# Surreal numbers 

Martin Melicher

March 28, 2021

## Introduction

- We will go through some parts of On Numbers and Games (Conway, 1976)


## Introduction

- We will go through some parts of On Numbers and Games (Conway, 1976)
- Our order will be different from the order in the book


## Introduction

- We will go through some parts of On Numbers and Games (Conway, 1976)
- Our order will be different from the order in the book
- We start by defining games and learn to make arithmetics on them


## Introduction

- We will go through some parts of On Numbers and Games (Conway, 1976)
- Our order will be different from the order in the book
- We start by defining games and learn to make arithmetics on them
- Then we define surreal numbers as a special kind of games


## Introduction

- We will go through some parts of On Numbers and Games (Conway, 1976)
- Our order will be different from the order in the book
- We start by defining games and learn to make arithmetics on them
- Then we define surreal numbers as a special kind of games
- Field of surreal numbers turns out to be similar in structure to reals, but much richer


## Definition of game

## Definition of game

- Game is played between 2 players - Left and Right


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})$ - $L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})$ - $L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins
- $\{0 \mid 0\}=*$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins
- $\{0 \mid 0\}=*$ - first player wins


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins
- $\{0 \mid 0\}=*$ - first player wins
- $\{0,1 \mid\},\{* \mid *\},\{0, * \mid-1\}, \ldots$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins
- $\{0 \mid 0\}=*$ - first player wins
- $\{0,1 \mid\},\{* \mid *\},\{0, * \mid-1\}, \ldots$


## Definition of game

- Game is played between 2 players - Left and Right
- Players are alternately taking turns, player without valid move loses
- Every game must terminate after finite number of moves
- Every position is fully described by valid moves for Left and Right
- We can identify a game with its starting position
- Formally, game is an ordered pair of sets of games (written as $\{L \mid R\})-L$ are options for Left player, $R$ for Right
- $\{\mid\}=0$ - second player wins
- $\{0 \mid\}=1$ - Left wins
- $\{\mid 0\}=-1$ - Right wins
- $\{0 \mid 0\}=*$ - first player wins
- $\{0,1 \mid\},\{* \mid *\},\{0, * \mid-1\}, \ldots$
- If $a=\{X \mid Y\}$ is a game, we write $a_{L}$ for $X$ and $a_{R}$ for $Y$


## Definition of game

To avoid cyclic definition, we can do this:

## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

- $M_{0}=\{\{\mid\}\}=\{0\}$


## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

- $M_{0}=\{\{\mid\}\}=\{0\}$
- $M_{1}=\{\{\mid\},\{0 \mid\},\{\mid 0\},\{0 \mid 0\}\}=\{0,1,-1, *\}$


## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

- $M_{0}=\{\{\mid\}\}=\{0\}$
- $M_{1}=\{\{\mid\},\{0 \mid\},\{\mid 0\},\{0 \mid 0\}\}=\{0,1,-1, *\}$
- $\left|M_{2}\right|=256$


## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

- $M_{0}=\{\{\mid\}\}=\{0\}$
- $M_{1}=\{\{\mid\},\{0 \mid\},\{\mid 0\},\{0 \mid 0\}\}=\{0,1,-1, *\}$
- $\left|M_{2}\right|=256$
- The class of all games is a proper class.


## Definition of game

To avoid cyclic definition, we can do this:

## Definition (Game)

For each ordinal $\alpha$ we define $M_{\alpha}$ as follows:

- $M_{\alpha}=\left\{\{L \mid R\}: L, R \subseteq \bigcup_{\beta<\alpha} M_{\beta}\right\}$

We say that $x$ is a game, if $x \in M_{\alpha}$ for some $\alpha$. We call the smallest such $\alpha$ the birthday of $x$.

- $M_{0}=\{\{\mid\}\}=\{0\}$
- $M_{1}=\{\{\mid\},\{0 \mid\},\{\mid 0\},\{0 \mid 0\}\}=\{0,1,-1, *\}$
- $\left|M_{2}\right|=256$
- The class of all games is a proper class.
- If $x$ is a game and $y \in x_{L} \cup x_{R}$, then $\operatorname{birthday}(y)<\operatorname{birthday}(x)$.


## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Lemma (Induction)

Let $\phi$ be a property such that for each game $x$ :

- $\left(\forall y \in x_{L} \cup x_{R}: \phi(y)\right) \rightarrow \phi(x)$


## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Lemma (Induction)

Let $\phi$ be a property such that for each game $x$ :

- $\left(\forall y \in x_{L} \cup x_{R}: \phi(y)\right) \rightarrow \phi(x)$

Then for each game $x, \phi(x)$ holds.

## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Lemma (Induction)

Let $\phi$ be a property such that for each game $x$ :

- $\left(\forall y \in x_{L} \cup x_{R}: \phi(y)\right) \rightarrow \phi(x)$

Then for each game $x, \phi(x)$ holds.

## Lemma (Induction 2)

Let $\phi$ be a property such that for each $x, y$ :

- $\left(\forall x^{\prime} \in x_{L} \cup x_{R}: \phi\left(x^{\prime}, y\right)\right) \wedge\left(\forall y^{\prime} \in y_{L} \cup y_{R}: \phi\left(x, y^{\prime}\right)\right) \rightarrow \phi(x, y)$


## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Lemma (Induction)

Let $\phi$ be a property such that for each game $x$ :

- $\left(\forall y \in x_{L} \cup x_{R}: \phi(y)\right) \rightarrow \phi(x)$

Then for each game $x, \phi(x)$ holds.

## Lemma (Induction 2)

Let $\phi$ be a property such that for each $x, y$ :

- $\left(\forall x^{\prime} \in x_{L} \cup x_{R}: \phi\left(x^{\prime}, y\right)\right) \wedge\left(\forall y^{\prime} \in y_{L} \cup y_{R}: \phi\left(x, y^{\prime}\right)\right) \rightarrow \phi(x, y)$

Then for each $x$ and $y, \phi(x, y)$ holds.

## Definition of game

There is no infinite sequence of games $\left\{g_{i}\right\}$ such that $g_{i+1} \in\left(g_{i}\right)_{L} \cup\left(g_{i}\right)_{R}$ for each $i \in \mathbb{N}$. If there was, their birthdays would form an infinite decreasing sequence of ordinals.

## Lemma (Induction)

Let $\phi$ be a property such that for each game $x$ :

- $\left(\forall y \in x_{L} \cup x_{R}: \phi(y)\right) \rightarrow \phi(x)$

Then for each game $x, \phi(x)$ holds.

## Lemma (Induction 2)

Let $\phi$ be a property such that for each $x, y$ :

- $\left(\forall x^{\prime} \in x_{L} \cup x_{R}: \phi\left(x^{\prime}, y\right)\right) \wedge\left(\forall y^{\prime} \in y_{L} \cup y_{R}: \phi\left(x, y^{\prime}\right)\right) \rightarrow \phi(x, y)$

Then for each $x$ and $y, \phi(x, y)$ holds.
Similar lemma holds for $\phi(x, y, z)$, etc.

## Definition of game

Consequences:

- Every game terminates after finite number of moves.


## Definition of game

Consequences:

- Every game terminates after finite number of moves.
- For given game and given starting player, exactly one player has a winning strategy.


## Arithmetics on games

## Arithmetics on games

## Definition

Let $a$ be a game. We say that $a \geq 0$, if, given Right starts, Left has a winning strategy. Alternatively, $a \geq 0$ iff $\forall b \in a_{R} \exists c \in b_{L}: c \geq 0$.

## Arithmetics on games

## Definition

Let $a$ be a game. We say that $a \geq 0$, if, given Right starts, Left has a winning strategy. Alternatively, $a \geq 0$ iff $\forall b \in a_{R} \exists c \in b_{L}: c \geq 0$.
$a+b$ - each move can be done in either $a$ or $b$.

## Arithmetics on games

## Definition

Let $a$ be a game. We say that $a \geq 0$, if, given Right starts, Left has a winning strategy. Alternatively, $a \geq 0$ iff $\forall b \in a_{R} \exists c \in b_{L}: c \geq 0$.
$a+b$ - each move can be done in either $a$ or $b$.

## Definition

Let $a, b$ be games. By $a+b$ we mean a game $\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\}$

## Arithmetics on games

## Definition

Let $a$ be a game. We say that $a \geq 0$, if, given Right starts, Left has a winning strategy. Alternatively, $a \geq 0$ iff $\forall b \in a_{R} \exists c \in b_{L}: c \geq 0$.
$a+b$ - each move can be done in either $a$ or $b$.

## Definition

Let $a, b$ be games. By $a+b$ we mean a game $\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\}$
-a - same game, but with roles switched.

## Arithmetics on games

## Definition

Let $a$ be a game. We say that $a \geq 0$, if, given Right starts, Left has a winning strategy. Alternatively, $a \geq 0$ iff $\forall b \in a_{R} \exists c \in b_{L}: c \geq 0$.
$a+b$ - each move can be done in either $a$ or $b$.

