Fragments of bounded arithmetic

Chun-Yu "Max" Lin

Department of Logic, Faculty of Arts, Charles University

April 14, 2023

- N /	224	1.00
1.01		

э

1/22

Definition

A theory of **bounded arithmetic** is a subtheory of Peano Arithmetic (PA) which is axiomatized by Π_1 -formulas. These theories are typically weaker than strong subtheories of PA but stronger than Q and R.

Two approaches :

- Theories involved $I\Delta_0$ and $I\Delta_0 + \Omega_1$.
- Theories such as S_2^i and T_2^i .

Motivation : Give us a rich perspective on and a different approach to questions in low-level computational complexity.

$I\Delta_0$ and Ω_n

Theorem (Parikh, 1971)

Let $A(\vec{x}, y)$ be a Δ_0 -formula and that $I\Delta_0 \vdash (\forall \vec{x})(\exists y)A(\vec{x}, y)$. Then there is a term $t(\vec{x})$ such that $I\Delta_0 \vdash (\forall \vec{x})(\exists y \leq t)A(\vec{x}, y)$.

Define *logx* to be the greatest y such that $2^{y} \leq x$. We define $\omega_{1}(x, y) = x^{logy}$. From Parikh's theorem, ω_{1} is not Σ_{1} -definable in $I\Delta_{0}$. Stronger theory : $I\Delta_{0} + \Omega_{1}$ One can extend the definition of ω_{1} toward ω_{n} for $n \geq 1$ as $\omega_{n+1}(x, y) = 2^{\omega_{n}(logx, logy)} = 2^{\omega_{n}(|x|, |y|)}$.

Definition

$$\Omega_1: (\forall x)(\forall y)(\exists z)(z = \omega_1(x, y)), \ \Omega_n: (\forall x)(\forall y)(\exists z)(z = \omega_n(x, y))$$

From Parikh's theorem, $I\Delta_0 + \Omega_n \nvDash \Omega_{n+1}$

(日) (周) (日) (日) (日)

$I\Delta_0$ and Ω_n

Proposition (Bennett,1962;Gaifman and Dimitracopoulos, 1982) The graph of the exponentiation $\{(x, y, z)|x^y = z\}$ is Δ_0 -definable in $I\Delta_0$.

S_2^i and T_2^i

• Have close connection to polynomial time complexity classes

• Have close connection to propositional proof systems

Language : $0, S, +, \cdot, \leq, |x|, \lfloor \frac{1}{2}x \rfloor, x \# y$

Definition

 $\Delta_0^b = \Sigma_0^b = \Pi_0^b$: set of sharply bounded formulas. For $i \geq 1$,

- If A and B are Σ_1^b -formulas, then so ar $A \vee B, A \wedge B$. If A is a $\prod_{i=1}^{b}$ -formula and B is a Σ_i^b -formula, then $A \to B$ and $\neg A$ are Σ_i^b -formulas.
- If A is a $\prod_{i=1}^{b}$ -formula, then A is a $\sum_{i=1}^{b}$ -formula.
- If A is a Σ_i^b -formula and t is a term, then $(\forall x \leq |t|)A$ is a Σ_i^b -formula.
- If A is a Σ^b_i-formula, and t is a term, then (∃x ≤ t)A is a Σ^b_i-formula. Note that this quantifier may be sharply bounded.

The classes Π_i^b are defined dually.

(日) (四) (三) (三) (三)

э

Why including #?

1. Gives a natural bound to the Gödel number for a formula A(t) in terms of product of the numbers of symbols in A and in t.

2. Quantifier exchange property :

 $(\forall x < |a|)(\exists y \le b)A(x, y) \leftrightarrow (\exists w \le SqBd(a, b))(\forall x \le |a|)$ $(A(x, \beta(x+1, y)) \land (\beta(x+1, y) \le b)$ where SqBd is a term involving #. This allows sharply bounded quantifers to be pushed inside non-sharply bounded quantifiers.

