# Fragments of bounded arithmetic 

Chun-Yu "Max" Lin<br>Department of Logic, Faculty of Arts, Charles University

April 14, 2023

## Definition

A theory of bounded arithmetic is a subtheory of Peano Arithmetic (PA) which is axiomatized by $\Pi_{1}$-formulas. These theories are typically weaker than strong subtheories of PA but stronger than $Q$ and $R$.

Two approaches :

- Theories involved $I \Delta_{0}$ and $I \Delta_{0}+\Omega_{1}$.
- Theories such as $S_{2}^{i}$ and $T_{2}^{i}$.

Motivation : Give us a rich perspective on and a different approach to questions in low-level computational complexity.

## $1 \Delta_{0}$ and $\Omega_{n}$

Theorem (Parikh,1971)
Let $A(\vec{x}, y)$ be a $\Delta_{0}$-formula and that $I \Delta_{0} \vdash(\forall \vec{x})(\exists y) A(\vec{x}, y)$. Then there is a term $t(\vec{x})$ such that $I \Delta_{0} \vdash(\forall \vec{x})(\exists y \leq t) A(\vec{x}, y)$.

Define $\log x$ to be the greatest $y$ such that $2^{y} \leq x$. We define $\omega_{1}(x, y)=x^{\text {logy }}$. From Parikh's theorem, $\omega_{1}$ is not $\Sigma_{1}$-definable in $I \Delta_{0}$.
Stronger theory : $I \Delta_{0}+\Omega_{1}$
One can extend the definition of $\omega_{1}$ toward $\omega_{n}$ for $n \geq 1$ as $\omega_{n+1}(x, y)=2^{\omega_{n}(\log x, \log y)}=2^{\omega_{n}(|x|,|y|)}$.

## Definition

$\Omega_{1}:(\forall x)(\forall y)(\exists z)\left(z=\omega_{1}(x, y)\right), \Omega_{n}:(\forall x)(\forall y)(\exists z)\left(z=\omega_{n}(x, y)\right)$
From Parikh's theorem, $I \Delta_{0}+\Omega_{n} \nvdash \Omega_{n+1}$

## $\mathrm{I} \Delta_{0}$ and $\Omega_{n}$

Proposition (Bennett, 1962;Gaifman and Dimitracopoulos, 1982)
The graph of the exponentiation $\left\{(x, y, z) \mid x^{y}=z\right\}$ is $\Delta_{0}$-definable in $I \Delta_{0}$.

## $S_{2}^{i}$ and $T_{2}^{i}$

- Have close connection to polynomial time complexity classes
- Have close connection to propositional proof systems Language : $0, S,+, \cdot, \leq,|x|,\left\lfloor\frac{1}{2} x\right\rfloor, x \# y$


## Definition

$\Delta_{0}^{b}=\Sigma_{0}^{b}=\Pi_{0}^{b}$ : set of sharply bounded formulas. For $i \geq 1$,

- If $A$ and $B$ are $\sum_{1}^{b}$-formulas, then so ar $A \vee B, A \wedge B$. If $A$ is a $\Pi_{i}^{b}$-formula and B is a $\sum_{i}^{b}$-formula, then $A \rightarrow B$ and $\neg A$ are $\sum_{i}^{b}$-formulas.
- If $A$ is a $\Pi_{i-1}^{b}$-formula, then $A$ is a $\sum_{i}^{b}$-formula.
- If $A$ is a $\sum_{i}^{b}$-formula and $t$ is a term, then $(\forall x \leq|t|) A$ is a $\Sigma_{i}^{b}$-formula.
- If A is a $\sum_{i}^{b}$-formula, and t is a term, then $(\exists x \leq t) A$ is a $\sum_{i}^{b}$-formula. Note that this quantifier may be sharply bounded.
The classes $\Pi_{i}^{b}$ are defined dually.