## Definition

Let $a, b$ be games. By $a+b$ we mean a game $\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\}$
-a - same game, but with roles switched.

## Definition

Let $a$ be a game. By $-a$ we mean a game $\left\{-a_{R} \mid-a_{L}\right\}$

## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsucceq b$ and $b \geq a$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \not \geq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsucceq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- -0


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsucceq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsucceq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
-     - (1)


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsucceq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsucceq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
-     -         * 


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
-     -         * $\equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+*$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$
- *+*


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$
- $*+* \equiv\{0 \mid 0\}+\{0 \mid 0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:

- $-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$
- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$
- $*+* \equiv\{0 \mid 0\}+\{0 \mid 0\} \equiv\{0+*, *+0 \mid 0+*, *+0\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:
$-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$

- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$
- $*+* \equiv\{0 \mid 0\}+\{0 \mid 0\} \equiv\{0+*, *+0 \mid 0+*, *+0\} \equiv\{* \mid *\}$


## Arithmetics on games

We define $a-b$ as $a+(-b)$ and $a \geq b$ as $a-b \geq 0$. Furthermore:

- $a>b$ stands for $a \geq b$ and $b \nsupseteq a$
- $a<b$ stands for $a \nsupseteq b$ and $b \geq a$
- $a=b$ stands for $a \geq b$ and $b \geq a$
- $a \| b$ stands for $a \nsupseteq b$ and $b \nsupseteq a$

We use $a \equiv b$, if $a$ and $b$ are exactly the same ( $a_{L}=b_{L}$ and $a_{R}=b_{R}$ ). Examples:
$-0 \equiv-\{\mid\} \equiv\{\mid\} \equiv 0$

- $-(1) \equiv-\{0 \mid\} \equiv\{\mid-0\} \equiv\{\mid 0\} \equiv-1$
- $-* \equiv-\{0 \mid 0\} \equiv\{-0 \mid-0\} \equiv\{0 \mid 0\} \equiv *$
- $0+0 \equiv\{\mid\}+\{\mid\} \equiv\{\mid\} \equiv 0$
- $0+* \equiv\{\mid\}+\{0 \mid 0\} \equiv\{0+0 \mid 0+0\} \equiv\{0 \mid 0\} \equiv *$
- $*+* \equiv\{0 \mid 0\}+\{0 \mid 0\} \equiv\{0+*, *+0 \mid 0+*, *+0\} \equiv\{* \mid *\}=0$

DOMINOES
We have a board consisting of squares (shape san be arbitrary, even disconnected). Players are alternately placing dominoes. Each domino covers two adjacent squares, no two dominoes can overlap. Left must place his dominoes vertically, Right horizontally. A player with no whit more loses.


$$
\begin{aligned}
& \square \equiv\{1\} \equiv 0 \\
& B \equiv\{01\} \equiv 1 \\
& \equiv\{10\} \equiv-1 \\
& W_{7}=\{010\} \equiv * \\
& \equiv\{1 /-1\} \\
& -x \equiv\left(x \text { rotated by } 90^{\circ} \text { degrees }\right) \\
& \alpha+l \equiv(2 \text { composed with 6) }
\end{aligned}
$$

$$
\begin{aligned}
& B+B \equiv A B \\
& B_{\square}=\{-1,012\} \leq \frac{1}{2}
\end{aligned}
$$

Let＇s prove，that $\frac{1}{2}+\frac{1}{2}=1$ ．That is，丑田 $=$ 日．We need to deck two inequalities：
（9．）$\# B \geq 日:$ We need $B \in \mathbb{B} \geq 0$ ，so Right starts，can left win？
（2．）日き目目：We need 日 $\frac{\text { HA }}{\text { N }} \geq 0$

## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$

## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$
(0) $a+b \equiv b+a$

## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$
(0) $a+b \equiv b+a$

- $(a+b)+c \equiv a+(b+c)$


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$
(2) $a+b \equiv b+a$
(3) $(a+b)+c \equiv a+(b+c)$
(9) $-(-a) \equiv a$

## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$
(2) $a+b \equiv b+a$

- $(a+b)+c \equiv a+(b+c)$
- $-(-a) \equiv a$
- $-(a+b) \equiv-a-b$


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:
(1) $a+0 \equiv a$
(0) $a+b \equiv b+a$

- $(a+b)+c \equiv a+(b+c)$
- $-(-a) \equiv a$
- $-(a+b) \equiv-a-b$

Before, we defined $a \geq b$ as $a-b \geq 0$. Now we know, that $a-0 \equiv a+0 \equiv a$, so the definition of $\geq$ is consistent.

