Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example: $\xrightarrow{L} \xrightarrow{L}$

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example:

$=606$

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

$$
-Y \equiv Y
$$

- Cutting blue edge always decreases the game (e.g. $I^{Y} \perp$, because $Y^{Y}-\sum \equiv \sum_{2}>0$), similarly cutting red edge increases the game.

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example:

$$
-Y \equiv Y
$$

- Cutting blue edge always decreases the game (e.g. $I^{Y} \perp$, because $\underline{Y}^{Y} \perp \equiv \sum_{2}>0$), similarly cutting red edge increases the game.
- Thus for each x we have $x_{L}<x<x_{R}$, so (by induction on number of edges), x is a number.

Example - Hackenbush

We have a picture consisting of blue and red edges joining nodes. Each node must be connected by a chain of edges to a special line called the ground. In each turn, a player removes single edge, together with all nodes and edges, which are no longer connected to ground. Left always removes blue edges, Right red ones. A player with no valid move loses.

Example:

$$
-Y \equiv Y
$$

- Cutting blue edge always decreases the game (e.g. I^{Y} 上, because $\underline{Y}^{Y}-\sum \equiv \sum_{2}>0$), similarly cutting red edge increases the game.
- Thus for each x we have $x_{L}<x<x_{R}$, so (by induction on number of edges), x is a number.
- These games have finite birthday, so they are actually dyadic fractions.

Hackenbush

For general graphs, there is no easy way to determine its value.

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. w/y).

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. v/Y).

- Forest is just a sum of trees.

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. w/y).

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $Y=\underline{I}$

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. w/y).

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $Y=I$
- We write $1: x$ for ' x put on a blue edge' (e.g. $1: \|=Y_{\text {l }}$).

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. wif $)$.

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $Y=\underline{Y}$
- We write $1: x$ for ' x put on a blue edge' (e.g. $1: 11=y^{\prime}$).
- x put on a red edge is then $-(1:-x)$.

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. wif $)$.

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $Y=$ 里
- We write $1: x$ for ' x put on a blue edge' (e.g. $1: 11=y^{\prime}$).
- x put on a red edge is then $-(1:-x)$.
- If $a=b$, then $1: a=1: b$ (2 ($-2=0 \Rightarrow$ 是 $=0)$

Hackenbush

For general graphs, there is no easy way to determine its value. But there is an easy way for forests (e.g. w/y).

- Forest is just a sum of trees.
- Tree is just a sum of trees put on an edge: $Y=$ 里
- We write $1: x$ for ' x put on a blue edge' (e.g. $1: 11=y^{\prime}$).
- x put on a red edge is then $-(1:-x)$.
- If $a=b$, then $1: a=1: b$ (3 ($3=0 \Rightarrow$ 是 $=0$)
- We just need to be able to compute 1:x for given dyadic fraction x.

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- 1:0

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1=1:\{\mid 0\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1=1:\{\mid 0\}=\{0 \mid 1: 0\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- 1: $-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- 1: $-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}=1:\{-1 \mid 0\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- 1: $-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}=1:\{-1 \mid 0\}=\{0,1:-1 \mid 1: 0\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- 1: $-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}=1:\{-1 \mid 0\}=\{0,1:-1 \mid 1: 0\}=\left\{0, \left.\frac{1}{2} \right\rvert\, 1\right\}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- $1:-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}=1:\{-1 \mid 0\}=\{0,1:-1 \mid 1: 0\}=\left\{0, \left.\frac{1}{2} \right\rvert\, 1\right\}=\frac{3}{4}$

Hackenbush

- We have $1: x=\left\{0,1: x_{L} \mid 1: x_{R}\right\}$.
- $1: 0=1:\{\mid\}=\{0 \mid\}=1$
- $1: 1=1:\{0 \mid\}=\{0,1: 0 \mid\}=\{0,1 \mid\}=2$
- 1: $-1=1:\{\mid 0\}=\{0 \mid 1: 0\}=\{0 \mid 1\}=\frac{1}{2}$
- $1:-\frac{1}{2}=1:\{-1 \mid 0\}=\{0,1:-1 \mid 1: 0\}=\left\{0, \left.\frac{1}{2} \right\rvert\, 1\right\}=\frac{3}{4}$
- For dyadic fraction x, let n be the smallest positive integer such that $x+n>1$. Then $1: x=\frac{x+n}{2^{n-1}}$.

Hackenbush

Now we can determine any game!

Hackenbush

Now we can determine any game!