## Why including \#?

1. Gives a natural bound to the Gödel number for a formula $A(t)$ in terms of product of the numbers of symbols in $A$ and in $t$.
2. Quantifier exchange property :
$(\forall x \leq|a|)(\exists y \leq b) A(x, y) \leftrightarrow(\exists w \leq \operatorname{SqBd}(a, b))(\forall x \leq|a|)$ $(A(x, \beta(x+1, y)) \wedge(\beta(x+1, y) \leq b)$ where SqBd is a term involving \#. This allows sharply bounded quantifers to be pushed inside non-sharply bounded quantifiers.
3. Connection with polynomial time and the polynomial time hierarchy:

- All terms $t(x)$ have polynomial growth rate (bounded by $2^{|x|^{c}}$ with some constant c)
- $\sum_{i}^{b}$ - and $\Pi_{i}^{b}$-formulas define exactly the predicates in the classes $\sum_{i}^{p}$ and $\Pi_{i}^{p}$ at the $i$-th level of the polynomial time hierarchy


## Axiom-BASIC

$$
\begin{array}{ll}
a \leq b \supset a \leq S b & |a|=|b| \supset a \# c=b \# c \\
a \neq S a & |a|=|b|+|c| \supset a \# d=(b \# d) \cdot(c \# d) \\
0 \leq a & a \leq a+b \\
a \leq b \wedge a \neq b \leftrightarrow S a \leq b & a \leq b \wedge a \neq b \supset \\
a \neq 0 \supset 2 \cdot a \neq 0 & a+b=b+a \cdot a) \leq 2 \cdot b \wedge S(2 \cdot a) \neq 2 \cdot b \\
a \leq b \vee b \leq a & a+0=a \\
a \leq b \wedge b \leq a \supset a=b & a+S b=S(a+b) \\
a \leq b \wedge b \leq c \supset a \leq c & (a+b)+c=a+(b+c) \\
|0|=0 & a+b \leq a+c \leftrightarrow b \leq c \\
|S 0|=S 0 & a \cdot 0=0 \\
a \neq 0 \supset|2 \cdot a|=S(|a|) \wedge|S(2 \cdot a)|=S(|a|) & a \cdot(S b)=(a \cdot b)+a \\
a \leq b \supset|a| \leq|b| & a \cdot b=b \cdot a \\
|a \# b|=S(|a| \cdot|b|) & a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
0 \# a=S 0 & S 0 \leq a \supset(a \cdot b \leq a \cdot c \leftrightarrow b \leq c) \\
a \neq 0 \supset 1 \#(2 \cdot a)=2 \cdot(1 \# a) & a \neq 0 \supset|a|=S\left(\left|\left\lfloor\frac{1}{2} a\right\rfloor\right|\right) \\
\quad \wedge 1 \#(S(2 \cdot a))=2 \cdot(1 \# a) & a=\left\lfloor\frac{1}{2} b\right\rfloor \leftrightarrow 2 \cdot a=b \vee S(2 \cdot a)=b \\
a \# b=b \# a & \\
a=b=b
\end{array}
$$

## Remark 1

This choice is not entirely optimal.

## Axioms for $T_{2}^{i}$ and $S_{2}^{i}$

Induction Axioms: Let $\Phi$ be a set of formulas.

- $\Phi$-IND : $A(0) \wedge(\forall x)(A(x) \rightarrow A(S x)) \rightarrow(\forall x) A(x)$.
- Ф-PIND : $A(0) \wedge(\forall x)\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow(\forall x) A(x)$.
- $\Phi$-LIND : $A(0) \wedge(\forall x)(A(x) \rightarrow A(S x)) \rightarrow(\forall x) A(|x|)$.
- Ф-LMIN : $(\exists x) A(x) \rightarrow(\exists x)(A(x) \wedge(\forall y)(|y|<|x| \rightarrow \neg A(y)))$


## Definition <br> $S_{2}^{i}: \mathrm{BASIC}+\sum_{i}^{b}-\mathrm{PIND}$. <br> $T_{2}^{i}:$ BASIC $+\sum_{i}^{b}$-IND <br> $S_{2}=\cup_{i} S_{2}^{i} T_{2}=\cup_{i} T_{2}^{i}$

## Bootstrapping and $\sum_{i}^{b}$-definable functions

## Definition

A predicate symbol $R(\vec{x})$ is $\Delta_{i}^{b}$-defined by a theory T if there is a $\sum_{i}^{b}$-formula $\phi(\vec{x})$ and a $\Pi_{i}^{b}$-formula $\psi(\vec{x})$ such that R has defining axiom $R(\vec{x}) \leftrightarrow \phi(\vec{x})$ and $T \vdash(\forall \vec{x})(\phi \leftrightarrow \psi)$.