## Arithmetics on games

Proof
We prove all of them by induction.
(1) $a+0$

## Arithmetics on games

Proof
We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\}
\end{aligned}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(a) $-(-a)$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\}$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$
(6) $-(a+b)$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$
(3) $-(a+b)$

$$
\equiv-\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$
(6) $-(a+b)$

$$
\begin{aligned}
& \equiv-\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{-\left(a_{R}+b\right) \cup-\left(a+b_{R}\right) \mid-\left(a_{L}+b\right) \cup-\left(a+b_{L}\right)\right\}
\end{aligned}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$
(3) $-(a+b)$

$$
\begin{aligned}
& \equiv-\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{-\left(a_{R}+b\right) \cup-\left(a+b_{R}\right) \mid-\left(a_{L}+b\right) \cup-\left(a+b_{L}\right)\right\} \\
& \equiv\left\{\left(-a_{R}-b\right) \cup\left(-a-b_{R}\right) \mid\left(-a_{L}-b\right) \cup\left(-a-b_{L}\right)\right\}
\end{aligned}
$$

## Arithmetics on games

## Proof

We prove all of them by induction.
(1) $a+0 \equiv\left\{a_{L} \mid a_{R}\right\}+\{\mid\} \equiv\left\{a_{L}+0 \mid a_{R}+0\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$.
(2) $a+b$

$$
\begin{aligned}
& \equiv\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{\left(b+a_{L}\right) \cup\left(b_{L}+a\right) \mid\left(b+a_{R}\right) \cup\left(b_{R}+a\right)\right\} \equiv b+a .
\end{aligned}
$$

(3) Both sides evaluate to $\left(a_{L}+b+c\right) \cup\left(a+b_{L}+c\right) \cup\left(a+b+c_{L}\right)$ on the left and analogously on the right.
(9) $-(-a) \equiv-\left\{-a_{R} \mid-a_{L}\right\} \equiv\left\{-\left(-a_{L}\right) \mid-\left(-a_{R}\right)\right\} \equiv\left\{a_{L} \mid a_{R}\right\} \equiv a$
(3) $-(a+b)$

$$
\begin{aligned}
& \equiv-\left\{\left(a_{L}+b\right) \cup\left(a+b_{L}\right) \mid\left(a_{R}+b\right) \cup\left(a+b_{R}\right)\right\} \\
& \equiv\left\{-\left(a_{R}+b\right) \cup-\left(a+b_{R}\right) \mid-\left(a_{L}+b\right) \cup-\left(a+b_{L}\right)\right\} \\
& \equiv\left\{\left(-a_{R}-b\right) \cup\left(-a-b_{R}\right) \mid\left(-a_{L}-b\right) \cup\left(-a-b_{L}\right)\right\} \\
& \equiv-a-b
\end{aligned}
$$

## Arithmetics on games

Lemma
Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.

## Arithmetics on games

Lemma
Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.
(2) $a=b$ iff $-a=-b$.

## Arithmetics on games

Lemma
Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.
(2) $a=b$ iff $-a=-b$.
(3) $a \leq 0$ iff given Left starts, Right can win.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.
(2) $a=b$ iff $-a=-b$.
(3) $a \leq 0$ iff given Left starts, Right can win.

## Proof

(1) Follows from the definition and $b-a \equiv-a+b \equiv-a-(-b)$.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.
(2) $a=b$ iff $-a=-b$.
(3) $a \leq 0$ iff given Left starts, Right can win.

## Proof

(1) Follows from the definition and $b-a \equiv-a+b \equiv-a-(-b)$.
(2) $a=b \leftrightarrow(a \leq b \wedge b \leq a) \leftrightarrow(-a \geq-b \wedge-b \geq-a) \leftrightarrow-a=-b$

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) $a \leq b$ iff $-a \geq-b$.
(2) $a=b$ iff $-a=-b$.
(3) $a \leq 0$ iff given Left starts, Right can win.

## Proof

(1) Follows from the definition and $b-a \equiv-a+b \equiv-a-(-b)$.
(2) $a=b \leftrightarrow(a \leq b \wedge b \leq a) \leftrightarrow(-a \geq-b \wedge-b \geq-a) \leftrightarrow-a=-b$
(3) $a \leq 0$ is equivalent to $-a \geq 0$. Thus in $-a$, given Right starts, Left can win. But $-a$ is just $a$ with roles switched.

## Arithmetics on games

## Consequence

Let a be a game. Then:

- $a>0$ iff Left has a winning strategy.


## Arithmetics on games

## Consequence

Let $a$ be a game. Then:

- $a>0$ iff Left has a winning strategy.
- $a<0$ iff Right has a winning strategy.