Hackenbush

Now we can determine any game!

$\frac{53}{64}+(-1)+\frac{1}{4}=\frac{5}{64}>0$, so this is a winning position for Left.

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.
- $\left(a-a_{R}\right)\left(b-b_{L}\right)<0$. Thus $a b<a_{R} b+a b_{L}-a_{R} b_{L}$.

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.
- $\left(a-a_{R}\right)\left(b-b_{L}\right)<0$. Thus $a b<a_{R} b+a b_{L}-a_{R} b_{L}$.

We let $a b$ be the simplest number satisfying all of this. This leads to following definition:

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.
- $\left(a-a_{R}\right)\left(b-b_{L}\right)<0$. Thus $a b<a_{R} b+a b_{L}-a_{R} b_{L}$.

We let $a b$ be the simplest number satisfying all of this. This leads to following definition:

Definition

Let a, b be numbers. We define $a b$ as follows:

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.
- $\left(a-a_{R}\right)\left(b-b_{L}\right)<0$. Thus $a b<a_{R} b+a b_{L}-a_{R} b_{L}$.

We let $a b$ be the simplest number satisfying all of this. This leads to following definition:

Definition

Let a, b be numbers. We define $a b$ as follows:

- $(a b)_{L}=\left(a_{L} b+a b_{L}-a_{L} b_{L}\right) \cup\left(a_{R} b+a b_{R}-a_{R} b_{R}\right)$

Surreal numbers and multiplication

Let a, b be numbers. We want to define $a b$. What we wish to be true:

- $\left(a-a_{L}\right)\left(b-b_{L}\right)>0$. Thus $a b>a_{L} b+a b_{L}-a_{L} b_{L}$.
- $\left(a-a_{R}\right)\left(b-b_{R}\right)>0$. Thus $a b>a_{R} b+a b_{R}-a_{R} b_{R}$.
- $\left(a-a_{L}\right)\left(b-b_{R}\right)<0$. Thus $a b<a_{L} b+a b_{R}-a_{L} b_{R}$.
- $\left(a-a_{R}\right)\left(b-b_{L}\right)<0$. Thus $a b<a_{R} b+a b_{L}-a_{R} b_{L}$.

We let $a b$ be the simplest number satisfying all of this. This leads to following definition:

Definition

Let a, b be numbers. We define $a b$ as follows:

- $(a b)_{L}=\left(a_{L} b+a b_{L}-a_{L} b_{L}\right) \cup\left(a_{R} b+a b_{R}-a_{R} b_{R}\right)$
- $(a b)_{R}=\left(a_{L} b+a b_{R}-a_{L} b_{R}\right) \cup\left(a_{R} b+a b_{L}-a_{R} b_{L}\right)$

Surreal numbers and multiplication

Theorem
Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. (No,,$+ \times$) is a Field.

Surreal numbers and multiplication

Theorem
Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. (No,,$+ \times$) is a Field.

Theorem
Structure ($\mathbf{N o},+, \times, \leq$) is elementarily equivalent to $(\mathbb{R},+, \times, \leq$).

Surreal numbers and multiplication

Theorem

Numbers are closed under multiplication. Multiplication is well-defined on numbers up to equality. (No,,$+ \times$) is a Field.

Theorem
 Structure (No,,$+ \times, \leq$) is elementarily equivalent to $(\mathbb{R},+, \times, \leq)$.

We could define multiplication in the same way for general games, but here it turns out to be not nice.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid\}$, where L is a set of numbers.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid\}$, where L is a set of numbers.

If α is an ordinal, then $\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid\}$, where L is a set of numbers.

If α is an ordinal, then $\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. Ordinals defined this way correspond to standard ordinals.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid\}$, where L is a set of numbers.

If α is an ordinal, then $\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. Ordinals defined this way correspond to standard ordinals.
Ordinals are closed under + and \times.

Remarkable subfields

Definition

Surreal number x is a real number, if $-n<x<n$ for some natural number n and $x=\left\{x-1, x-\frac{1}{2}, x-\frac{1}{3}, \ldots \mid \ldots, x+\frac{1}{3}, x+\frac{1}{2}, x+1\right\}$.

Real numbers defined this way correspond to standard real numbers.

Definition

Surreal number α is an ordinal number, if α can be expressed as $\{L \mid\}$, where L is a set of numbers.