## Definition

Let T be a theory of arithmetic. A function symbol $f(\vec{x})$ is $\sum_{i}^{b}$-defined by T if it has a defining axiom $y=f(\vec{x}) \leftrightarrow \phi(\vec{x}, y)$ where $\phi$ is a $\sum_{i}^{b}$ formula with all free variables indicated and $T \vdash(\forall \vec{x})(\exists!y)(\phi(\vec{x}, y))$

## Theorem (Buss,1986)

Let BASIC $\subseteq T$ Let $T$ be extended to a theory $T^{+}$in an enlarged language $L^{+}$by adding $\Delta_{1}^{b}$-defined predicate symbols, $\Sigma_{1}^{b}$-defined function symbols and their defining equations. Let $A$ be a $\sum_{i}^{b}$ (respectively, a $\left.\Pi_{i}^{b}\right)$-formula in $L^{+}$Then

- $T^{+}$is conservative over $T$
- there is a formula $A^{-}$in the language of $T$ such that $A^{-}$is in $\sum_{i}^{b}\left(\right.$ respectively, $\left.\Pi_{i}^{b}\right)$ and $T^{+} \vdash\left(A \leftrightarrow A^{-}\right)$.


## Proof

Theorem 2 : Let $R$ be a fragment of Bounded Arithmetic. Suppose $R$ can $\Sigma_{1}^{b}$-define the function $f$. Let $R^{*}$ be the theory obtained from $R$ by adding $f$ as a new function symbol and adding the defining axiom for $f$. Then, if $i>0$ and $B$ is a $\Sigma_{i}^{b}(f)$ - (or a $\Pi_{i}^{b}(f)$ - ) formula, there is a $B^{*} \in \Sigma_{i}^{b}$ (or $\Pi_{i}^{b}$, respectively) such that $R^{*} \vdash B^{*} \leftrightarrow B$.

Proof: The defining axiom for $f$ is

$$
f(\vec{x})=y \leftrightarrow A(\vec{x}, y)
$$

where $A$ is a $\Sigma_{1}{ }^{b}$-formula. Let $B$ be a bounded formula containing the symbol $f$. We first define the formula $B_{1}$ as follows: suppose $f$ occurs in a term which bounds a quantifier, say $(Q x \leq s) D$ is a subformula of $B$ where the term $s$ involves $f$. Replace each occurrence of $f(\vec{r})$ in
$s$ by the term $t(\vec{Y})$. ( $t$ is the bound in the $\Sigma_{1}^{b}$-definition of $f$, see the definition above.) This yields a term $s^{\prime}$. Now, $(\exists x \leq s) D$ is provably equivalent to $(\exists x \leq s)(x \leq s \wedge D)$ and $(\forall x \leq s) D$ is provably equivalent to $(\forall z \leq s)(z \leq s \supset D)$. By repeating this procedure, we can form $B_{1}$ so that
(1) $R^{*} \vdash B \leftrightarrow B_{1}$, and
(2) $B_{1}$ does not contain $/$ appearing in any term which bounds a quantifier.

We next obtain a formula $B_{2}$ in prenex normal form by applying prenex operations to $B_{1}$ so that $R^{*} \vdash B_{2} \mapsto B_{1}$. Furthermore, if $B$ is a $\Sigma_{i}^{k}$ - (or a $\left.\Pi_{i}^{k}-\right)$ formula, then so are $B_{1}$ and $B_{2}$.

Let the mantissa of $B_{2}$ be $D$; that is to say, suppose

$$
B_{2}-\left(Q_{1} x_{1} \leq s_{1}\right) \cdots\left(Q_{n} x_{n} \leq s_{n}\right) D
$$

where $D$ is an open formula. Let $f\left(r^{\prime}\right)$ be a term appearing in $D$. Obtain $D^{\prime}$ by replacing $f\left(r^{\prime}\right)$ everywhere in $D$ by a new variable $z$. Define

$$
D_{A}=(\forall z \leq t(\gamma))\left(A(\gamma, z) \supset D^{\prime}\right)
$$

and

$$
D_{E}=(\exists x \leq t(\vec{r}))(A(\vec{r}, z) \wedge D)
$$

Let $D^{\forall}$ and $D^{3}$ be their respective prenex normal forms. Then $D^{\forall}$ is a $\Pi_{1}^{b}()$-formula and $D^{3}$ is a $\Sigma_{1}^{b}(f)$-formula, and

$$
R^{*} \vdash\left(D \leftrightarrow D^{\forall}\right) \wedge\left(D \leftrightarrow D^{3}\right) .
$$