## Arithmetics on games

## Consequence

Let $a$ be a game. Then:

- $a>0$ iff Left has a winning strategy.
- a $<0$ iff Right has a winning strategy.
- $a=0$ iff second player has a winning strategy.


## Arithmetics on games

## Consequence

Let $a$ be a game. Then:

- $a>0$ iff Left has a winning strategy.
- a $<0$ iff Right has a winning strategy.
- $a=0$ iff second player has a winning strategy.
- a || 0 iff first player has a winning strategy.


## Arithmetics on games

## Consequence

Let $a$ be a game. Then:

- $a>0$ iff Left has a winning strategy.
- a $<0$ iff Right has a winning strategy.
- $a=0$ iff second player has a winning strategy.
- a || 0 iff first player has a winning strategy.


## Consequence <br> $-1<0<1 ; *| | 0 ;\{* \mid *\}=0$

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=, \mid \|\}$.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=, \|\}$.
(3) $a-a=0$.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=,| |\}$.
(3) $a-a=0$.

## Proof

(1) We are playing $a+b$, Right starts. Left can just combine winning strategies for $a$ and $b$, always playing in the same game as Right.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=,| |\}$.
(3) $a-a=0$.

## Proof

(1) We are playing $a+b$, Right starts. Left can just combine winning strategies for $a$ and $b$, always playing in the same game as Right.
(2) In $b$, second player can win. Whoever can win in $a$, can also win in $a+b$ - just use your winning strategy for $a$ and respond to opponent's moves in $b$ with second player's winning strategy.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=,| |\}$.
(3) $a-a=0$.

## Proof

(1) We are playing $a+b$, Right starts. Left can just combine winning strategies for $a$ and $b$, always playing in the same game as Right.
(2) In $b$, second player can win. Whoever can win in $a$, can also win in $a+b$ - just use your winning strategy for $a$ and respond to opponent's moves in $b$ with second player's winning strategy.
(3) Second player can win by mirroring first player's moves.

## Arithmetics on games

## Lemma

Let $a, b$ be games. Then:
(1) If $a \geq 0$ and $b \geq 0$, then $a+b \geq 0$.
(2) If $b=0$, then $a \square 0$ iff $a+b \square 0$, where $\square \in\{>,<,=,| |\}$.
(3) $a-a=0$.

## Proof

(1) We are playing $a+b$, Right starts. Left can just combine winning strategies for $a$ and $b$, always playing in the same game as Right.
(2) In $b$, second player can win. Whoever can win in $a$, can also win in $a+b$ - just use your winning strategy for $a$ and respond to opponent's moves in $b$ with second player's winning strategy.
(3) Second player can win by mirroring first player's moves.

From point 3 it follows that $a=a$.

## Arithmetics on games

Lemma
Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.


## Arithmetics on games

Lemma
Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Arithmetics on games

Lemma
Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.

Proof

- $a \geq b$ is equivalent to $a-b \geq 0$.


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Proof

- $a \geq b$ is equivalent to $a-b \geq 0 . a+c \geq b+c$ is equivalent to $(a+c)-(b+c) \geq 0$, thus $(a-b)+(c-c) \geq 0$.


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Proof

- $a \geq b$ is equivalent to $a-b \geq 0 . a+c \geq b+c$ is equivalent to $(a+c)-(b+c) \geq 0$, thus $(a-b)+(c-c) \geq 0$. But $c-c=0$, so these are equivalent.


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Proof

- $a \geq b$ is equivalent to $a-b \geq 0 . a+c \geq b+c$ is equivalent to $(a+c)-(b+c) \geq 0$, thus $(a-b)+(c-c) \geq 0$. But $c-c=0$, so these are equivalent.
- We know, that $a-b \geq 0$ and $b-c \geq 0$.


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Proof

- $a \geq b$ is equivalent to $a-b \geq 0 . a+c \geq b+c$ is equivalent to $(a+c)-(b+c) \geq 0$, thus $(a-b)+(c-c) \geq 0$. But $c-c=0$, so these are equivalent.
- We know, that $a-b \geq 0$ and $b-c \geq 0$. Thus $(a-b)+(b-c) \equiv(a-c)+(b-b) \geq 0$, thus $a-c \geq 0$.


## Arithmetics on games

## Lemma

Let $a, b, c$ be games. Then:

- $a \geq b$ iff $a+c \geq b+c$.
- If $a \geq b$ and $b \geq c$, then $a \geq c$.