3. Connection with polynomial time and the polynomial time hierarchy:

- All terms t(x) have polynomial growth rate (bounded by $2^{|x|^c}$ with some constant c)
- Σ_i^b and Π_i^b -formulas define exactly the predicates in the classes Σ_i^p and Π_i^p at the *i*-th level of the polynomial time hierarchy

Axiom-BASIC

$$\begin{array}{lll} a \leq b \supset a \leq Sb & |a| = |b| \supset a\#c = b\#c \\ a \neq Sa & |a| = |b| \supset a\#c = b\#c \\ a \leq Sa & |a| = |b| + |c| \supset a\#d = (b\#d) \cdot (c\#d) \\ 0 \leq a & a \leq b \wedge a \neq b \to Sa \leq b \\ a \leq b \wedge a \neq b \to Sa \leq b & a \leq b \wedge a \neq b \supset \\ a \neq 0 \supset 2 \cdot a \neq 0 & S(2 \cdot a) \leq 2 \cdot b \wedge S(2 \cdot a) \neq 2 \cdot b \\ a \leq b \wedge b \leq a \supset a = b & a + b = a \\ a \leq b \wedge b \leq c \supset a \leq c & a + Sb = S(a + b) \\ |0| = 0 & (a + b) + c = a + (b + c) \\ |S0| = S0 & a + b \leq a + c \leftrightarrow b \leq c \\ a \neq 0 \supset |2 \cdot a| = S(|a|) \wedge |S(2 \cdot a)| = S(|a|) & a \cdot 0 = 0 \\ a \leq b \supset |a| \leq |b| & a \cdot (b + c) = (a \cdot b) + a \\ |a\#b| = S(|a| \cdot |b|) & a \cdot b = b \cdot a \\ 0\#a = S0 & a \cdot (b + c) = (a \cdot b) + (a \cdot c) \\ a \neq 0 \supset 1\#(2 \cdot a) = 2 \cdot (1\#a) & a \notin 0 \supset |a| = S(|\lfloor\frac{1}{2}a\rfloor|) \\ a\#b = b\#a & a = \lfloor\frac{1}{2}b \rfloor \leftrightarrow 2 \cdot a = b \lor S(2 \cdot a) = b \end{array}$$

Axioms for T_2^i and S_2^i

Induction Axioms : Let Φ be a set of formulas.

- Φ -IND : $A(0) \land (\forall x)(A(x) \to A(Sx)) \to (\forall x)A(x).$
- Φ -PIND : $A(0) \land (\forall x)(A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (\forall x)A(x).$
- Φ -LIND : $A(0) \land (\forall x)(A(x) \to A(Sx)) \to (\forall x)A(|x|).$
- Φ -LMIN : $(\exists x)A(x) \rightarrow (\exists x)(A(x) \land (\forall y)(|y| < |x| \rightarrow \neg A(y)))$

Definition

 $S_2^i : BASIC + \Sigma_i^b - PIND.$ $T_2^i : BASIC + \Sigma_i^b - IND$ $S_2 = \bigcup_i S_2^i \ T_2 = \bigcup_i T_2^i$

(日) (周) (日) (日) (日)

Bootstrapping and Σ_i^b -definable functions

Definition

A predicate symbol $R(\vec{x})$ is Δ_i^b -defined by a theory T if there is a Σ_i^b -formula $\phi(\vec{x})$ and a \prod_i^b -formula $\psi(\vec{x})$ such that R has defining axiom $R(\vec{x}) \leftrightarrow \phi(\vec{x})$ and $T \vdash (\forall \vec{x})(\phi \leftrightarrow \psi)$.

Definition

Let T be a theory of arithmetic. A function symbol $f(\vec{x})$ is $\sum_{i=1}^{b}$ -defined by T if it has a defining axiom $y = f(\vec{x}) \leftrightarrow \phi(\vec{x}, y)$ where ϕ is a $\sum_{i=1}^{b}$ formula with all free variables indicated and $T \vdash (\forall \vec{x})(\exists ! y)(\phi(\vec{x}, y))$

Theorem (Buss, 1986)

Let BASIC \subseteq T Let T be extended to a theory T⁺ in an enlarged language L⁺ by adding Δ_1^b -defined predicate symbols, Σ_1^b -defined function symbols and their defining equations. Let A be a Σ_i^b (respectively, a Π_i^b)-formula in L⁺ Then

• T⁺ is conservative over T

• there is a formula A^- in the language of T such that A^- is in Σ_i^b (respectively, Π_i^b) and $T^+ \vdash (A \leftrightarrow A^-)$.

10 / 22

Proof

Theorem 2: Let R be a fragment of Bounded Arithmetic. Suppose $R \operatorname{can} \Sigma_1^{b}$ -define the function f. Let R^* be the theory obtained from R by adding f as a new function symbol and adding the defining axiom for f. Then, if i > 0 and B is a $\Sigma_i^{b}(f)$ - (or a $\Pi_i^{b}(f)$ -) formula, there is a $B^* \in \Sigma_i^{b}$ (or Π_i^{b} , respectively) such that $R^* \vdash B^* \leftrightarrow B$.