If α is an ordinal, then $\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. Ordinals defined this way correspond to standard ordinals.
Ordinals are closed under + and \times. However, these operations do not correspond to standard ordinal addition and multiplication. This is easy to see, because in surreal numbers $1+\omega=\omega+1$.

Numbers and general games

Numbers and general games

Theorem
Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Numbers and general games

Theorem
Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

```
Proof
\alpha={\beta:\beta is ordinal and \beta<\alpha|}.
```


Numbers and general games

Theorem
Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win.

Numbers and general games

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win. Right can make a move in α or in $-g$, but $\alpha_{R}=\emptyset$, so he must play in $-g=\left\{-g_{R} \mid-g_{L}\right\}$.

Numbers and general games

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win. Right can make a move in α or in $-g$, but $\alpha_{R}=\emptyset$, so he must play in $-g=\left\{-g_{R} \mid-g_{L}\right\}$. Let's say he turns $\alpha-g$ to $\alpha-g^{\prime}$ for some $g^{\prime} \in g_{L}$.

Numbers and general games

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win. Right can make a move in α or in $-g$, but $\alpha_{R}=\emptyset$, so he must play in $-g=\left\{-g_{R} \mid-g_{L}\right\}$. Let's say he turns $\alpha-g$ to $\alpha-g^{\prime}$ for some $g^{\prime} \in g_{L}$. Let β be birthday of g^{\prime}, then $\beta<\alpha$,

Numbers and general games

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win. Right can make a move in α or in $-g$, but $\alpha_{R}=\emptyset$, so he must play in $-g=\left\{-g_{R} \mid-g_{L}\right\}$. Let's say he turns $\alpha-g$ to $\alpha-g^{\prime}$ for some $g^{\prime} \in g_{L}$. Let β be birthday of g^{\prime}, then $\beta<\alpha$, so Left can turn $\alpha-g^{\prime}$ to $\beta-g^{\prime}$.

Numbers and general games

Theorem

Let g be a game and α be its birthday. Then $-\alpha \leq g \leq \alpha$.

Proof

$\alpha=\{\beta: \beta$ is ordinal and $\beta<\alpha \mid\}$. We prove just $g \leq \alpha$. We play $\alpha-g$, Right starts, we need Left to win. Right can make a move in α or in $-g$, but $\alpha_{R}=\emptyset$, so he must play in $-g=\left\{-g_{R} \mid-g_{L}\right\}$. Let's say he turns $\alpha-g$ to $\alpha-g^{\prime}$ for some $g^{\prime} \in g_{L}$. Let β be birthday of g^{\prime}, then $\beta<\alpha$, so Left can turn $\alpha-g^{\prime}$ to $\beta-g^{\prime}$. By repeating this strategy, Left can never lose, so he wins.

Numbers and general games

Let g be a game, which is not a number. Then for any number x either $x<g, x \| g$, or $x>g$. In this way, g divides No into 3 disjoint convex sections. Since $-\alpha \leq g \leq \alpha$, the middle section is bounded.

Numbers and general games

Let g be a game, which is not a number. Then for any number x either $x<g, x \| g$, or $x>g$. In this way, g divides No into 3 disjoint convex sections. Since $-\alpha \leq g \leq \alpha$, the middle section is bounded.

- $*=\{0 \mid 0\}$ is greater than all negative numbers, smaller than all positive numbers, and confused with 0 .

Numbers and general games

Let g be a game, which is not a number. Then for any number x either $x<g, x \| g$, or $x>g$. In this way, g divides No into 3 disjoint convex sections. Since $-\alpha \leq g \leq \alpha$, the middle section is bounded.

- $*=\{0 \mid 0\}$ is greater than all negative numbers, smaller than all positive numbers, and confused with 0 .
- $\uparrow=\{0 \mid *\}$ is greater than all negative numbers and 0 , and smaller than all positive numbers.

Numbers and general games

Let g be a game, which is not a number. Then for any number x either $x<g, x \| g$, or $x>g$. In this way, g divides No into 3 disjoint convex sections. Since $-\alpha \leq g \leq \alpha$, the middle section is bounded.