## Proof

- $a \geq b$ is equivalent to $a-b \geq 0 . a+c \geq b+c$ is equivalent to $(a+c)-(b+c) \geq 0$, thus $(a-b)+(c-c) \geq 0$. But $c-c=0$, so these are equivalent.
- We know, that $a-b \geq 0$ and $b-c \geq 0$. Thus

$$
(a-b)+(b-c) \equiv(a-c)+(b-b) \geq 0, \text { thus } a-c \geq 0 .
$$

Thus $a=b \leftrightarrow a+c=b+c$ and $(a=b \wedge b=c) \rightarrow a=c$.

## Arithmetics on games

## Consequence

$=$ is an equivalence relation.

## Arithmetics on games

## Consequence

$=$ is an equivalence relation.,+- and $\leq$ are well-defined operations on equivalence classes defined by $=$.

## Arithmetics on games

## Consequence

$=$ is an equivalence relation.,+- and $\leq$ are well-defined operations on equivalence classes defined by $=$. The class of these equivalence classes together with,,+- 0 and $\leq$ forms a partially ordered abelian Group.

## Surreal numbers

## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.


## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.
- $1=\{0 \mid\}$ and $-1=\{\mid 0\}$ are numbers.


## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.
- $1=\{0 \mid\}$ and $-1=\{\mid 0\}$ are numbers.
- $*=\{0 \mid 0\}$ is not a number.


## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.
- $1=\{0 \mid\}$ and $-1=\{\mid 0\}$ are numbers.
- $*=\{0 \mid 0\}$ is not a number.
- $\{0 \mid 1\}$ is a number. We can check that $\{0 \mid 1\}+\{0 \mid 1\}=1$; let us call this number $\frac{1}{2}$.


## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.
- $1=\{0 \mid\}$ and $-1=\{\mid 0\}$ are numbers.
- $*=\{0 \mid 0\}$ is not a number.
- $\{0 \mid 1\}$ is a number. We can check that $\{0 \mid 1\}+\{0 \mid 1\}=1$; let us call this number $\frac{1}{2}$.
- $\{-1,0 \mid 1\}$ is a number and it is equal to $\{0 \mid 1\}$.


## Surreal numbers

## Definition

Game $a$ is a surreal number, if $a_{L}$ and $a_{R}$ are sets of surreal numbers and for each $x \in a_{L}, y \in a_{R}$ we have $x<y$.

Examples:

- $0=\{\mid\}$ is a number.
- $1=\{0 \mid\}$ and $-1=\{\mid 0\}$ are numbers.
- $*=\{0 \mid 0\}$ is not a number.
- $\{0 \mid 1\}$ is a number. We can check that $\{0 \mid 1\}+\{0 \mid 1\}=1$; let us call this number $\frac{1}{2}$.
- $\{-1,0 \mid 1\}$ is a number and it is equal to $\{0 \mid 1\}$.

Class No of all number is a proper class.

## Surreal numbers

Theorem
Let $a$ be a number, $b \in a_{L}$ and $c \in a_{R}$. Then $b<a<c$.

## Surreal numbers

Theorem
Let $a$ be a number, $b \in a_{L}$ and $c \in a_{R}$. Then $b<a<c$.

Theorem
Let $a, b$ be numbers. Then $a \geq b$ or $b \geq a$.

## Surreal numbers

Theorem
Let $a$ be a number, $b \in a_{L}$ and $c \in a_{R}$. Then $b<a<c$.
Theorem
Let $a, b$ be numbers. Then $a \geq b$ or $b \geq a$.

Theorem
If $a, b$ are numbers, then so are $a+b$ and $-a$.

## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.
- In step 3 we get $-3,-\frac{3}{2},-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}, 3$.


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.
- In step 3 we get $-3,-\frac{3}{2},-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}, 3$.


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.
- In step 3 we get $-3,-\frac{3}{2},-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}, 3$.
- In first $\omega$ step we get all fractions of the form $\frac{a}{2^{n}}$ (dyadic fractions)


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.
- In step 3 we get $-3,-\frac{3}{2},-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}, 3$.
- In first $\omega$ step we get all fractions of the form $\frac{a}{2^{n}}$ (dyadic fractions)
- We define $n+1$ as $\{n \mid\},-n-1$ as $\{\mid-n\}$ and $\frac{2 a+1}{2^{n+1}}$ as $\left\{\frac{a}{2^{n}} \left\lvert\, \frac{a+1}{2^{n}}\right.\right\}$