Proof: The defining axiom for f is

 $f(\vec{x}) = y \leftrightarrow A(\vec{x}, y)$

where A is a Σ_1^{b-} formula. Let B be a bounded formula containing the symbol f. We first define the formula B_1 as follows: suppose f occurs in a term which bounds a quantifier, say $(Qx \leq s)D$ is a subformula of B where the term s involves f. Replace each occurrence of $f(\vec{r})$ in

3

(日) (四) (三) (三) (三)

s by the term $t(\vec{r})$. (t is the bound in the Σ_1^1 -definition of f, see the definition above.) This yields a term s'. Now, $(\exists z \leq s)D$ is provably equivalent to $(\exists z \leq s)(z \leq s, D)$ and $(\forall z \leq s)D$ is provably equivalent to $(\forall z \leq s)(z \leq s) \geq D$. By repeating this procedure, we can form B_1 so that

(1) $R^* \vdash B \leftrightarrow B_1$, and

(2) B1 does not contain f appearing in any term which bounds a quantifier.

We next obtain a formula B_2 in prenex normal form by applying prenex operations to B_1 so that $R^* \vdash B_{2^{\bullet \bullet}} B_1$. Furthermore, if B is a Σ_i^{i-} (or a Π_i^{i-}) formula, then so are B_1 and B_2 .

Let the mantissa of B_2 be D; that is to say, suppose

$$B_2 = (Q_1 x_1 \leq s_1) \cdot \cdot \cdot (Q_n x_n \leq s_n)D$$

where D is an open formula. Let $f(\vec{r})$ be a term appearing in D. Obtain D' by replacing $f(\vec{r})$ everywhere in D by a new variable z. Define

$$D_A = (\forall z \le t(\vec{r}))(A(\vec{r},z) \supset D')$$

and

$$D_E = (\exists z \leq t(\vec{r}))(A(\vec{r}, z) \land D)$$

Let D^{\forall} and D^{\exists} be their respective prenex normal forms. Then D^{\forall} is a $\Pi_{1}^{1}(f)$ -formula and D^{\exists} is a $\Sigma_{1}^{1}(f)$ -formula, and

$$R^{\bullet} \vdash (D \leftrightarrow D^{\forall}) \land (D \leftrightarrow D^{\exists}).$$

Define B_3 from B_2 by replacing the mantissa D by either D^{\forall} or D^{\exists} , whichever is appropriate. We can do this so that B_3 has the same alternation of (non-sharply) bounded quantifiers as B_2 . Also,

$$R^{\bullet} \vdash B_3 \leftrightarrow B_2$$

 B_3 was formed from B_2 so that all occurrences of the term $f(\vec{r})$ were eliminated. By iterating this procedure, we obtain B_4 from B_3 , B_5 from B_4 , and so on, until all occurrences of f have been eliminated. We let B^* be the B_1 such that i_{22} and f does not appear in B_4 .

Bounded Arithmetic

∃ →

Every single function and predicate symbol which was claimed to be Σ_1 -definable or Δ_1 -definable in $I\Delta_0$ is likewise Σ_i^b -definable or Δ_i^b -definable in $S_2^1, T_2^1, BASIC + \Pi_1^b$ -PIND, BASIC + Σ_1^b -LIND, BASIC + Π_1^b -LIND and BASIC + Π_1^b -IND.

```
Theorem (Buss, 1986)
```

Let $i \ge 1$

- T_2^i proves Π_i^b -IND and $T_2^i \models S_2^i$.
- **2** S_2^i proves Σ_i^b -LIND, Π_i^b -PIND and Π_i^b -LIND.

Definition (Cobham, 1965)

The polynomial time function on $\ensuremath{\mathbb{N}}$ are inductive defined by

- The following function are polynomial time :
 - The nullary constant function 0.
 - The successor function S(x)
 - The doubling function D(x)=2x

The conditional function $Cond(x, y, z) = \begin{cases} y & \text{if } x = 0 \\ z & \text{otherwise.} \end{cases}$

The projection functions are polynomial time functions; the composition of polynomial time functions is a polynomial time function.

