Ziclefinability of RE sets
let ot be anj T. mochine (led.7). We slowle identify:
(i) its set of states Q with $\langle 0, \cdots| q,|-1\rangle$ once The inilion stote q\% usth 0 ,
(iil it) uorliug alphaber Σ with $\{0, \ldots,|\Sigma|-1\}$, the plowd squabol witt 0 , and the ingurt a phabed $\Gamma \leq \sum-$ \{blwht with $\{1, \ldots, \mid \Gamma 1\}$.
[iiiTLEA $v: \subseteq G+\sum \rightarrow G+\sum+\{L R\}$ be $1 T_{s}$
trankiton (possol) finctic.
Au cirgut $u_{0} \cdots u_{n-1} \in \Gamma^{n}$ uell be cosele by $u \in N$ s.t. tri<n: $(u)_{i}=u_{i}$.

We wat to expriss - by a \sum_{1}-inthce - thed O holls on u ather t teps (u ro.o.g. $t \geq n$). Ocon virit at wore t squares of the tores. If wo uard to cinitiol sy. $-\frac{1}{} t$

Then all sq's or vixis are is [0,2c]. Then a coutent of the tope i ge'rn by a wosed $x_{n} \sum^{2 k x}$ (coll ot tes sy's ase blunh). Fen. Wod a $\in \Sigma^{2 k+1}$

Eotresponch to the cu'tiol sitnotin ith
(1)

$$
\begin{aligned}
& {\left[t_{j}<n,(u)_{j}=\left(a t_{+j}\right] 1\right.} \\
& \quad\left[\forall_{j} \leq 2 t,(j<t \vee t+n \leq j) \rightarrow(a)_{j}=0\right]
\end{aligned}
$$

The entive co-ajuloth correspung to $t \times 1$ such strangs $A=\left(a^{0}, \cdots a^{t}\right)$, will $a^{\prime \prime} \in \Sigma^{2 t+1}$ clescribius te tore ofter betep i^{\prime}. Hance (A)irs $S^{2 x+1}$ ande if is mune reocluble to ar the watrix notatik:

$$
\begin{aligned}
A_{i j}:=\left((A)_{i}\right)_{j}= & \text { "te 'yesol in sy.j oth } \\
& \text { ireps" reter }
\end{aligned}
$$

Let 9 corce seyumen of wochive toth opten ead rhep ist. 7.e.:
$(2 a) \quad \operatorname{len}(q)=t+\prime$
$\left(251 \quad t_{i} \leq t,(q)_{i} \leq 1 \varepsilon_{1}\right.$
(zc1 (9) $=0$ (the incitial stote).

Ue alsu wed a recond of head's poritims: h croles proitm $h_{0}, \ldots, h_{c} \leq 2 t$. Z.e.:
(3.) $\operatorname{len}(h)=t+1$
$(36) \quad t i \leq t, \quad(h)_{i} \leqslant 2 c$
($3 c$ c) (h) $=t$ (the initiol potiinu).
Nou ue ucut to writi a fermie exprestuc Ther"A, A,h ase recosels of a valid con-urbhe on inputs 4 ade it luolt \rightarrow ofter rap x." ToL subsequerthy all pain $(4, L) \in G+5$ J-K δ i clifind on (u,v) and 九 wryructin ij, suy: $\quad(u, c) \rightarrow\left(u^{\prime}, v^{\prime},<\right)$.

The acd conchtin.

$$
\begin{aligned}
& (T(u, v)) \forall i \& \in V_{j} \leqslant 26 \\
& {\left[(h)_{i}=j+(q)_{i}=u+(A)_{i j}=v\right] \Rightarrow} \\
& {\left[(h)_{i+1}=j=1+(q)_{i+1}=u^{\prime}+A_{i+1, j}=v^{\prime}\right]}
\end{aligned}
$$

ronclitin root or hults is arranged by tho disjunctio:
(5) $ل\left(F_{j}<2 t,(h)=j\right.$ a $(q)_{t}=u$ a $\left.A_{t_{j}}=v\right)$
$(4, u) \notin \operatorname{com}(v)$
It say tot ofter time t there is no instruction to opply.

Now we in expreer thet os kolts ofler t sleps -5 ,-fomula:

$$
\exists A, h, q \in \alpha(A, h, q, 6, u)
$$

Whre $\alpha \in \Delta_{0}$ is 九e cu/mctin of all Conchition (1), (2), (3), (4) Ge (ad $(4,0)$ edond) ad (5).

Pat: $\varphi(t) \rightleftarrows \exists t \exists A, h, q \propto(A, h, q, t, t)$
Thorem: $\varphi(t)$ is a Σ, -forme'. defiming the set of $u \in N$ on mhich or holts.