## Surreal numbers - finite birthday

- In step 0 we have the only number $\{\mid\}=0$.
- In step 1 we get numbers $\{\mid 0\}=-1$ and $\{0 \mid\}=1$.
- In step 2 we get $\{\mid-1\}=-2,\{-1 \mid 0\}=-\frac{1}{2},\{0 \mid 1\}=\frac{1}{2}$, $\{1 \mid\}=2$.
- In step 3 we get $-3,-\frac{3}{2},-\frac{3}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}, 3$.
- In first $\omega$ step we get all fractions of the form $\frac{a}{2^{n}}$ (dyadic fractions)
- We define $n+1$ as $\{n \mid\},-n-1$ as $\{\mid-n\}$ and $\frac{2 a+1}{2^{n+1}}$ as $\left\{\frac{a}{2^{n}} \left\lvert\, \frac{a+1}{2^{n}}\right.\right\}$


## Theorem

These are all the numbers with finite birthday. + , - and $\leq$ work as you would expect.

## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
- All the real numbers.


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
- All the real numbers.
- $\{0,1,2,3, \ldots \mid\}=\omega$


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
- All the real numbers.
- $\{0,1,2,3, \ldots \mid\}=\omega$
- $\{\mid \ldots,-3,-2,-1,0\}=-\omega$


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
- All the real numbers.
- $\{0,1,2,3, \ldots \mid\}=\omega$
- $\{\mid \ldots,-3,-2,-1,0\}=-\omega$
- $\left\{0 \mid \ldots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\right\}=\frac{1}{\omega}$


## Surreal numbers - birthday $\omega$

- This is where we start getting infinite sets.
- $\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{16}, \frac{1}{4}+\frac{1}{16}+\frac{1}{64}, \ldots \mid \ldots, \frac{1}{4}+\frac{1}{16}+\frac{1}{32}, \frac{1}{4}+\frac{1}{8}, \frac{1}{2}\right\}=\frac{1}{3}$. Indeed, $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
- All the real numbers.
- $\{0,1,2,3, \ldots \mid\}=\omega$
- $\{\mid \ldots,-3,-2,-1,0\}=-\omega$
- $\left\{0 \mid \ldots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\right\}=\frac{1}{\omega}$
- $x \pm \frac{1}{\omega}$ for each dyadic fraction $x$.


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.
- $\left\{0 \left\lvert\, \frac{1}{\omega}\right.\right\}=\frac{1}{2 \omega}$


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.
- $\left\{0 \left\lvert\, \frac{1}{\omega}\right.\right\}=\frac{1}{2 \omega}$
- $x \pm \frac{1}{2 \omega}$ for each dyadic fraction $x$.


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.
- $\left\{0 \left\lvert\, \frac{1}{\omega}\right.\right\}=\frac{1}{2 \omega}$
- $x \pm \frac{1}{2 \omega}$ for each dyadic fraction $x$.
- $\{0,1,2, \ldots, \omega \mid\}=\omega+1$


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.
- $\left\{0 \left\lvert\, \frac{1}{\omega}\right.\right\}=\frac{1}{2 \omega}$
- $x \pm \frac{1}{2 \omega}$ for each dyadic fraction $x$.
- $\{0,1,2, \ldots, \omega \mid\}=\omega+1$
- $\{0,1,2, \ldots \mid \omega\}=\omega-1$


## Surreal numbers - birthday $\omega+1$

- $x \pm \frac{1}{\omega}$ for each real number $x$.
- $\left\{0 \left\lvert\, \frac{1}{\omega}\right.\right\}=\frac{1}{2 \omega}$
- $x \pm \frac{1}{2 \omega}$ for each dyadic fraction $x$.
- $\{0,1,2, \ldots, \omega \mid\}=\omega+1$
- $\{0,1,2, \ldots \mid \omega\}=\omega-1$
- Analogously $-\omega-1$ and $-\omega+1$


## Surreal numbers - higher birthdays

- $\{0,1,2, \ldots \mid \omega-1\}=\omega-2$, similarly $\omega-3, \omega-4, \ldots$


## Surreal numbers - higher birthdays

- $\{0,1,2, \ldots \mid \omega-1\}=\omega-2$, similarly $\omega-3, \omega-4, \ldots$
- $\{0,1,2,3, \ldots \mid \ldots, \omega-3, \omega-2, \omega-1, \omega\}=\frac{\omega}{2}$


## Surreal numbers - higher birthdays

- $\{0,1,2, \ldots \mid \omega-1\}=\omega-2$, similarly $\omega-3, \omega-4, \ldots$
- $\{0,1,2,3, \ldots \mid \ldots, \omega-3, \omega-2, \omega-1, \omega\}=\frac{\omega}{2}$
- $\left\{0,1,2,3, \ldots \mid \ldots, \frac{\omega}{8}, \frac{\omega}{4}, \frac{\omega}{2}, \omega\right\}=\sqrt{\omega}$