 If g is a (n-1)-ary polynomial time function and h is a (n+1)-ary polynomial time function and p is a polynomial, then the following function f, defined by limited iteration on notation from g and h, is also polynomial time : f(0, x) = g(x) f(z, x) = h(z, x, f(⌊½z⌋, x)) for z ≠ 0 provided |f(z, x)| ≤ p(|z|, |x|)

(日) (四) (日) (日) (日)

Notation

The class of polynomial time functions is denoted as \Box_1^p , and the class of polynomial time predicates is denoted Δ_1^p .

Theorem (Buss, 1986)

- Every polynomial time function is Σ_1^b -definable in S_2^1 .
- Every polynomial time predicate (i.e. its characteristic function is polynomial time) is Δ₁^b-definable in S₂¹.

Proof.

Boostraping S_2^1 sufficiently to intensionally introduce sequence coding function and prove this theorem by induction on the construction of polynomial time computability.

(日) (四) (日) (日) (日)

Theorem (Buss, 1986)

Let $i \ge 1$. **1** $T_2^i \supseteq S_2^i$. **2** $S_2^i \supseteq T_2^{i-1}$.

Proof.

For (1), it suffices to show \sum_{i}^{b} -PIND follows from \sum_{i}^{b} -LIND over BASIC with $i \ge 1$. We sketch the proof here. To prove PIND for A(x) (with c a free variable) $A(0) \land (\forall x)(A(\lfloor \frac{1}{2}x \rfloor) \rightarrow A(x)) \rightarrow A(c)$ use LIND on B(i) := A(t(i)) for $t(i) := \lfloor c/2^{\lfloor c \rfloor - i} \rfloor$. For this, note that B(0) and $B(\lfloor c \rfloor)$ are equivalent to A(c) and A(0). Also, $t(i) = \lfloor \frac{1}{2}t(i+1) \rfloor$, so $(\forall i)(B(i) \rightarrow B(i+1))$ follows from $(\forall x)(A(\lfloor \frac{1}{2}x \rfloor) \rightarrow A(x))$

(日) (周) (日) (日) (日)

Proof Cont.

The proof of (2) use a divide-and-conquer method. Fix $i \ge 1$ and a $\sum_{i=1}^{b}$ -formula A(x); prove that S_2^i proves the IND-axiom for A. Assume that we have A(0) and $(\forall x)(A(x) \rightarrow A(x+1))$. Let B(x,z) be the formula $(\forall w \le x)(\forall y \le z+1)(A(w - y) \rightarrow A(w))$. B is equivalent to a \prod_i^b -formula. By the definition of b, it follows that $(\forall x)(\forall z)(B(x,\lfloor \frac{1}{2}z \rfloor) \rightarrow B(x,z))$ and hence by \prod_i^b -PIND on B(x,z) w.r.t z, we have $(\forall x)(B(x,0) \rightarrow B(x,x))$. $(\forall x)B(x,0)$ holds as it's equivalent to $(\forall x)(A(x) \rightarrow A(x+1))$, therefore $(\forall x)B(x,x)$ holds. This implies $(\forall x)(A(0) \rightarrow A(x))$.

Corollary (Buss, 1986)

 $S_2 = T_2$

(日) (周) (日) (日) (日)

Definition

The classes Δ_1^p and \Box_1^p have already been defined. Further define, by induction on i,

- Σ^p_i is the class of predicate R(x) definable by R(x) ↔ (∃y) ≤ s(x)(Q(x,y)) for some term s in ther language of bounded arithmetic, and some Δ^p_i predicate Q.
- **2** Π_i^p is the class of complements of predicates in Σ_i^p .
- \Box_{i+1}^{p} is the class of predicates computable on a polynomial time Turing machine using an oracle from Σ_{i}^{p} .
- Δ_i^p is the class of predicates which have characteristic function in \Box_{i+1}^p .
- **(**) Base classes $P = \Delta_1^p$ of polynomial time recognizable predicates.
- **2** $FP = \Box_1^p$ of polynomial time computable functions.
- NP = Σ₁^p of predicates computable in nondeterministic polynomial time.
- $coNP = \prod_{1}^{p}$ of complement of *NP* predicates.

Theorem (Wrathall'76,Stockmeyer'76,Kent-Hodgson'82)

A predicate is Σ_i^p if and only if there is a Σ_i^b -formula which defines it.

Proof.