- $*=\{0 \mid 0\}$ is greater than all negative numbers, smaller than all positive numbers, and confused with 0 .
- $\uparrow=\{0 \mid *\}$ is greater than all negative numbers and 0 , and smaller than all positive numbers.
- $\{1 \mid-1\}$ is greater than all numbers smaller than -1 , smaller than all numbers greater than 1 , and confused with $[-1,1]$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and
$(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and
$(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.
- We have $-(a, b)=(b, a)$. We could ask whether $(a, b)=(a+1, b+1)$ for $a, b>0$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and $(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.
- We have $-(a, b)=(b, a)$. We could ask whether $(a, b)=(a+1, b+1)$ for $a, b>0$. Indeed, $(a, b)+(b+1, a+1)$ is a win for the second player (easy case-work), so this holds.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and
$(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.
- We have $-(a, b)=(b, a)$. We could ask whether $(a, b)=(a+1, b+1)$ for $a, b>0$. Indeed, $(a, b)+(b+1, a+1)$ is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if $a, b>0$, then the value of (a, b) depends only on $a-b$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and
$(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.
- We have $-(a, b)=(b, a)$. We could ask whether $(a, b)=(a+1, b+1)$ for $a, b>0$. Indeed, $(a, b)+(b+1, a+1)$ is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if $a, b>0$, then the value of (a, b) depends only on $a-b$. Let $(a, b)=g(a-b)$.

Example - Schrinking rectangles

We have a number of rectangles of integer sides. Left can decrease the breadth of any rectangle, Right the height. A rectangle whose breadth or height is decreased to zero disappears. Who can win?

- Clearly, the game is just a sum of individual rectangles.
- Let (a, b) be a game of single $a \times b$ rectangle $\left(a, b \in \mathbb{N}_{0}\right)$.
- We have $(n, 0)=(0, n)=0$ and
$(a, b)=\left\{\left(a^{\prime}, b\right): a^{\prime}<a \mid\left(a, b^{\prime}\right): b^{\prime}<b\right\}$ for $a, b>0$.
- We have $-(a, b)=(b, a)$. We could ask whether $(a, b)=(a+1, b+1)$ for $a, b>0$. Indeed, $(a, b)+(b+1, a+1)$ is a win for the second player (easy case-work), so this holds.
- From previous point it follows, that if $a, b>0$, then the value of (a, b) depends only on $a-b$. Let $(a, b)=g(a-b)$.
- For $n \geq 0$ we have $g(n)=(n+1,1)$ and $g(-n)=(1, n+1)=-g(n)$.

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$.

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and $g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$.

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and

$$
g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n} .
$$

It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and

$$
g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n} .
$$

It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:

- $\uparrow^{n}>0$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and

$$
g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n} .
$$

It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:

- $\uparrow^{n}>0$ (because $g(n)-g(n-1)=(n+1,1)+(1, n)$ is a win for Left)

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and

$$
g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n}
$$

It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:

- $\uparrow^{n}>0$ (because $g(n)-g(n-1)=(n+1,1)+(1, n)$ is a win for Left)
- $\uparrow^{n}>k \uparrow^{n+1}$ for $k \in \mathbb{N}$

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and $g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$.
It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:
- $\uparrow^{n}>0$ (because $g(n)-g(n-1)=(n+1,1)+(1, n)$ is a win for Left)
- $\uparrow^{n}>k \uparrow^{n+1}$ for $k \in \mathbb{N}(k(1, n+2)+(k+1)(n+1,1)+(1, n)$ is a win for Left)

Schrinking rectangles

We need to understand $g(n)$ for n nonnegative integer.

- $g(n)=(n+1,1)=\{(0,1),(1,1), \cdots,(n, 1) \mid(n+1,0)\}=$ $\{0, g(0), g(1), \cdots, g(n-1) \mid 0\}$
- $g(0)=\{0 \mid 0\}=*$
- $g(1)=\{0, g(0) \mid 0\}=\{0, * \mid 0\}=\{0 \mid 0\}+\{0 \mid *\}=*+\uparrow$
- We define $\uparrow^{n}=g(n)-g(n-1)$. Then $\uparrow^{1}=\uparrow$ and $g(n)=*+\uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$.
It turns out \uparrow^{n} are quite easy to compute with. It can be shown that:
- $\uparrow^{n}>0$ (because $g(n)-g(n-1)=(n+1,1)+(1, n)$ is a win for Left)
- $\uparrow^{n}>k \uparrow^{n+1}$ for $k \in \mathbb{N}(k(1, n+2)+(k+1)(n+1,1)+(1, n)$ is a win for Left)
So $\uparrow, \uparrow^{2}, \uparrow^{3}, \cdots$ is a sequence of positive games, in which every game is infinitely smaller then the previous one.

