
Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each
node must be connected by a chain of edges to a special line called the
ground. In each turn, a player removes single edge, together with all nodes
and edges, which are no longer connected to ground. Left always removes
blue edges, Right red ones. A player with no valid move loses.

Cutting blue edge always decreases the game (e.g. , because

), similarly cutting red edge increases the game.

Thus for each x we have xL < x < xR , so (by induction on number of
edges), x is a number.

These games have finite birthday, so they are actually dyadic fractions.
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Hackenbush

For general graphs, there is no easy way to determine its value.

But there

is an easy way for forests (e.g. ).

Forest is just a sum of trees.

Tree is just a sum of trees put on an edge:

We write 1:x for ‘x put on a blue edge’ (e.g. ).

x put on a red edge is then −(1:− x).

If a = b, then 1:a = 1:b ( )

We just need to be able to compute 1:x for given dyadic fraction x .
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Hackenbush

We have 1:x = {0, 1:xL | 1:xR}.

1:0

= 1: { | } = {0 | } = 1

1:1 = 1: {0 | } = {0, 1:0 | } = {0, 1 | } = 2

1:− 1 = 1: { | 0} = {0 | 1:0} = {0 | 1} = 1
2

1:− 1
2 = 1: {−1 | 0} = {0, 1:− 1 | 1:0} =

{
0, 12 | 1

}
= 3

4

For dyadic fraction x , let n be the smallest positive integer such that
x + n > 1. Then 1:x = x+n

2n−1 .
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Hackenbush

Now we can determine any game!

53
64 + (−1) + 1

4 = 5
64 > 0, so this is a winning position for Left.
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Surreal numbers and multiplication

Let a, b be numbers. We want to define ab. What we wish to be true:

(a− aL)(b − bL) > 0. Thus ab > aLb + abL − aLbL.

(a− aR)(b − bR) > 0. Thus ab > aRb + abR − aRbR .

(a− aL)(b − bR) < 0. Thus ab < aLb + abR − aLbR .

(a− aR)(b − bL) < 0. Thus ab < aRb + abL − aRbL.

We let ab be the simplest number satisfying all of this. This leads to
following definition:

Definition

Let a, b be numbers. We define ab as follows:

(ab)L = (aLb + abL − aLbL) ∪ (aRb + abR − aRbR)

(ab)R = (aLb + abR − aLbR) ∪ (aRb + abL − aRbL)
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Surreal numbers and multiplication

Theorem

Numbers are closed under multiplication. Multiplication is well-defined on
numbers up to equality. (No,+,×) is a Field.

Theorem

Structure (No,+,×,≤) is elementarily equivalent to (R,+,×,≤).

We could define multiplication in the same way for general games, but
here it turns out to be not nice.
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Remarkable subfields

Definition

Surreal number x is a real number, if −n < x < n for some natural
number n and x =

{
x − 1, x − 1

2 , x −
1
3 , ... | ..., x + 1

3 , x + 1
2 , x + 1

}
.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as {L | },
where L is a set of numbers.

If α is an ordinal, then α = {β : β is ordinal and β < α | }. Ordinals
defined this way correspond to standard ordinals.
Ordinals are closed under + and ×. However, these operations do not
correspond to standard ordinal addition and multiplication. This is easy to
see, because in surreal numbers 1 + ω = ω + 1.
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Numbers and general games
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Numbers and general games

Theorem

Let g be a game and α be its birthday. Then −α ≤ g ≤ α.

Proof

α = {β : β is ordinal and β < α | }.

We prove just g ≤ α. We play
α− g , Right starts, we need Left to win. Right can make a move in α or
in −g , but αR = ∅, so he must play in −g = {−gR | − gL}. Let’s say he
turns α− g to α− g ′ for some g ′ ∈ gL. Let β be birthday of g ′, then
β < α, so Left can turn α− g ′ to β − g ′. By repeating this strategy, Left
can never lose, so he wins.
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Numbers and general games

Let g be a game, which is not a number. Then for any number x either
x < g , x || g , or x > g . In this way, g divides No into 3 disjoint convex
sections. Since −α ≤ g ≤ α, the middle section is bounded.

∗ = {0 | 0} is greater than all negative numbers, smaller than all
positive numbers, and confused with 0.

↑ = {0 | ∗} is greater than all negative numbers and 0, and smaller
than all positive numbers.

{1 | − 1} is greater than all numbers smaller than −1, smaller than
all numbers greater than 1, and confused with [−1, 1].
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Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the
breadth of any rectangle, Right the height. A rectangle whose breadth or
height is decreased to zero disappears. Who can win?

Clearly, the game is just a sum of individual rectangles.

Let (a, b) be a game of single a× b rectangle (a, b ∈ N0).

We have (n, 0) = (0, n) = 0

and
(a, b) = {(a′, b) : a′ < a | (a, b′) : b′ < b} for a, b > 0.

We have −(a, b) = (b, a). We could ask whether
(a, b) = (a + 1, b + 1) for a, b > 0. Indeed, (a, b) + (b + 1, a + 1) is a
win for the second player (easy case-work), so this holds.

From previous point it follows, that if a, b > 0, then the value of
(a, b) depends only on a− b. Let (a, b) = g(a− b).

For n ≥ 0 we have g(n) = (n+ 1, 1) and g(−n) = (1, n+ 1) = −g(n).
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Schrinking rectangles

We need to understand g(n) for n nonnegative integer.

g(n) = (n + 1, 1)

= {(0, 1), (1, 1), · · · , (n, 1) | (n + 1, 0)} =
{0, g(0), g(1), · · · , g(n − 1) | 0}
g(0) = {0 | 0} = ∗
g(1) = {0, g(0) | 0} = {0, ∗ | 0} = {0 | 0}+ {0 | ∗} = ∗ + ↑
We define ↑n = g(n)− g(n − 1). Then ↑1 = ↑ and
g(n) = ∗ + ↑ + ↑2 + · · ·+ ↑n.

It turns out ↑n are quite easy to compute with. It can be shown that:

↑n> 0 (because g(n)− g(n− 1) = (n + 1, 1) + (1, n) is a win for Left)

↑n> k ↑n+1 for k ∈ N (k(1, n + 2) + (k + 1)(n + 1, 1) + (1, n) is a win
for Left)

So ↑, ↑2, ↑3, · · · is a sequence of positive games, in which every game is
infinitely smaller then the previous one.
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↑n> k ↑n+1 for k ∈ N (k(1, n + 2) + (k + 1)(n + 1, 1) + (1, n) is a win
for Left)

So ↑, ↑2, ↑3, · · · is a sequence of positive games, in which every game is
infinitely smaller then the previous one.
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Schrinking rectangles - even case
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Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does ∗ compare to
sums of ↑n After some playing we find out that:

∗ || ↑ + ↑2 + · · ·+ ↑n (because g(n) = (n + 1, 1) || 0)

∗ < ↑ + ↑2 + · · ·+ 2 ↑n (because 2(n + 1, 1) + (1, n) > 0)

Analogously on negative side. So ∗ compared to arrows looks like this:
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Schrinking rectangles - odd case
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Thank you for your attention
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