Define $B_{3}$ from $B_{2}$ by replacing the mantissa $D$ by either $D^{\forall}$ or $D^{3}$, whichever is appropriate. We can do this so that $B_{3}$ has the same alternation of (non-sharply) bounded quantifiers as $B_{2}$. Also,

$$
R^{*} \vdash B_{3} \mapsto B_{2} .
$$

$B_{3}$ was formed from $B_{2}$ so that all occurrences of the term $f(\vec{r})$ were eliminated. By iterating this procedure, we obtain $B_{4}$ from $B_{3}, B_{5}$ from $B_{6}$, and so on, until all cccurrences of $f$ have been eliminated. We let $B^{*}$ be the $B_{i}$ such that $i \geq 2$ and $f$ does not appear in $B_{i}$.

Every single function and predicate symbol which was claimed to be $\Sigma_{1}$-definable or $\Delta_{1}$-definable in $I \Delta_{0}$ is likewise $\sum_{i}^{b}$-definable or $\Delta_{i}^{b}$-definable in $S_{2}^{1}, T_{2}^{1}$, BASIC $+\Pi_{1}^{b}$-PIND, BASIC $+\Sigma_{1}^{b}$-LIND, BASIC + $\Pi_{1}^{b}$-LIND and BASIC $+\Pi_{1}^{b}$-IND.

Theorem (Buss,1986)
Let $i \geq 1$
(1) $T_{2}^{i}$ proves $\Pi_{i}^{b}$-IND and $T_{2}^{i} \models S_{2}^{i}$.
(2) $S_{2}^{i}$ proves $\sum_{i}^{b}$-LIND, $\Pi_{i}^{b}-P I N D$ and $\Pi_{i}^{b}$-LIND.

## Definition (Cobham,1965)

The polynomial time function on $\mathbb{N}$ are inductive defined by
(1) The following function are polynomial time :

The nullary constant function 0 .
The successor function $S(x)$
The doubling function $D(x)=2 x$
The conditional function $\operatorname{Cond}(x, y, z)= \begin{cases}y & \text { if } x=0 \\ z & \text { otherwise. }\end{cases}$
(2) The projection functions are polynomial time functions; the composition of polynomial time functions is a polynomial time function.
(3) If g is a $(n-1)$-ary polynomial time function and h is a $(n+1)$-ary polynomial time function and $p$ is a polynomial, then the following function f , defined by limited iteration on notation from g and h , is also polynomial time : $f(0, \vec{x})=g(\vec{x})$
$f(z, \vec{x})=h\left(z, \vec{x}, f\left(\left\lfloor\frac{1}{2} z\right\rfloor, \vec{x}\right)\right)$ for $z \neq 0$ provided $|f(z, \vec{x})| \leq p(|z|,|\vec{x}|)$

## Notation

The class of polynomial time functions is denoted as $\square_{1}^{p}$, and the class of polynomial time predicates is denoted $\Delta_{1}^{p}$.

## Theorem (Buss,1986)

(1) Every polynomial time function is $\Sigma_{1}^{b}$-definable in $S_{2}^{1}$.
(2) Every polynomial time predicate (i.e. its characteristic function is polynomial time) is $\Delta_{1}^{b}$-definable in $S_{2}^{1}$.

## Proof.

Boostraping $S_{2}^{1}$ sufficiently to intensionally introduce sequence coding function and prove this theorem by induction on the construction of polynomial time computability.

## Theorem (Buss,1986)

Let $i \geq 1$.
(1) $T_{2}^{i} \supseteq S_{2}^{i}$.
(2) $S_{2}^{i} \supseteq T_{2}^{i-1}$.

