proof.
Use strategy functions as in ordinary first-order logic.

Theorem (Enderton, Hintikka)

Every Σ_{1}^{1} sentence S is equivalent to an IF first-order sentence.
Proof.

- By Skolem functions and quantifier tricks, bring S to the form $\exists F_{1} \exists F_{2} \ldots \forall x_{1} \forall x_{2} \ldots S^{\prime}$ where S^{\prime} is quantifier-free
- Eliminate nested function symbols by replacing e.g. $\phi\left[F_{i}(t)\right]$ with $\forall u\left(u=t \rightarrow \phi\left[F_{i}(u)\right)\right]$
- Ensure every function symbol occurs with the same variables, e.g. by replacing $\exists F \forall x \forall y \phi[F(x), F(y)]$ with $\exists F \exists G \forall x \forall y(x=y \rightarrow F(x)=G(y)) \wedge \phi[F(x), G(y)]$
- Sentences of this form can be straightforwardly translated into IF first-order logic

Theorem (IF first-order logic properties)
IF first-order logic is not recursively axiomizable, but compact extension of ordinary first-order logic.

Proof.
With the equivalence of IF first-order logic and Σ_{1}^{1} logic, we get for the former the meta-logical properties of the later.

Separation Theorem; Barwise

Theorem (Barwise)
For K_{1} and K_{2} disjoint classes of structures definable by IF first-order language, there is an elementary class K (definable by a single ordinary first-order sentence) such that K contains K_{1} but is disjoint from K_{2}.

The failure of law of the excluded middle

- Consider the semantical game on the sentence $(\forall x)(\exists y / \forall x)(x=y)$
- It has no winning strategy for either player on any domain with more than one element

Definition (Weak negation)

Extend an IF first-language with a logical constant \neg_{w}, which can only occur at the start of a sentence.
Given a sentencte S and a model M, $M \models_{\text {GTS }}\left(\neg_{w} S\right)^{+}$if not $M \models{ }_{\text {GTS }} S^{+}$(Verifier has no winning strategy)
$M \models{ }_{G T S}\left(\neg_{w} S\right)^{-}$if not $M \models_{G T S} S^{-}$(Falsifier has no winning strategy)

Theorem (Hintikka)

For any sentence S of an IF first-order language L, if $\neg_{w} S$ is representable in L (i.e. there is an L-sentence R such that S and R have the same models), then S is representable by an ordinary first order sentence.

Proof.
Follows from the Separation Theorem.

Definability of truth

Let L be an ordinary first-order arithmetical language and let $\ulcorner S\urcorner$ denote the Gödel number of S and \bar{n} the numeral of n. Let a truth predicate be a second order predicate $(\exists X)(\operatorname{Tr}[X] \wedge X(y))$, where $\operatorname{Tr}[X]$ is a conjunction of

- $\forall x \forall y \forall z\left(\left(x=\left\ulcorner\left(S_{1} \wedge S_{2}\right)\right\urcorner \wedge y=\left\ulcorner S_{1}\right\urcorner \wedge z=\left\ulcorner S_{2}\right\urcorner\right) \rightarrow\right.$ $(X(x) \rightarrow X(y) \wedge X(z)))$, analog. for disjunction
- $\forall y \forall z \forall w((x=\ulcorner\forall x S[x]\urcorner \wedge w=\ulcorner S[\bar{z}]\urcorner \wedge X(y)) \rightarrow X(w))$, analog. for existential quantifier
- $\forall x \forall y(X(\ulcorner R(\bar{x}, \bar{y})\urcorner) \leftrightarrow R(x, y))$ or similar for primitive and negated primitive predicates
- $\forall x \forall y(N(x, y) \rightarrow(X(x) \leftrightarrow X(y)))$, where N is a relation of Gödel numbers of a sentence and their negation normal form

Definability of truth

- Property of being true satisfies $\operatorname{Tr}[X]$; conversely, if the truth predicate is true of $\ulcorner S\urcorner$, it defines a winning stratery for Verifier
- The truth predicate is a Σ_{1}^{1} formula, so it can be translated into the IF extension of L.
- The truth predicate can be extended to a language L where arithmetic can be represented by defining it as $(\exists F)(\operatorname{Sat}(y, F))$, where F is a valuation function and $S a t$ is a satisfaction relation.

Definability of truth for IF languages

Let L be an IF first-order arithmetical language.

- Express that X applies to the Gödel number of a sentence iff it applies to its Skolem normal form
- Express that X applies to a sentence it Skolem normal form

$$
\left(\forall x_{1}\right)\left(\forall x_{2}\right) \ldots\left(\exists y_{1} / \forall x_{11} \forall x_{1} 2 \ldots\right) \ldots R\left[x_{1}, x_{2}, \ldots, y_{1}, \ldots\right]
$$

only if there are functions F_{1}, F_{2}, \ldots such that X applies to the Gödel number of every sentencte of a form $R\left[\overline{n_{1}}, \overline{n_{2}}, \ldots, \overline{f_{1}\left(n_{11}, n_{12}, \ldots\right)}, \ldots\right]$.

Definability of truth for IF languages

- All of those requirements are Σ_{1}^{1} formulas. Denote their conjunction $\operatorname{Tr}[X]$ and consider $(\exists X)(\operatorname{Tr}[X] \wedge X(y))$
- This predicate is Σ_{1}^{1} and can be translated into IF first-order language
- Can be generalised to more languages similar to the ordinary first-order case

Thank you!