(\Leftarrow) Note that a sharply bounded formula defines a polynomial time predicate. Given a Σ_i^b -formula, one can use the quantifier exchange property to push sharply bounded quantifier inward and can use pairing functions to combine adjacent quantifiers; this transforms the formula into an equivalent formula which defines a Σ_i^p property. (\Rightarrow) Induction on i : For i = 1, from previous theorem, we have known every Δ_1^p -predicate is defined by both a Σ_1^p and a Π_1^p formula. For the first part of induction step, we assume that every Δ_i^p predicate is definable by

part of induction step, we assume that every Δ_i^p predicate is definable by both a Σ_i^b and Π_i^b -formula. Use this claim, we get every Σ_i^p predicate is definable by a Σ_i^b -formula. To prove the second part of induction step, we have to prove that every Δ_{i+1}^p -predicate is definable by both a Σ_{i+1}^b formula and a Π_{i+1}^b -formula. To show this, it suffices to show that every \Box_{i+1}^p -function has its graph defined by a Σ_i^b -formula. These are contents of next theorem.

Theorem (Buss, 1986)

$i \geq 1$.

Every □^p_i function is Σ^b_i-definable in Sⁱ₂.
Every Δ^p_i predicate is Δ^b_i definable in Sⁱ₂.

Proof.

Induction on i. The base case has already been done. For (2), consider a Δ_i^p predicate $Q(\vec{x})$ with the characteristic function f in \Box_i^p . By (1), it is defined by a Σ_i^b -formula A_f . Define $A(\vec{x})$ and $B(\vec{x})$ to be $A_f(x,1)$ and $\neg A_f(x,0)$. Then $S_2^i \vdash (\forall \vec{x})(A(\vec{x}) \leftrightarrow B(\vec{x}))$.

Proof of (1)

(1) If $f(\vec{x}, y)$ is a \Box_{i-1}^{p} -function, then the characteristic function $\chi(\vec{x})$ of $(\exists y \leq t(\vec{x}))(f(\vec{x}, y) = 0)$ is Σ_{i}^{b} -definable. To prove this, we have by the induction hypothesis that $f(\vec{x}, y) = z$ is equivalent to a Σ_{i-1}^{b} formula $A(\vec{x}, y, z)$. The Σ_{i}^{b} -definition of $\chi(\vec{x})$ is thus⁶

$$\chi(\vec{x}) = z \iff (z = 0 \land (\exists y \le t) A(\vec{x}, y, 0)) \lor (z = 1 \land \neg (\exists y \le t) A(\vec{x}, y, 0))$$

which is clearly equivalent to a Σ_i^b -formula by prenex operations.

(2) If functions g and \vec{h} have graph definable by Σ_i^b -formulas, then so does their composition. As an example of how to prove this, suppose $f(\vec{x}) = g(\vec{x}, h(\vec{x}))$; then the graph of f can be defined by

$$f(\vec{x}) = y \iff (\exists z \le t_h(\vec{x}))(h(\vec{x}) = z \land g(\vec{x}, z) = y),$$

where t_h is a term bounding the function h.

(3) If f is defined by limited iteration from g and h with bounding polynomial p, and g and h have Σ_{p}^{b} -definable graphs, then so does f. To prove this, show that $f(z, \vec{x}) = y$ is expressed by the formula

$$\begin{aligned} (\exists w \le SqBd(2^{p(|z|,|\vec{x}|)}, z))[\beta(|z|+1, \vec{x}) = y \land \beta(1, w) = g(\vec{x}) \land \\ \land (\forall i < |z|)(\beta(i+2, w) = \min\{h(\lfloor \frac{z}{2^{|z|-i+1}} \rfloor, \vec{x}, \beta(i+1, w)), 2^{p(|i+1|,|\vec{x}|)}\})]. \end{aligned}$$

Here the term $SqBd(\cdots)$ has been chosen sufficiently large to bound the size of the sequence w encoding the steps in the computation of $f(z, \vec{x})$. The formula is clearly in Σ_{i}^{b} , and the theory S_{2}^{i} can prove the existence and uniqueness of w by PIND induction up to z. \Box

Max Lin

Theorem (Buss, 1990)

Let $i \geq 1$.

- Every \Box_i^p function is Σ_i^b -definable in T_2^{i-1} .
- 2 Every Δ_i^p predicate is Δ_i^b -definable in T_2^{i-1} .

Remark 2 (Krajíček-Pudlák-Takeuti'91,Buss'95,Zambella'96)

If $T_2^i = S_2^{i+1}$ for some $i \ge 1$, then the polynomial time hierarchy collapses provably in T_2 .

(日) (個) (E) (E) (E)