## Proof.

For (1), it suffices to show $\sum_{i}^{b}$-PIND follows from $\sum_{i}^{b}$-LIND over BASIC with $i \geq 1$. We sketch the proof here. To prove PIND for $A(x)$ (with c a free variable) $A(0) \wedge(\forall x)\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow A(c)$ use LIND on $B(i):=A(t(i))$ for $t(i):=\left\lfloor c / 2^{|c|-i}\right\rfloor$. For this, note that $B(0)$ and $B(|c|)$ are equivalent to $A(c)$ and $A(0)$. Also, $t(i)=\left\lfloor\frac{1}{2} t(i+1)\right\rfloor$, so $(\forall i)(B(i) \rightarrow B(i+1))$ follows from $(\forall x)\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right)$

## Proof Cont.

The proof of (2) use a divide-and-conquer method. Fix $i \geq 1$ and a $\sum_{i-1}^{b}$-formula $A(x)$; prove that $S_{2}^{i}$ proves the IND-axiom for A . Assume that we have $A(0)$ and $(\forall x)(A(x) \rightarrow A(x+1))$. Let $B(x, z)$ be the formula $(\forall w \leq x)(\forall y \leq z+1)(A(w \dot{\perp}) \rightarrow A(w))$. B is equivalent to a $\Pi_{i}^{b}$-formula. By the definition of b , it follows that $(\forall x)(\forall z)\left(B\left(x,\left\lfloor\frac{1}{2} z\right\rfloor\right) \rightarrow B(x, z)\right)$ and hence by $\Pi_{i}^{b}$-PIND on $B(x, z)$ w.r.t $z$, we have $(\forall x)(B(x, 0) \rightarrow B(x, x))$. $(\forall x) B(x, 0)$ holds as it's equivalent to $(\forall x)(A(x) \rightarrow A(x+1))$, therefore $(\forall x) B(x, x)$ holds. This implies $(\forall x)(A(0) \rightarrow A(x))$.

## Corollary (Buss,1986)

$S_{2}=T_{2}$

## Definition

The classes $\Delta_{1}^{p}$ and $\square_{1}^{p}$ have already been defined. Further define, by induction on i ,
(1) $\Sigma_{i}^{p}$ is the class of predicate $R(\vec{x})$ definable by
$R(\vec{x}) \leftrightarrow(\exists y) \leq s(\vec{x})(Q(\vec{x}, y))$ for some term $s$ in ther language of bounded arithmetic, and some $\Delta_{i}^{p}$ predicate Q .
(2) $\Pi_{i}^{p}$ is the class of complements of predicates in $\sum_{i}^{p}$.
(3) $\square_{i+1}^{p}$ is the class of predicates computable on a polynomial time Turing machine using an oracle from $\Sigma_{i}^{p}$.
(9) $\Delta_{i}^{p}$ is the class of predicates which have characteristic function in $\square_{i+1}^{p}$.
(1) Base classes $P=\Delta_{1}^{p}$ of polynomial time recognizable predicates.
(2) $F P=\square_{1}^{p}$ of polynomial time computable functions.
(3) $N P=\Sigma_{1}^{p}$ of predicates computable in nondeterministic polynomial time.
(9) $\operatorname{coNP}=\Pi_{1}^{p}$ of complement of NP predicates.

## Theorem (Wrathall'76,Stockmeyer'76,Kent-Hodgson'82)

A predicate is $\sum_{i}^{p}$ if and only if there is a $\sum_{i}^{b}$-formula which defines it.

## Proof.

$(\Leftarrow)$ Note that a sharply bounded formula defines a polynomial time predicate. Given a $\sum_{i}^{b}$-formula, one can use the quantifier exchange property to push sharply bounded quantifier inward and can use pairing functions to combine adjacent quantifiers; this transforms the formula into an equivalent formula which defines a $\sum_{i}^{p}$ property.
$(\Rightarrow)$ Induction on $i$ : For $i=1$, from previous theorem, we have known every $\Delta_{1}^{p}$-predicate is defined by both a $\Sigma_{1}^{p}$ and a $\Pi_{1}^{p}$ formula. For the first part of induction step, we assume that every $\Delta_{i}^{p}$ predicate is definable by both a $\Sigma_{i}^{b}$ and $\Pi_{i}^{b}$-formula. Use this claim, we get every $\Sigma_{i}^{p}$ predicate is definable by a $\sum_{i}^{b}$-formula. To prove the second part of induction step, we have to prove that every $\Delta_{i+1}^{p}$-predicate is definable by both a $\sum_{i+1^{-}}^{b}$ formula and a $\Pi_{i+1}^{b}$-formula. To show this, it suffices to show that every $\square_{i+1}^{p}$-function has its graph defined by a $\sum_{i}^{b}$-formula. These are contents of next theorem.

