Coding sequencer
We hnom (do. The notes on Ac-clef functions) hou to code k-tuples, any fixed $k \geq$? Bot we need to code fin'e seq's a_{0}, \ldots, a_{k-1} of arbixtray lenyth 4 , i.e. n is not Luoun is advance.

For exam'e, we could cocle ('h by

$$
u:=\rho_{0}^{1+4_{0}} p_{1}^{1+a_{1}} \cdots p_{n-1}^{1+a_{k-1}}
$$

Where P_{i} is (it1)-st prime. Howeven, we weed thot the lengti functu.
$\operatorname{len}(u)=n$
and the decoding

$$
(u)_{i}:=a_{1}
$$

are Δ_{0}-definoble. To say "quij-tb preme" in a so-U0y is not easy and presupposes The ability to coale roqum (firstiprimes).

Fortunotely Goiclel (1930) 1'acmed in his prook a way tho n to cle thens. It ures the folloming umben-theoretic stotement.

Chinese remainader theorem (-300 B.C.)
(ef $n \geq 0, m_{0}, \ldots$. , $m_{m, 1} \geq$ ad acsune the
 $m:=\prod_{i<u} m_{n} \cdot$

Let $0 \leqslant a_{i}<m_{1}:, i<u$, be or be'trorg. Then these is $u<m$ s. r. Ar oll i<n:

$$
u \equiv a_{i} \text { (urol } m_{i} \text {) }
$$

Arp: Dat $D=\{0, \ldots, m+1)$

$$
R=\left\{0, \ldots, \mu_{0}+1\right\} x--+\left\{0, \ldots, w_{4} \ldots,\right\rangle
$$

and elifine wop $F: D \rightarrow R \quad b_{4}$

$$
\left.F(t)=K_{0}, \ldots, y_{n-1}\right)
$$

unhere $y_{i}=\operatorname{rem}(x, m i)$ (cp.uotes on Δ_{0}-cbeffa)
Clan: F ì 1-to-1 (ier-ciojichive).
Prf-clani: If not, the fer sme $0 \leq t<t^{\prime}<m$ $x \geq x^{\prime \prime}$ (worel m_{i})
i.. $\quad x^{\prime}-x \equiv 0\left(\right.$ moder $\left.m-r^{\prime}\right)$. As mid ano coprime $0 /$ so $t^{\prime}-t \equiv 0$ (hovelam). But $t^{\prime}-t<1$, so $x=+$!. $\left.{ }^{0}\right]^{\text {carn }}$
The the follows as $|D|=|R|$, so f muer se colse surjecteive.

Gicen $a_{0}, \ldots, a_{n .1}$ be w.ll wedel to geveroti easils (ie.s.dedefine) smitoh/e cno, ..., men.1

Toke:

$$
d:=(n!)\left(1+\ln a_{1} \cdot a_{1} \cdot\right) \text {. }
$$

clears $a_{i}<d$, all. Pat:

$$
u_{1}:=(i+1) \cdot d+1
$$

Clami: $F v^{\circ}{ }^{c} i<j<\mu$, uni, μ_{j} ase copreine.
Prf-clami: Assme tot $1<p / \mathrm{mi}$ ad plmg.
Th pl $(j-1) d$. Ag $y-i<4$, adn! $/ d$, dso pld. But Hot is imposichle as m, m. $1 / d$). 1can:
Gödel's β-function:

$$
\beta(x, y, z):=\operatorname{rem}(x,(z+1) \cdot y+1)
$$

Now we are reacb to clefine the cocling. The code of sequeru

$$
a_{0}, \ldots, a_{n-1}
$$

is

$$
W:=\langle m, d, n\rangle
$$

where:
Ca $1 \mu_{1}=\prod_{i<n} m_{i}$, where $m_{1}:=(i+1) \cdot d+1$
(b ! d $:=(4!)\left(1+m a t_{1} \cdot a!\right)$.
The Δ_{0}-clefin'tein of (en (u) ad (ω). ave easy now:

$$
\begin{aligned}
& 1 e u(u)=m \quad \mathbb{E}^{\top} \exists u, v \leqslant u, u=\langle u, v, u\rangle \\
& (u)_{c}=a<J u, v, n \leqslant u, u=\langle 4, v, n\rangle \\
& 1 a=\operatorname{rem}(u,(i+1) \cdot v+1)
\end{aligned}
$$

Summary:
For all sequences a_{0}, \ldots, a_{n-1}
There i u s.f. $/ e_{n}(u)=u$ ad for all icu: $(u)_{i}=a_{i}$.

