We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

・ 何 ト ・ ヨ ト ・ ヨ ト

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

$$Example: \begin{array}{c} & & \\ &$$

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example:
$$Y = I + Y = I + Y = Y$$

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

イロト 不得 トイヨト イヨト 二日

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

$$Example: \underbrace{Y} \xrightarrow{L} \underbrace{Y}$$

- Cutting blue edge always decreases the game (e.g. ⊥[>]⊥, because
 ⊥² ⊥² ∠^{>0}), similarly cutting red edge increases the game.
- Thus for each x we have $x_L < x < x_R$, so (by induction on number of edges), x is a number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the *ground*. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

$$Example: Y \xrightarrow{L} Y \xrightarrow{L$$

- Cutting blue edge always decreases the game (e.g. ⊥^{*}⊥, because ¹/₂ = ¹/₂ ^{*}⁰), similarly cutting red edge increases the game.
- Thus for each x we have $x_L < x < x_R$, so (by induction on number of edges), x is a number.
- These games have finite birthday, so they are actually dyadic fractions.

For general graphs, there is no easy way to determine its value.

э

• • • • • • • • • •

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. \cancel{Y}).

→ < ∃ →</p>

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. \cancel{Y}).

• Forest is just a sum of trees.

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $\angle = \mathcal{I}$

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: \angle = $\underline{\mathscr{I}}$
- We write 1:x for 'x put on a blue edge' (e.g. 1: 1 = 1).

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $\angle = \mathcal{I}$
- We write 1:x for 'x put on a blue edge' (e.g. 1: 1 = 1).
- x put on a red edge is then -(1: -x).

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $\angle = \mathcal{I}$
- We write 1:x for 'x put on a blue edge' (e.g. 1: 1 = 1).
- x put on a red edge is then -(1: -x).
- If a = b, then $1:a = 1:b \left(\begin{array}{c} \textcircled{0} \textcircled{0} \\ \hline \end{array} \right)^{=0} \xrightarrow{0} \begin{array}{c} \textcircled{0} \\ \hline \end{array} \right)$

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $\angle = \mathcal{I}$
- We write 1:x for 'x put on a blue edge' (e.g. 1: 1 = 1).
- x put on a red edge is then -(1: -x).
- If a = b, then $1:a = 1:b \left(\begin{array}{c} \textcircled{0} \textcircled{0} \\ \hline \end{array} \right)^{=0} \xrightarrow{0} \begin{array}{c} \textcircled{0} \\ \hline \end{array} \right)$
- We just need to be able to compute 1:x for given dyadic fraction x.

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

2

< □ > < □ > < □ > < □ > < □ >

- We have $1:x = \{0, 1:x_L \mid 1:x_R\}.$
- $1:0 = 1:\{ | \}$

< □ > < 同 > < 回 > < 回 > < 回 >

- We have $1:x = \{0, 1:x_L \mid 1:x_R\}$.
- 1:0 = 1: { | } = {0 | }

< □ > < 同 > < 回 > < 回 > < 回 >

- We have $1:x = \{0, 1:x_L \mid 1:x_R\}$.
- 1:0 = 1:{ | } = {0 | } = 1

3

< □ > < 同 > < 回 > < 回 > < 回 >

- We have $1:x = \{0, 1:x_L \mid 1:x_R\}$.
- 1:0 = 1:{ | } = {0 | } = 1
- 1:1

3

A D N A B N A B N A B N

• We have $1:x = \{0, 1:x_L \mid 1:x_R\}$.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• $1:1 = 1: \{0 \mid \}$

< □ > < 同 > < 回 > < 回 > < 回 >

э

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

•
$$1:1 = 1: \{0 \mid \} = \{0, 1:0 \mid \}$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \}$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}.$$

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

•
$$1: -1 = 1: \{ | 0 \}$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1:\{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

•
$$1: -1 = 1: \{ | 0 \} = \{ 0 | 1:0 \}$$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