Theorem (Buss, 1986)
$i \geq 1$.
(1) Every $\square_{i}^{p}$ function is $\Sigma_{i}^{b}$-definable in $S_{2}^{j}$.
(2) Every $\Delta_{i}^{p}$ predicate is $\Delta_{i}^{b}$ definable in $S_{2}^{i}$

## Proof.

Induction on i. The base case has already been done. For (2), consider a $\Delta_{i}^{p}$ predicate $Q(\vec{x})$ with the characteristic function $f$ in $\square_{i}^{p}$. By (1), it is defined by a $\sum_{i}^{b}$-formula $A_{f}$. Define $A(\vec{x})$ and $B(\vec{x})$ to be $A_{f}(x, 1)$ and $\neg A_{f}(x, 0)$. Then $S_{2}^{i} \vdash(\forall \vec{x})(A(\vec{x}) \leftrightarrow B(\vec{x}))$.

## Proof of (1)

(1) If $f(\vec{x}, y)$ is a $\square_{i-1}^{p}$-function, then the characteristic function $\chi(\vec{x})$ of $(\exists y \leq t(\vec{x}))(f(\vec{x}, y)=0)$ is $\Sigma_{i}^{b}$-definable. To prove this, we have by the induction hypothesis that $f(\vec{x}, y)=z$ is equivalent to a $\Sigma_{i-1}^{b}$ formula $A(\vec{x}, y, z)$. The $\Sigma_{i}^{b}$-definition of $\chi(\vec{x})$ is thus ${ }^{6}$

$$
\chi(\vec{x})=z \Leftrightarrow(z=0 \wedge(\exists y \leq t) A(\vec{x}, y, 0)) \vee(z=1 \wedge \neg(\exists y \leq t) A(\vec{x}, y, 0))
$$

which is clearly equivalent to a $\Sigma_{i}^{b}$-formula by prenex operations.
(2) If functions $g$ and $\vec{h}$ have graph definable by $\Sigma_{i}^{b}$-formulas, then so does their composition. As an example of how to prove this, suppose $f(\vec{x})=g(\vec{x}, h(\vec{x}))$; then the graph of $f$ can be defined by

$$
f(\vec{x})=y \Leftrightarrow\left(\exists z \leq t_{h}(\vec{x})\right)(h(\vec{x})=z \wedge g(\vec{x}, z)=y),
$$

where $t_{h}$ is a term bounding the function $h$.
(3) If $f$ is defined by limited iteration from $g$ and $h$ with bounding polynomial $p$, and $g$ and $h$ have $\Sigma_{i}^{b}$-definable graphs, then so does $f$. To prove this, show that $f(z, \vec{x})=y$ is expressed by the formula

$$
\begin{aligned}
& \left(\exists w \leq S q B d\left(2^{p(|z|, \mid \vec{x})}, z\right)\right)[\beta(|z|+1, \vec{x})=y \wedge \beta(1, w)=g(\vec{x}) \wedge \\
& \left.\quad \wedge(\forall i<|z|)\left(\beta(i+2, w)=\min \left\{h\left(\left\lfloor\frac{z}{2^{|x|=i+1}}\right\rfloor, \vec{x}, \beta(i+1, w)\right), 2^{p(|i+1|,|\vec{x}|)}\right\}\right)\right] .
\end{aligned}
$$

Here the term $\operatorname{SqBd}(\cdots)$ has been chosen sufficiently large to bound the size of the sequence $w$ encoding the steps in the computation of $f(z, \vec{x})$. The formula is clearly in $\Sigma_{i}^{b}$, and the theory $S_{2}^{i}$ can prove the existence and uniqueness of $w$ by PIND induction up to $z$.

Theorem (Buss,1990)
Let $i \geq 1$.
(1) Every $\square_{i}^{p}$ function is $\sum_{i}^{b}$-definable in $T_{2}^{i-1}$.
(2) Every $\Delta_{i}^{p}$ predicate is $\Delta_{i}^{b}$-definable in $T_{2}^{i-1}$.

## Remark 2 (Krajíček-Pudlák-Takeuti'91,Buss'95,Zambella'96)

If $T_{2}^{i}=S_{2}^{i+1}$ for some $i \geq 1$, then the polynomial time hierarchy collapses provably in $T_{2}$.