## Surreal numbers - higher birthdays

- $\{0,1,2, \ldots \mid \omega-1\}=\omega-2$, similarly $\omega-3, \omega-4, \ldots$
- $\{0,1,2,3, \ldots \mid \ldots, \omega-3, \omega-2, \omega-1, \omega\}=\frac{\omega}{2}$
- $\left\{0,1,2,3, \ldots \mid \ldots, \frac{\omega}{8}, \frac{\omega}{4}, \frac{\omega}{2}, \omega\right\}=\sqrt{\omega}$
- $\left\{0 \mid \ldots, \frac{1}{8 \omega}, \frac{1}{4 \omega}, \frac{1}{2 \omega}, \frac{1}{\omega}\right\}=\frac{1}{\omega^{2}}$


## Surreal numbers - higher birthdays

- $\{0,1,2, \ldots \mid \omega-1\}=\omega-2$, similarly $\omega-3, \omega-4, \ldots$
- $\{0,1,2,3, \ldots \mid \ldots, \omega-3, \omega-2, \omega-1, \omega\}=\frac{\omega}{2}$
- $\left\{0,1,2,3, \ldots \mid \ldots, \frac{\omega}{8}, \frac{\omega}{4}, \frac{\omega}{2}, \omega\right\}=\sqrt{\omega}$
- $\left\{0 \mid \ldots, \frac{1}{8 \omega}, \frac{1}{4 \omega}, \frac{1}{2 \omega}, \frac{1}{\omega}\right\}=\frac{1}{\omega^{2}}$
- $\sqrt[3]{\omega+1}-\frac{\pi}{\omega}, \omega^{\frac{1}{\omega}}, \ldots$


## Surreal numbers

## Simplicity theorem

Let $x$ be a game and $z$ be a number such that all of $x_{L} \nsupseteq z \nsupseteq x_{R}$ hold and no element of $z_{L} \cup z_{R}$ satisfies the same condition. Then $x=z$.

Examples:

## Surreal numbers

## Simplicity theorem

Let $x$ be a game and $z$ be a number such that all of $x_{L} \nsupseteq z \nsupseteq x_{R}$ hold and no element of $z_{L} \cup z_{R}$ satisfies the same condition. Then $x=z$.

## Consequence

Let $\{L \mid R\}$ be a number of unknown value. Then this number is equal to simplest such $x$, that all of $L<x<R$ hold. Here 'simplest' means 'with the smallest birthday'.

Examples:

## Surreal numbers

## Simplicity theorem

Let $x$ be a game and $z$ be a number such that all of $x_{L} \nsupseteq z \nsupseteq x_{R}$ hold and no element of $z_{L} \cup z_{R}$ satisfies the same condition. Then $x=z$.

## Consequence

Let $\{L \mid R\}$ be a number of unknown value. Then this number is equal to simplest such $x$, that all of $L<x<R$ hold. Here 'simplest' means 'with the smallest birthday'.

Examples:

- $\{-1,0 \mid 1\}=\{0 \mid 1\}$


## Surreal numbers

## Simplicity theorem

Let $x$ be a game and $z$ be a number such that all of $x_{L} \nsupseteq z \nsupseteq x_{R}$ hold and no element of $z_{L} \cup z_{R}$ satisfies the same condition. Then $x=z$.

## Consequence

Let $\{L \mid R\}$ be a number of unknown value. Then this number is equal to simplest such $x$, that all of $L<x<R$ hold. Here 'simplest' means 'with the smallest birthday'.

Examples:

- $\{-1,0 \mid 1\}=\{0 \mid 1\}$
- $\left\{\frac{1}{\pi}, \frac{3}{7} \left\lvert\, \frac{7}{11}\right., \frac{3}{2}\right\}$


## Surreal numbers

## Simplicity theorem

Let $x$ be a game and $z$ be a number such that all of $x_{L} \nsupseteq z \nsupseteq x_{R}$ hold and no element of $z_{L} \cup z_{R}$ satisfies the same condition. Then $x=z$.

## Consequence

Let $\{L \mid R\}$ be a number of unknown value. Then this number is equal to simplest such $x$, that all of $L<x<R$ hold. Here 'simplest' means 'with the smallest birthday'.

Examples:

- $\{-1,0 \mid 1\}=\{0 \mid 1\}$
- $\left\{\frac{1}{\pi}, \frac{3}{7} \left\lvert\, \frac{7}{11}\right., \frac{3}{2}\right\}=\frac{1}{2}$