• 1:
$$-1 = 1$$
: { | 0} = {0 | 1:0} = {0 | 1}

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}.$$

•
$$1:0 = 1: \{ | \} = \{0 | \} = 1$$

• 1:1 = 1:
$$\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$$

• 1:
$$-1 = 1$$
: { | 0} = {0 | 1:0} = {0 | 1} = $\frac{1}{2}$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.
• $1:0 = 1:\{ \mid \} = \{0 \mid \} = 1$
• $1:1 = 1:\{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$
• $1:-1 = 1:\{ \mid 0\} = \{0 \mid 1:0\} = \{0 \mid 1\} = \frac{1}{2}$
• $1:-\frac{1}{2}$

イロト イヨト イヨト イヨト

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.
• $1:0 = 1: \{ \mid \} = \{0 \mid \} = 1$
• $1:1 = 1: \{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$
• $1: -1 = 1: \{ \mid 0\} = \{0 \mid 1:0\} = \{0 \mid 1\} = \frac{1}{2}$
• $1: -\frac{1}{2} = 1: \{-1 \mid 0\}$

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.
• $1:0 = 1: \{ \mid \} = \{0 \mid \} = 1$
• $1:1 = 1: \{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$
• $1:-1 = 1: \{ \mid 0\} = \{0 \mid 1:0\} = \{0 \mid 1\} = \frac{1}{2}$
• $1:-\frac{1}{2} = 1: \{-1 \mid 0\} = \{0, 1:-1 \mid 1:0\}$

メロト メポト メヨト メヨト

• We have
$$1:x = \{0, 1:x_L \mid 1:x_R\}$$
.
• $1:0 = 1: \{ \mid \} = \{0 \mid \} = 1$
• $1:1 = 1: \{0 \mid \} = \{0, 1:0 \mid \} = \{0, 1 \mid \} = 2$
• $1: -1 = 1: \{ \mid 0 \} = \{0 \mid 1:0\} = \{0 \mid 1\} = \frac{1}{2}$
• $1: -\frac{1}{2} = 1: \{-1 \mid 0\} = \{0, 1: -1 \mid 1:0\} = \{0, \frac{1}{2} \mid 1\}$

3

- We have $1:x = \{0, 1:x_L \mid 1:x_R\}$.
- $1:0 = 1:\{ | \} = \{0 | \} = 1$
- 1:1 = 1: {0 | } = {0,1:0 | } = {0,1 | } = 2
- 1: -1 = 1: { | 0} = {0 | 1:0} = {0 | 1} = \frac{1}{2}
- 1: $-\frac{1}{2} = 1$: $\{-1 \mid 0\} = \{0, 1: -1 \mid 1:0\} = \{0, \frac{1}{2} \mid 1\} = \frac{3}{4}$
- For dyadic fraction x, let n be the smallest positive integer such that x + n > 1. Then $1:x = \frac{x+n}{2^{n-1}}$.

< □ > < □ > < □ > < □ > < □ > < □ >
Hackenbush

Now we can determine any game!

< □ > < 同 > < 回 > < 回 > < 回 >

э

Hackenbush

Now we can determine any game!

< /□ > < ∃

Hackenbush

Now we can determine any game!

 $\frac{53}{64} + (-1) + \frac{1}{4} = \frac{5}{64} > 0$, so this is a winning position for Left.

Let a, b be numbers. We want to define ab. What we wish to be true:

Let a, b be numbers. We want to define ab. What we wish to be true: • $(a - a_L)(b - b_L) > 0$. Thus $ab > a_Lb + ab_L - a_Lb_L$.

< (日) × (日) × (4)

Let a, b be numbers. We want to define ab. What we wish to be true:

- $(a a_L)(b b_L) > 0$. Thus $ab > a_Lb + ab_L a_Lb_L$.
- $(a a_R)(b b_R) > 0$. Thus $ab > a_Rb + ab_R a_Rb_R$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let a, b be numbers. We want to define ab. What we wish to be true:

- $(a a_L)(b b_L) > 0$. Thus $ab > a_Lb + ab_L a_Lb_L$.
- $(a a_R)(b b_R) > 0$. Thus $ab > a_Rb + ab_R a_Rb_R$.
- $(a-a_L)(b-b_R) < 0$. Thus $ab < a_Lb + ab_R a_Lb_R$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let a, b be numbers. We want to define ab. What we wish to be true:

Martin Melicher

< □ > < 同 > < 回 > < 回 > < 回 >

Let a, b be numbers. We want to define ab. What we wish to be true:

We let ab be the simplest number satisfying all of this. This leads to following definition:

Let a, b be numbers. We want to define ab. What we wish to be true:

•
$$(a - a_L)(b - b_L) > 0$$
. Thus $ab > a_Lb + ab_L - a_Lb_L$.
• $(a - a_R)(b - b_R) > 0$. Thus $ab > a_Rb + ab_R - a_Rb_R$.
• $(a - a_L)(b - b_R) < 0$. Thus $ab < a_Lb + ab_R - a_Lb_R$.

•
$$(a - a_R)(b - b_L) < 0$$
. Thus $ab < a_Rb + ab_L - a_Rb_L$.

We let ab be the simplest number satisfying all of this. This leads to following definition:

Definition

Let a, b be numbers. We define ab as follows:

Let a, b be numbers. We want to define ab. What we wish to be true:

•
$$(a - a_L)(b - b_L) > 0$$
. Thus $ab > a_Lb + ab_L - a_Lb_L$.
• $(a - a_R)(b - b_R) > 0$. Thus $ab > a_Rb + ab_R - a_Rb_R$.
• $(a - a_L)(b - b_R) < 0$. Thus $ab < a_Lb + ab_R - a_Lb_R$.

•
$$(a - a_R)(b - b_L) < 0$$
. Thus $ab < a_Rb + ab_L - a_Rb_L$.

We let ab be the simplest number satisfying all of this. This leads to following definition:

Definition

Let *a*, *b* be numbers. We define *ab* as follows:

•
$$(ab)_L = (a_Lb + ab_L - a_Lb_L) \cup (a_Rb + ab_R - a_Rb_R)$$

Let a, b be numbers. We want to define ab. What we wish to be true:

•
$$(a - a_R)(b - b_L) < 0$$
. Thus $ab < a_Rb + ab_L - a_Rb_L$.

We let ab be the simplest number satisfying all of this. This leads to following definition:

Definition

Let *a*, *b* be numbers. We define *ab* as follows:

•
$$(ab)_L = (a_Lb + ab_L - a_Lb_L) \cup (a_Rb + ab_R - a_Rb_R)$$

•
$$(ab)_R = (a_Lb + ab_R - a_Lb_R) \cup (a_Rb + ab_L - a_Rb_L)$$

Theorem

Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. $(No, +, \times)$ is a Field.

Theorem

Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. $(No, +, \times)$ is a Field.

Theorem

Structure $(No, +, \times, \leq)$ is elementarily equivalent to $(\mathbb{R}, +, \times, \leq)$.

Theorem

Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. $(No, +, \times)$ is a Field.

Theorem

Structure $(No, +, \times, \leq)$ is elementarily equivalent to $(\mathbb{R}, +, \times, \leq)$.

We could define multiplication in the same way for general games, but here it turns out to be not nice.

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}.$

▲ @ ▶ ▲ @ ▶ ▲

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}.$

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid \}$, where L is a set of numbers.

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}.$

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid \}$, where L is a set of numbers.

If α is an ordinal, then $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid \}$, where L is a set of numbers.

If α is an ordinal, then $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. Ordinals defined this way correspond to standard ordinals.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid \}$, where L is a set of numbers.

If α is an ordinal, then $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. Ordinals defined this way correspond to standard ordinals. Ordinals are closed under + and \times .

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Surreal number x is a real number, if -n < x < n for some natural number n and $x = \{x - 1, x - \frac{1}{2}, x - \frac{1}{3}, \dots \mid \dots, x + \frac{1}{3}, x + \frac{1}{2}, x + 1\}.$

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid \}$, where L is a set of numbers.

If α is an ordinal, then $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. Ordinals defined this way correspond to standard ordinals. Ordinals are closed under + and ×. However, these operations do not correspond to standard ordinal addition and multiplication. This is easy to see, because in surreal numbers $1 + \omega = \omega + 1$.