Schrinking rectangles - even case

*


```
whole game
\[
+\left(*+\uparrow+\uparrow^{2}\right)
\]
\[
+\left(*+\uparrow+\uparrow^{2}+\uparrow^{3}+\uparrow^{4}+\uparrow^{5}\right)
\]
\[
-\left({ }^{*}+\uparrow+\uparrow^{2}\right)
\]
\[
-\left({ }^{*}+\uparrow+\uparrow^{2}+\uparrow^{3}+\uparrow^{4}+\uparrow^{5}+\uparrow^{6}\right)
\]
\[
=\left({ }^{*}+*+*+*+*+*\right)
\]
\[
+(\uparrow+\uparrow+\uparrow-\uparrow-\uparrow)
\]
\[
+\left(\uparrow^{2}+\uparrow^{2}+\uparrow^{2}-\uparrow^{2}-\uparrow^{2}\right)
\]
\[
\begin{aligned}
& +\left(\uparrow^{3}-\uparrow^{3}\right) \\
& \hline \uparrow^{4}-\uparrow^{4}
\end{aligned}
\]
\[
+\left(\uparrow^{4}-\uparrow^{4}\right)
\]
\[
+\left(\uparrow^{5}-\uparrow^{5}\right)
\]
\[
-\uparrow^{6}
\]
\[
=0+\uparrow+\uparrow^{2}-\uparrow^{6}>\uparrow>0 \text {, so Left wins }
\]
```

$$
\begin{aligned}
& +\left({ }^{*}+\uparrow+\uparrow^{2}\right) \\
& +\left(*+\uparrow+\uparrow^{2}\right)
\end{aligned}
$$

Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does * compare to sums of \uparrow^{n} After some playing we find out that:

Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does $*$ compare to sums of \uparrow^{n} After some playing we find out that:

- $* \| \uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$ (because $\left.g(n)=(n+1,1) \| 0\right)$

Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does $*$ compare to sums of \uparrow^{n} After some playing we find out that:

- $* \| \uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$ (because $\left.g(n)=(n+1,1) \| 0\right)$
- $*<\uparrow+\uparrow^{2}+\cdots+2 \uparrow^{n}$ (because $\left.2(n+1,1)+(1, n)>0\right)$

Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does $*$ compare to sums of \uparrow^{n} After some playing we find out that:

- * $\| \uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$ (because $\left.g(n)=(n+1,1) \| 0\right)$
- $*<\uparrow+\uparrow^{2}+\cdots+2 \uparrow^{n}$ (because $\left.2(n+1,1)+(1, n)>0\right)$

Analogously on negative side. So $*$ compared to arrows looks like this:

Schrinking rectangles - odd case

To resolve the odd case, we need to understand, how does $*$ compare to sums of \uparrow^{n} After some playing we find out that:

- $* \| \uparrow+\uparrow^{2}+\cdots+\uparrow^{n}$ (because $\left.g(n)=(n+1,1) \| 0\right)$
- $*<\uparrow+\uparrow^{2}+\cdots+2 \uparrow^{n}$ (because $\left.2(n+1,1)+(1, n)>0\right)$

Analogously on negative side. So $*$ compared to arrows looks like this:

$$
\left(\uparrow_{n}=\uparrow+\uparrow^{2}+\ldots+\uparrow^{n}\right)
$$

Schrinking rectangles - odd case

$$
-\left({ }^{*}+\uparrow+\uparrow^{2}+\uparrow^{3}+\uparrow^{4}+\uparrow^{5}+\uparrow^{6}\right)
$$

```
whole game
\(=\left(*+\uparrow+\uparrow^{2}\right)\)
    \(+\left({ }^{*}+\uparrow+\uparrow^{2}\right)\)
    \(+\left({ }^{*}+\uparrow+\uparrow^{2}+\uparrow^{3}+\uparrow^{4}+\uparrow^{5}\right)\)
    \(-\left(*+\uparrow+\uparrow^{2}\right)\)
    \(-\left({ }^{*}+\uparrow+\uparrow^{2}+\uparrow^{3}+\uparrow^{4}+\uparrow^{5}+\uparrow^{6}\right)\)
\(={ }^{*}+\uparrow+\uparrow^{2}-\uparrow^{6}\)
```

We have $0<\uparrow+\uparrow^{2}-\uparrow^{6}<\uparrow+\uparrow^{2}$, so
$\uparrow+\uparrow^{2}-\uparrow^{6} \|^{*}$. By adding * on both
sides we get ${ }^{*}+\uparrow+\uparrow^{2}-\uparrow^{6} \| 0$, so
the first player can win.

Thank you for your attention