イロト 不得 トイラト イラト 一日

• • • • • • • • • •

э

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

```
\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}.
```

A D N A B N A B N A B N

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win. Right can make a move in α or in -g, but $\alpha_R = \emptyset$, so he must play in $-g = \{-g_R \mid -g_L\}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win. Right can make a move in α or in -g, but $\alpha_R = \emptyset$, so he must play in $-g = \{-g_R \mid -g_L\}$. Let's say he turns $\alpha - g$ to $\alpha - g'$ for some $g' \in g_L$.

イロト 不得下 イヨト イヨト

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win. Right can make a move in α or in -g, but $\alpha_R = \emptyset$, so he must play in $-g = \{-g_R \mid -g_L\}$. Let's say he turns $\alpha - g$ to $\alpha - g'$ for some $g' \in g_L$. Let β be birthday of g', then $\beta < \alpha$,

イロト 不得下 イヨト イヨト

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win. Right can make a move in α or in -g, but $\alpha_R = \emptyset$, so he must play in $-g = \{-g_R \mid -g_L\}$. Let's say he turns $\alpha - g$ to $\alpha - g'$ for some $g' \in g_L$. Let β be birthday of g', then $\beta < \alpha$, so Left can turn $\alpha - g'$ to $\beta - g'$.

イロト 不得 トイヨト イヨト 二日

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

 $\alpha = \{\beta : \beta \text{ is ordinal and } \beta < \alpha \mid \}$. We prove just $g \leq \alpha$. We play $\alpha - g$, Right starts, we need Left to win. Right can make a move in α or in -g, but $\alpha_R = \emptyset$, so he must play in $-g = \{-g_R \mid -g_L\}$. Let's say he turns $\alpha - g$ to $\alpha - g'$ for some $g' \in g_L$. Let β be birthday of g', then $\beta < \alpha$, so Left can turn $\alpha - g'$ to $\beta - g'$. By repeating this strategy, Left can never lose, so he wins.

イロト 不得 トイラト イラト 一日

Let g be a game, which is not a number. Then for any number x either x < g, $x \parallel g$, or x > g. In this way, g divides **No** into 3 disjoint convex sections. Since $-\alpha \le g \le \alpha$, the middle section is bounded.

Let g be a game, which is not a number. Then for any number x either x < g, $x \parallel g$, or x > g. In this way, g divides **No** into 3 disjoint convex sections. Since $-\alpha \le g \le \alpha$, the middle section is bounded.

* = {0 | 0} is greater than all negative numbers, smaller than all positive numbers, and confused with 0.

Let g be a game, which is not a number. Then for any number x either x < g, $x \parallel g$, or x > g. In this way, g divides **No** into 3 disjoint convex sections. Since $-\alpha \le g \le \alpha$, the middle section is bounded.

- * = {0 | 0} is greater than all negative numbers, smaller than all positive numbers, and confused with 0.
- $\uparrow = \{0 \mid *\}$ is greater than all negative numbers and 0, and smaller than all positive numbers.

Let g be a game, which is not a number. Then for any number x either x < g, $x \parallel g$, or x > g. In this way, g divides **No** into 3 disjoint convex sections. Since $-\alpha \le g \le \alpha$, the middle section is bounded.

- * = {0 | 0} is greater than all negative numbers, smaller than all positive numbers, and confused with 0.
- $\uparrow = \{0 \mid *\}$ is greater than all negative numbers and 0, and smaller than all positive numbers.
- $\{1 \mid -1\}$ is greater than all numbers smaller than -1, smaller than all numbers greater than 1, and confused with [-1, 1].

・ロト ・四ト ・ヨト ・ヨト

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?
We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

• Clearly, the game is just a sum of individual rectangles.

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.
- We have (n, 0) = (0, n) = 0

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.
- We have (n, 0) = (0, n) = 0 and $(a, b) = \{(a', b) : a' < a \mid (a, b') : b' < b\}$ for a, b > 0.
- We have -(a, b) = (b, a). We could ask whether (a, b) = (a + 1, b + 1) for a, b > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

• We have
$$(n, 0) = (0, n) = 0$$
 and
 $(a, b) = \{(a', b) : a' < a \mid (a, b') : b' < b\}$ for $a, b > 0$.

We have -(a, b) = (b, a). We could ask whether

 (a, b) = (a + 1, b + 1) for a, b > 0. Indeed, (a, b) + (b + 1, a + 1) is a win for the second player (easy case-work), so this holds.

(人間) トイヨト イヨト ニヨ

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

• We have
$$(n, 0) = (0, n) = 0$$
 and
 $(a, b) = \{(a', b) : a' < a \mid (a, b') : b' < b\}$ for $a, b > 0$.

- We have -(a, b) = (b, a). We could ask whether

 (a, b) = (a + 1, b + 1) for a, b > 0. Indeed, (a, b) + (b + 1, a + 1) is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if a, b > 0, then the value of (a, b) depends only on a b.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

• We have
$$(n, 0) = (0, n) = 0$$
 and
 $(a, b) = \{(a', b) : a' < a \mid (a, b') : b' < b\}$ for $a, b > 0$.

- We have -(a, b) = (b, a). We could ask whether

 (a, b) = (a + 1, b + 1) for a, b > 0. Indeed, (a, b) + (b + 1, a + 1) is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if a, b > 0, then the value of (a, b) depends only on a b. Let (a, b) = g(a b).

イロト 不得 トイヨト イヨト 二日

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $(a, b \in \mathbb{N}_0)$.

• We have
$$(n, 0) = (0, n) = 0$$
 and
 $(a, b) = \{(a', b) : a' < a \mid (a, b') : b' < b\}$ for $a, b > 0$.

- We have -(a, b) = (b, a). We could ask whether

 (a, b) = (a + 1, b + 1) for a, b > 0. Indeed, (a, b) + (b + 1, a + 1) is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if a, b > 0, then the value of (a, b) depends only on a b. Let (a, b) = g(a b).
- For $n \ge 0$ we have g(n) = (n+1,1) and g(-n) = (1, n+1) = -g(n).

イロト イヨト イヨト 一日

We need to understand g(n) for *n* nonnegative integer.

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1)$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for n nonnegative integer.

• $g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\}$

イロト 不得下 イヨト イヨト 二日

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

• g(0)

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\}$

イロト イポト イヨト イヨト

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

•
$$g(0) = \{0 \mid 0\} = *$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

• g(1)

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

- $g(0) = \{0 \mid 0\} = *$
- $g(1) = \{0, g(0) \mid 0\}$

イロト 不得 トイヨト イヨト 二日

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

•
$$g(0) = \{0 \mid 0\} = *$$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

•
$$g(0) = \{0 \mid 0\} = *$$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

•
$$g(0) = \{0 \mid 0\} = *$$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

< □ > < 同 > < 回 > < 回 > < 回 >

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define
$$\uparrow^n = g(n) - g(n-1)$$
.

イロト 不得 トイヨト イヨト 二日

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

- $g(0) = \{0 \mid 0\} = *$
- $g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$
- We define $\uparrow^n = g(n) g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

イロト 不得下 イヨト イヨト 二日

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

↑ⁿ> 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1), (1,1), \cdots, (n,1) \mid (n+1,0)\} = \{0,g(0),g(1), \cdots, g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

•
$$\uparrow^n > 0$$
 (because $g(n) - g(n-1) = (n+1,1) + (1,n)$ is a win for Left)

イロト 不得下 イヨト イヨト 二日

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

•
$$\uparrow^n > 0$$
 (because $g(n) - g(n-1) = (n+1,1) + (1,n)$ is a win for Left)
• $\uparrow^n > k \uparrow^{n+1}$ for $k \in \mathbb{N}$

イロト 不得下 イヨト イヨト 二日

We need to understand g(n) for n nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

•
$$\uparrow^n > 0$$
 (because $g(n) - g(n-1) = (n+1,1) + (1,n)$ is a win for Left)

• $\uparrow^n > k \uparrow^{n+1}$ for $k \in \mathbb{N}$ (k(1, n+2) + (k+1)(n+1, 1) + (1, n) is a win for Left)

We need to understand g(n) for *n* nonnegative integer.

•
$$g(n) = (n+1,1) = \{(0,1),(1,1),\cdots,(n,1) \mid (n+1,0)\} = \{0,g(0),g(1),\cdots,g(n-1) \mid 0\}$$

• $g(0) = \{0 \mid 0\} = *$

•
$$g(1) = \{0, g(0) \mid 0\} = \{0, * \mid 0\} = \{0 \mid 0\} + \{0 \mid *\} = * + \uparrow$$

• We define $\uparrow^n = g(n) - g(n-1)$. Then $\uparrow^1 = \uparrow$ and $g(n) = * + \uparrow + \uparrow^2 + \dots + \uparrow^n$.

It turns out \uparrow^n are quite easy to compute with. It can be shown that:

•
$$\uparrow^n > 0$$
 (because $g(n) - g(n-1) = (n+1,1) + (1,n)$ is a win for Left)

• $\uparrow^n > k \uparrow^{n+1}$ for $k \in \mathbb{N}$ (k(1, n+2) + (k+1)(n+1, 1) + (1, n) is a win for Left)

So $\uparrow,\uparrow^2,\uparrow^3,\cdots$ is a sequence of positive games, in which every game is infinitely smaller then the previous one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Schrinking rectangles - even case

イロト 不得下 イヨト イヨト 二日

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^n After some playing we find out that:

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^n After some playing we find out that:

• $* \parallel \uparrow + \uparrow^2 + \cdots + \uparrow^n$ (because $g(n) = (n+1,1) \parallel 0$)

イロト 不得 トイヨト イヨト 二日

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^n After some playing we find out that:

- * $||\uparrow + \uparrow^2 + \dots + \uparrow^n$ (because g(n) = (n+1,1) || 0)
- $* < \uparrow + \uparrow^2 + \cdots + 2 \uparrow^n$ (because 2(n+1,1) + (1,n) > 0)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^n After some playing we find out that:

• *
$$||\uparrow + \uparrow^2 + \cdots + \uparrow^n$$
 (because $g(n) = (n+1,1) || 0$)

• $* < \uparrow + \uparrow^2 + \dots + 2 \uparrow^n$ (because 2(n+1,1) + (1,n) > 0)

Analogously on negative side. So * compared to arrows looks like this:

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^n After some playing we find out that:

•
$$* \parallel \uparrow + \uparrow^2 + \cdots + \uparrow^n$$
 (because $g(n) = (n+1,1) \parallel 0$)

• $* < \uparrow + \uparrow^2 + \dots + 2 \uparrow^n$ (because 2(n + 1, 1) + (1, n) > 0)

Analogously on negative side. So * compared to arrows looks like this:

 $(\uparrow n = \uparrow + \uparrow^2 + \dots + \uparrow^n)$

 $* + \uparrow + \uparrow^{2}$

 $* + \uparrow + \uparrow^2 + \uparrow^3 + \uparrow^4 + \uparrow^5$

 $-(^* + \uparrow + \uparrow^2 + \uparrow^3 + \uparrow^4 + \uparrow^5 + \uparrow^6)$

whole game = $(* + 1 + 1^2)$ + $(* + 1 + 1^2)$ + $(* + 1 + 1^2 + 1^3 + 1^4 + 1^5)$ - $(* + 1 + 1^2)$ - $(* + 1 + 1^2)$ - $(* + 1 + 1^2 + 1^3 + 1^4 + 1^5 + 1^6)$ = $* + 1 + 1^2 - 1^6$

We have $0 < \uparrow + \uparrow^2 - \uparrow^6 < \uparrow + \uparrow^2$, so $\uparrow + \uparrow^2 - \uparrow^6 || *$. By adding * on both sides we get $* + \uparrow + \uparrow^2 - \uparrow^6 || 0$, so the first player can win.

イロト イボト イヨト イヨト

March 28, 2021 15 / 16
Thank you for your attention

Image: A mathematical states and a mathem

э